// This may look like C, but it's really -*- C++ -*- // $Id$ #include "UIPMC_Transport.h" #include "UIPMC_Connection_Handler.h" #include "UIPMC_Acceptor.h" #include "UIPMC_Profile.h" #include "UIPMC_Wait_Never.h" #include "tao/Acceptor_Registry.h" #include "tao/operation_details.h" #include "tao/Timeprobe.h" #include "tao/CDR.h" #include "tao/Transport_Mux_Strategy.h" #include "tao/Wait_Strategy.h" #include "tao/Sync_Strategies.h" #include "tao/Stub.h" #include "tao/ORB_Core.h" #include "tao/debug.h" #include "tao/Resume_Handle.h" #include "tao/GIOP_Message_Base.h" #include "tao/GIOP_Message_Lite.h" #if !defined (__ACE_INLINE__) # include "UIPMC_Transport.i" #endif /* ! __ACE_INLINE__ */ ACE_RCSID (tao, UIPMC_Transport, "$Id$") // Local MIOP Definitions: // Note: We currently support packet fragmentation on transmit, but // do not support reassembly. // Limit the number of fragments that we can divide a message // into. #define MIOP_MAX_FRAGMENTS (4) #define MIOP_MAX_HEADER_SIZE (272) // See MIOP Spec. Must be a multiple of 8. #define MIOP_MAX_DGRAM_SIZE (ACE_MAX_DGRAM_SIZE) #define MIOP_MAGIC_OFFSET (0) #define MIOP_VERSION_OFFSET (4) #define MIOP_FLAGS_OFFSET (5) #define MIOP_PACKET_LENGTH_OFFSET (6) #define MIOP_PACKET_NUMBER_OFFSET (8) #define MIOP_NUMBER_OF_PACKETS_OFFSET (12) #define MIOP_ID_LENGTH_OFFSET (16) #define MIOP_MIN_LENGTH_ID (0) #define MIOP_MAX_LENGTH_ID (252) #define MIOP_ID_DEFAULT_LENGTH (12) #define MIOP_ID_CONTENT_OFFSET (20) #define MIOP_HEADER_PADDING (0) // The ID field needs to be padded to // a multiple of 8 bytes. #define MIOP_HEADER_SIZE (MIOP_ID_CONTENT_OFFSET \ + MIOP_ID_DEFAULT_LENGTH \ + MIOP_HEADER_PADDING) #define MIOP_MIN_HEADER_SIZE (MIOP_ID_CONTENT_OFFSET \ + MIOP_MIN_LENGTH_ID \ + (8 - MIOP_MIN_LENGTH_ID) /* padding */) static const CORBA::Octet miop_magic[4] = { 0x4d, 0x49, 0x4f, 0x50 }; // 'M', 'I', 'O', 'P' TAO_UIPMC_Transport::TAO_UIPMC_Transport (TAO_UIPMC_Connection_Handler *handler, TAO_ORB_Core *orb_core, CORBA::Boolean /*flag*/) : TAO_Transport (TAO_TAG_UIPMC_PROFILE, orb_core) , connection_handler_ (handler) , messaging_object_ (0) { if (connection_handler_ != 0) { // REFCNT: Matches one of // TAO_Transport::connection_handler_close() or // TAO_Transport::close_connection_shared. this->connection_handler_->incr_refcount(); } // Use the normal GIOP object ACE_NEW (this->messaging_object_, TAO_GIOP_Message_Base (orb_core, ACE_MAX_DGRAM_SIZE)); // Replace the default wait strategy with our own // since we don't support waiting on anything. delete this->ws_; ACE_NEW (this->ws_, TAO_UIPMC_Wait_Never (this)); } TAO_UIPMC_Transport::~TAO_UIPMC_Transport (void) { ACE_ASSERT(this->connection_handler_ == 0); delete this->messaging_object_; } ACE_Event_Handler * TAO_UIPMC_Transport::event_handler_i (void) { return this->connection_handler_; } TAO_Connection_Handler * TAO_UIPMC_Transport::connection_handler_i (void) { return this->connection_handler_; } TAO_Pluggable_Messaging * TAO_UIPMC_Transport::messaging_object (void) { return this->messaging_object_; } struct MIOP_Packet { iovec iov[ACE_IOV_MAX]; int iovcnt; int length; }; class ACE_Message_Block_Data_Iterator { public: /// Constructor ACE_Message_Block_Data_Iterator (iovec *iov, int iovcnt); /// Get the next data block that has a size less than or equal /// to max_length. Return the length of the block returned. size_t next_block (size_t max_length, iovec &block); private: enum State { INTER_BLOCK, INTRA_BLOCK }; iovec *iov_; int iovcnt_; // Point internal to a message block, if we have to split one up. char *iov_ptr_; int iov_index_; // Length used in a split message block. size_t iov_len_left_; // Current message