//============================================================================= /** * @file Thread_Mutex_Test.cpp * * This test illustrates the functionality of the * ACE_Thread_Mutex. The test acquires and releases mutexes. No * command line arguments are needed to run the test. * * @author Prashant Jain and Douglas C. Schmidt */ //============================================================================= #include "test_config.h" #include "ace/Thread_Manager.h" #include "ace/OS_NS_sys_time.h" #include "ace/OS_NS_time.h" #include "ace/OS_NS_unistd.h" #if defined (ACE_HAS_THREADS) #include "ace/Guard_T.h" // For all platforms except for Windows use the ACE_Thread_Mutex. // Since Windows only supports timed process mutexes and not // timed thread mutexes, use ACE_Process_Mutex. #if defined (ACE_HAS_WTHREADS) # include "ace/Process_Mutex.h" typedef ACE_Process_Mutex ACE_TEST_MUTEX; #else # include "ace/Thread_Mutex.h" using ACE_TEST_MUTEX = ACE_Thread_Mutex; #endif #if !defined (ACE_HAS_MUTEX_TIMEOUTS) static int reported_notsup = 0; #endif /* ACE_HAS_MUTEX_TIMEOUTS */ static void * test (void *args) { ACE_TEST_MUTEX *mutex = (ACE_TEST_MUTEX *) args; ACE_UNUSED_ARG (mutex); // Suppress ghs warning about unused local "mutex". u_int seed = (u_int) ACE_OS::time (0); for (size_t i = 0; i < ACE_MAX_ITERATIONS / 2; i++) { int result = 0; // First attempt to acquire the mutex with a timeout to verify // that mutex timeouts are working. ACE_DEBUG ((LM_DEBUG, ACE_TEXT ("(%P|%t) = trying timed acquire on ") ACE_TEXT ("iteration %d\n"), i)); ACE_Time_Value delta (1, 0); // One second timeout ACE_Time_Value timeout = ACE_OS::gettimeofday (); timeout += delta; // Must pass absolute time to acquire(). if (mutex->acquire (timeout) != 0) { if (errno == ETIME) ACE_DEBUG ((LM_DEBUG, ACE_TEXT ("(%P|%t) = mutex acquisition ") ACE_TEXT ("timed out\n"))); else if (errno == ENOTSUP) { #if !defined (ACE_HAS_MUTEX_TIMEOUTS) if (!reported_notsup) { ACE_DEBUG ((LM_INFO, ACE_TEXT ("(%P|%t) %p, but ACE_HAS_MUTEX_TIMEOUTS is not defined - Ok\n"), ACE_TEXT ("mutex timed acquire"))); reported_notsup = 1; } #else ACE_DEBUG ((LM_ERROR, ACE_TEXT ("(%P|%t) %p - maybe ACE_HAS_MUTEX_TIMEOUTS should not be defined?\n"), ACE_TEXT ("mutex timed acquire"))); #endif /* ACE_HAS_MUTEX_TIMEOUTS */ } else { ACE_ERROR ((LM_ERROR, ACE_TEXT ("(%P|%t) %p\n%a"), ACE_TEXT ("mutex timeout failed\n"))); return 0; } } else { result = mutex->release (); ACE_TEST_ASSERT (result == 0); } // Now try the standard mutex. ACE_DEBUG ((LM_DEBUG, ACE_TEXT ("(%P|%t) = trying to acquire on iteration %d\n"), i)); result = mutex->acquire (); ACE_TEST_ASSERT (result == 0); ACE_DEBUG ((LM_DEBUG, ACE_TEXT ("(%P|%t) = acquired on iteration %d\n"), i)); // Sleep for a random amount of time between 0 and 2 seconds. // Note that it's ok to use rand() here because we are running // within the critical section defined by the Thread_Mutex. ACE_OS::sleep (ACE_OS::rand_r (&seed) % 2); result = mutex->release (); ACE_TEST_ASSERT (result == 0); ACE_DEBUG ((LM_DEBUG, ACE_TEXT ("(%P|%t) = released on iteration %d\n"), i)); // FUZZ: disable check_for_ACE_Guard // Basic ACE_Guard usage - automatically acquire the mutex on // guard construction and automatically release it on // destruction. { // Construct an ACE_Guard to implicitly acquire the mutex. ACE_Guard guard (*mutex); ACE_TEST_ASSERT (guard.locked () != 0); // Perform some operation which might exit the current scope // prematurely, e.g. by returning or throwing an exception. // ... // ACE_Guard object is destroyed when exiting scope and guard // destructor automatically releases