iterator state. State state_; }; ACE_Message_Block_Data_Iterator::ACE_Message_Block_Data_Iterator (iovec *iov, int iovcnt) : iov_ (iov), iovcnt_ (iovcnt), iov_ptr_ (0), iov_index_ (0), iov_len_left_ (0), state_ (INTER_BLOCK) { } size_t ACE_Message_Block_Data_Iterator::next_block (size_t max_length, iovec &block) { if (this->state_ == INTER_BLOCK) { // Check that there are some iovec buffers left. if (this->iov_index_ >= this->iovcnt_) return 0; size_t current_iov_len = this->iov_[this->iov_index_].iov_len; if (current_iov_len <= max_length) { // Return the full data portion. block.iov_len = current_iov_len; block.iov_base = this->iov_[this->iov_index_].iov_base; // Go to the next block. this->iov_index_++; return current_iov_len; } else { // Let the caller use the first part of this // message block. block.iov_len = max_length; block.iov_base = this->iov_[this->iov_index_].iov_base; // Break up the block. this->iov_len_left_ = current_iov_len - max_length; this->iov_ptr_ = ACE_reinterpret_cast (char *, ACE_reinterpret_cast (char *, block.iov_base) + max_length); this->state_ = INTRA_BLOCK; return max_length; } } else { // Currently scanning a split block. if (this->iov_len_left_ <= max_length) { // Return everything that's left in the block. block.iov_len = this->iov_len_left_; block.iov_base = this->iov_ptr_; // Go to the next block. this->iov_index_++; // Update the state. this->state_ = INTER_BLOCK; return this->iov_len_left_; } else { // Split a little more off the block. block.iov_len = this->iov_len_left_; block.iov_base = this->iov_ptr_; this->iov_len_left_ -= max_length; this->iov_ptr_ += max_length; return max_length; } } } void TAO_UIPMC_Transport::write_unique_id (TAO_OutputCDR &miop_hdr, unsigned long unique) { // We currently construct a unique ID for each MIOP message by // concatenating the address of the buffer to a counter. We may // also need to use a MAC address or something more unique to // fully comply with the MIOP specification. static unsigned long counter = 1; // Don't worry about race conditions on counter, // since buffer addresses can't be the same if // this is being called simultaneously. CORBA::Octet unique_id[MIOP_ID_DEFAULT_LENGTH]; unique_id[0] = ACE_static_cast (CORBA::Octet, unique & 0xff); unique_id[1] = ACE_static_cast (CORBA::Octet, (unique & 0xff00) >> 8); unique_id[2] = ACE_static_cast (CORBA::Octet, (unique & 0xff0000) >> 16); unique_id[3] = ACE_static_cast (CORBA::Octet, (unique & 0xff000000) >> 24); unique_id[4] = ACE_static_cast (CORBA::Octet, counter & 0xff); unique_id[5] = ACE_static_cast (CORBA::Octet, (counter & 0xff00) >> 8); unique_id[6] = ACE_static_cast (CORBA::Octet, (counter & 0xff0000) >> 16); unique_id[7] = ACE_static_cast (CORBA::Octet, (counter & 0xff000000) >> 24); unique_id[8] = 0; unique_id[9] = 0; unique_id[10] = 0; unique_id[11] = 0; miop_hdr.write_ulong (MIOP_ID_DEFAULT_LENGTH); miop_hdr.write_octet_array (unique_id, MIOP_ID_DEFAULT_LENGTH); } ssize_t TAO_UIPMC_Transport::send_i (iovec *iov, int iovcnt, size_t &bytes_transferred, const ACE_Time_Value *) { const ACE_INET_Addr &addr = this->connection_handler_->addr (); bytes_transferred = 0; // Calculate the bytes to send. This value is only used for // error conditions to fake a good return. We do this for // semantic consistency with DIOP, and since errors aren't // handled correctly from send_i (our fault). If these // semantics are not desirable, the error handling problems // that need to be fixed can be found in // UIPMC_Connection_Handler::decr_refcount which will need to // deregister the connection handler from the UIPMC_Connector // cache. ssize_t bytes_to_send = 0; for (int i = 0; i < iovcnt; i++) bytes_to_send += iov[i].iov_len; MIOP_Packet fragments[MIOP_MAX_FRAGMENTS]; MIOP_Packet *current_fragment; int num_fragments = 1; ACE_Message_Block_Data_Iterator mb_iter (iov, iovcnt); // Initialize the first fragment current_fragment = &fragments[0]; current_fragment->iovcnt = 1; // The MIOP Header current_fragment->length = MIOP_HEADER_SIZE; // Go through all of the message blocks. while (mb_iter.next_block (MIOP_MAX_DGRAM_SIZE - current_fragment->length, current_fragment->iov[current_fragment->iovcnt])) { // Increment the length and iovcnt. current_fragment->length += current_fragment->iov[current_fragment->iovcnt].iov_len; current_fragment->iovcnt++; // Check if we've filled up this fragment or if we've run out of // iov entries. if (current_fragment->length == MIOP_MAX_DGRAM_SIZE || current_fragment->iovcnt == ACE_IOV_MAX) { // Make a new fragment. num_fragments++; // Check if too many fragments if (num_fragments > MIOP_MAX_FRAGMENTS) { // This is an error as we do not send more. // Silently drop the message but log an error. // Pluggable_Messaging::transport_message only // cares if it gets -1 or 0 so we can return a // partial length and it will think all has gone // well. if (TAO_debug_level > 0) { ACE_DEBUG ((LM_DEBUG, ACE_TEXT ("\n\nTAO (%P|%t) ") ACE_TEXT ("UIPMC_Transport::send_i ") ACE_TEXT ("Message needs too many fragments (max is %d)\n"), MIOP_MAX_FRAGMENTS)); } // Pretend it is o.k. See note by bytes_to_send calculation. bytes_transferred = bytes_to_send; return 1; } // Otherwise, initialize another fragment. current_fragment++; current_fragment->iovcnt = 1; // The MIOP Header current_fragment->length = MIOP_HEADER_SIZE; } } // Build a generic MIOP Header. // Allocate space on the stack for the header (add 8 to account for // the possibility of adjusting for alignment). char header_buffer[MIOP_HEADER_SIZE + 8]; TAO_OutputCDR miop_hdr (header_buffer, MIOP_HEADER_SIZE + 8); miop_hdr.write_octet_array (miop_magic, 4); // Magic miop_hdr.write_octet (0x10); // Version CORBA::Octet *flags_field = ACE_reinterpret_cast (CORBA::Octet *, miop_hdr.current ()->wr_ptr ()); // Write flags octet: // Bit Description // 0 Endian // 1 Stop message flag (Assigned later) // 2 - 7 Set to 0 miop_hdr.write_octet (TAO_ENCAP_BYTE_ORDER); // Flags // Packet Length // NOTE: We can save pointers and write them later without byte swapping since // in CORBA, the sender chooses the endian. CORBA::UShort *packet_length = ACE_reinterpret_cast (CORBA::UShort *, miop_hdr.current ()->wr_ptr ()); miop_hdr.write_short (0); // Packet number CORBA::ULong *packet_number = ACE_reinterpret_cast (CORBA::ULong *, miop_hdr.current ()->wr_ptr ()); miop_hdr.write_ulong (0); // Number of packets field miop_hdr.write_ulong (num_fragments); // UniqueId this->write_unique_id (miop_hdr, ACE_reinterpret_cast (unsigned long, iov)); // Send the buffers. current_fragment = &fragments[0]; while (num_fragments > 0 && current_fragment->iovcnt > 1) { // Fill in the packet length header field. *packet_length = current_fragment->length; // If this is the last fragment, set the stop message flag. if (num_fragments == 1) { *flags_field |= 0x02; } // Setup the MIOP header in the iov list. current_fragment->iov[0].iov_base = miop_hdr.current ()->rd_ptr (); current_fragment->iov[0].iov_len = MIOP_HEADER_SIZE; // Send the fragment. - Need to check for errors!! ssize_t rc = this->connection_handler_->dgram ().send (current_fragment->iov, current_fragment->iovcnt, addr); if (rc <= 0) { if (TAO_debug_level > 0) { ACE_DEBUG ((LM_DEBUG, ACE_TEXT ("\n\nTAO (%P|%t) ") ACE_TEXT ("UIPMC_Transport::send") ACE_TEXT (" %p\n\n"), ACE_TEXT ("Error returned from