mutex. } // Use an ACE_Guard to automatically acquire a mutex, but release // the mutex early. { // Construct an ACE_Guard to implicitly acquire the mutex. ACE_Guard guard (*mutex); ACE_TEST_ASSERT (guard.locked () != 0); // Perform some operation which might exit the current scope // prematurely, e.g. by returning or throwing an exception. // ... // Release the mutex since we no longer need it. guard.release (); ACE_TEST_ASSERT (guard.locked () == 0); // Do something else which does not require the mutex to be locked. // ... // ACE_Guard object's destructor will not release the mutex. } // Use an ACE_Guard to automatically acquire a mutex, but // relinquish ownership of the lock so that the mutex is not // automatically released on guard destruction. This is useful // when an operation might not release the mutex in some // conditions, in which case responsibility for releasing it is // passed to someone else. { // Construct an ACE_Guard to implicitly acquire the mutex. ACE_Guard guard (*mutex); ACE_TEST_ASSERT (guard.locked () != 0); // Perform some operation which might exit the current scope // prematurely, e.g. by returning or throwing an exception. // ... // Relinquish ownership of the mutex lock. Someone else must // now release it. guard.disown (); ACE_TEST_ASSERT (guard.locked () == 0); // ACE_Guard object's destructor will not release the mutex. } // We are now responsible for releasing the mutex. result = mutex->release (); ACE_TEST_ASSERT (result == 0); // Construct an ACE_Guard without automatically acquiring the lock. { // Construct an ACE_Guard object without automatically // acquiring the mutex or taking ownership of an existing // lock. The third parameter tells the guard that the mutex // has not been locked. ACE_Guard guard (*mutex, 0, 0); ACE_TEST_ASSERT (guard.locked () == 0); // Conditionally acquire the mutex. if (i % 2 == 0) { guard.acquire (); ACE_TEST_ASSERT (guard.locked () != 0); } // Perform some operation that might exit the current scope // prematurely, e.g. by returning or throwing an exception. // ... // ACE_Guard object is destroyed when exiting scope and guard // destructor automatically releases if it was acquired above. } // Use an ACE_Guard to take ownership of a previously acquired // mutex. timeout = ACE_OS::gettimeofday (); timeout += delta; // Must pass absolute time to acquire(). if (mutex->acquire (timeout) == 0) { // Construct an ACE_Guard object without automatically // acquiring the mutex, but instead take ownership of the // existing lock. The third parameter tells the guard that // the mutex has already been locked. ACE_Guard guard (*mutex, 0, 1); ACE_TEST_ASSERT (guard.locked () != 0); // Perform some operation which might exit the current scope // prematurely, e.g. by returning or throwing an exception. // ... // ACE_Guard object is destroyed when exiting scope and guard // destructor automatically releases mutex. } // FUZZ: enable check_for_ACE_Guard } return 0; } #endif /* ACE_HAS_THREADS */ static void spawn () { #if defined (ACE_HAS_THREADS) ACE_TEST_MUTEX mutex; const u_int n_threads = ACE_MAX_THREADS; if (ACE_Thread_Manager::instance ()->spawn_n (n_threads, ACE_THR_FUNC (test), (void *) &mutex, THR_NEW_LWP | THR_DETACHED) == -1) ACE_ERROR ((LM_ERROR, ACE_TEXT ("%p\n%a"), ACE_TEXT ("thread create failed"))); // Wait for the threads to exit. ACE_Thread_Manager::instance ()->wait (); #else ACE_ERROR ((LM_INFO, ACE_TEXT ("threads not supported on this platform\n"))); #endif /* ACE_HAS_THREADS */ } int run_main (int, ACE_TCHAR *[]) { ACE_START_TEST (ACE_TEXT ("Thread_Mutex_Test")); spawn (); ACE_END_TEST; return 0; }