transport:"))); } // Pretend it is o.k. See note by bytes_to_send calculation. bytes_transferred = bytes_to_send; return 1; } // Increment the number of bytes transferred, but don't // count the MIOP header that we added. bytes_transferred += rc - MIOP_HEADER_SIZE; if (TAO_debug_level > 0) { ACE_DEBUG ((LM_DEBUG, "TAO_UIPMC_Transport::send_i: sent %d bytes to %s:%d\n", rc, addr.get_host_addr (), addr.get_port_number ())); } // Go to the next fragment. (*packet_number)++; ++current_fragment; --num_fragments; } // Return total bytes transferred. return bytes_transferred; } ssize_t TAO_UIPMC_Transport::recv_i (char *buf, size_t len, const ACE_Time_Value * /*max_wait_time*/) { ACE_INET_Addr from_addr; ssize_t n = this->connection_handler_->mcast_dgram ().recv (buf, len, from_addr); if (TAO_debug_level > 5) { ACE_DEBUG ((LM_DEBUG, "TAO_UIPMC_Transport::recv_i: received %d bytes from %s:%d\n", n, from_addr.get_host_addr (), from_addr.get_port_number ())); } // Make sure that we at least have a MIOP header. if (n < MIOP_MIN_HEADER_SIZE) { if (TAO_debug_level > 0) { ACE_DEBUG ((LM_DEBUG, "TAO_UIPMC_Transport::recv_i: packet of size %d is too small from %s:%d\n", n, from_addr.get_host_addr (), from_addr.get_port_number ())); } return 0; } // Check for MIOP magic bytes. if (buf[MIOP_MAGIC_OFFSET] != miop_magic [0] || buf[MIOP_MAGIC_OFFSET + 1] != miop_magic [1] || buf[MIOP_MAGIC_OFFSET + 2] != miop_magic [2] || buf[MIOP_MAGIC_OFFSET + 3] != miop_magic [3]) { if (TAO_debug_level > 0) { ACE_DEBUG ((LM_DEBUG, "TAO_UIPMC_Transport::recv_i: UIPMC packet didn't contain magic bytes.\n")); } return 0; } // Retrieve the byte order. // 0 = Big endian // 1 = Small endian CORBA::Octet byte_order = buf[MIOP_FLAGS_OFFSET] & 0x01; // Ignore the header version, other flags, packet length and number of packets. // Get the length of the ID. CORBA::ULong id_length; #if !defined (ACE_DISABLE_SWAP_ON_READ) if (byte_order == ACE_CDR_BYTE_ORDER) { id_length = *ACE_reinterpret_cast (ACE_CDR::ULong*, &buf[MIOP_ID_LENGTH_OFFSET]); } else { ACE_CDR::swap_4 (&buf[MIOP_ID_LENGTH_OFFSET], ACE_reinterpret_cast (char*, &id_length)); } #else id_length = *ACE_reinterpret_cast (ACE_CDR::ULong*, &buf[MIOP_ID_LENGTH_OFFSET]); #endif /* ACE_DISABLE_SWAP_ON_READ */ // Make sure that the length field is legal. if (id_length > MIOP_MAX_LENGTH_ID || ACE_static_cast (ssize_t, MIOP_ID_CONTENT_OFFSET + id_length) > n) { if (TAO_debug_level > 0) { ACE_DEBUG ((LM_DEBUG, "TAO_UIPMC_Transport::recv_i: Invalid ID length.\n")); } return 0; } // Trim off the header for now. ssize_t miop_header_size = (MIOP_ID_CONTENT_OFFSET + id_length + 7) & ~0x7; if (miop_header_size > n) { if (TAO_debug_level > 0) { ACE_DEBUG ((LM_DEBUG, "TAO_UIPMC_Transport::recv_i: MIOP packet not large enough for padding.\n")); } return 0; } n -= miop_header_size; ACE_OS::memmove (buf, buf + miop_header_size, n); return n; } int TAO_UIPMC_Transport::handle_input_i (TAO_Resume_Handle &rh, ACE_Time_Value *max_wait_time, int /*block*/) { // If there are no messages then we can go ahead to read from the // handle for further reading.. // The buffer on the stack which will be used to hold the input // messages char buf [ACE_MAX_DGRAM_SIZE]; #if defined (ACE_HAS_PURIFY) (void) ACE_OS::memset (buf, '\0', sizeof buf); #endif /* ACE_HAS_PURIFY */ // Create a data block ACE_Data_Block db (sizeof (buf), ACE_Message_Block::MB_DATA, buf, this->orb_core_->input_cdr_buffer_allocator (), this->orb_core_->locking_strategy (), ACE_Message_Block::DONT_DELETE, this->orb_core_->input_cdr_dblock_allocator ()); // Create a message block ACE_Message_Block message_block (&db, ACE_Message_Block::DONT_DELETE, this->orb_core_->input_cdr_msgblock_allocator ()); // Align the message block ACE_CDR::mb_align (&message_block); // Read the message into the message block that we have created on // the stack. ssize_t n = this->recv (message_block.wr_ptr (), message_block.space (), max_wait_time); // If there is an error return to the reactor.. if (n <= 0) { if (TAO_debug_level) { ACE_DEBUG ((LM_DEBUG, ACE_TEXT ("TAO: (%P|%t|%N|%l) recv returned error on transport %d after fault %p\n"), this->id (), ACE_TEXT ("handle_input_i ()\n"))); } if (n == -1) this->tms_->connection_closed (); return n; } // Set the write pointer in the stack buffer. message_block.wr_ptr (n); // Check the incoming message for validity. The check needs to be // performed by the messaging objects. if (this->messaging_object ()->check_for_valid_header (message_block) == 0) { if (TAO_debug_level) { ACE_DEBUG ((LM_DEBUG, ACE_TEXT ("TAO: (%P|%t|%N|%l) failed to find a valid header on transport %d after fault %p\n"), this->id (), ACE_TEXT ("handle_input_i ()\n"))); } return -1; } // NOTE: We are not performing any queueing nor any checking for // missing data. We are assuming that ALL the data arrives in a // single read. // Make a node of the message block.. // // We could make this more efficient by having a fixed Queued Data // allocator, i.e., it always gave back the same thing. Actually, // we *could* create an allocator that took a stack-allocated object // as an argument and returned that when asked an allocation is // done. Something to contemplate... TAO_Queued_Data* qd = TAO_Queued_Data::make_completed_message (message_block, *this->messaging_object ()); int retval = -1; if (qd) { // Process the message retval = this->process_parsed_messages (qd, rh); TAO_Queued_Data::release (qd); } return retval; } int TAO_UIPMC_Transport::register_handler_i (void) { // We never register register the handler with the reactor // as we never need to be informed about any incoming data, // assuming we only use one-ways. // If we would register and ICMP Messages would arrive, e.g // due to a not reachable server, we would get informed - as this // disturbs the general MIOP assumptions of not being // interested in any network failures, we ignore ICMP messages. return 0; } int TAO_UIPMC_Transport::send_request (TAO_Stub *stub, TAO_ORB_Core *orb_core, TAO_OutputCDR &stream, int message_semantics, ACE_Time_Value *max_wait_time) { if (this->ws_->sending_request (orb_core, message_semantics) == -1) return -1; if (this->send_message (stream, stub, message_semantics, max_wait_time) == -1) return -1; return 0; } int TAO_UIPMC_Transport::send_message (TAO_OutputCDR &stream, TAO_Stub *stub, int message_semantics, ACE_Time_Value *max_wait_time) { // Format the message in the stream first if (this->messaging_object_->format_message (stream) != 0) return -1; // Strictly speaking, should not need to loop here because the // socket never gets set to a nonblocking mode ... some Linux // versions seem to need it though. Leaving it costs little. // This guarantees to send all data (bytes) or return an error. ssize_t n = this->send_message_shared (stub, message_semantics, stream.begin (), max_wait_time); if (n == -1) { if (TAO_debug_level) ACE_DEBUG ((LM_DEBUG, ACE_TEXT ("TAO: (%P|%t|%N|%l) closing transport %d after fault %p\n"), this->id (), ACE_TEXT ("send_message ()\n"))); return -1; } return 1; } int TAO_UIPMC_Transport::messaging_init (CORBA::Octet major, CORBA::Octet minor) { this->messaging_object_->init (major, minor); return 1; } TAO_Connection_Handler * TAO_UIPMC_Transport::invalidate_event_handler_i (void) { TAO_Connection_Handler * eh = this->connection_handler_; this->connection_handler_ = 0; return eh; }