// $Id$ #include "ace/ACE.h" #include "ace/Handle_Set.h" #include "ace/Auto_Ptr.h" #include "ace/SString.h" #include "ace/Version.h" #include "ace/Message_Block.h" #include "ace/Log_Msg.h" #if defined (ACE_LACKS_INLINE_FUNCTIONS) #include "ace/ACE.i" #endif /* ACE_LACKS_INLINE_FUNCTIONS */ ACE_RCSID(ace, ACE, "$Id$") // Static data members. // Keeps track of whether we're in some global debug mode. char ACE::debug_ = 0; // Hex characters. const ACE_TCHAR ACE::hex_chars_[] = ACE_LIB_TEXT ("0123456789abcdef"); // Size of a VM page. size_t ACE::pagesize_ = 0; // Size of allocation granularity. size_t ACE::allocation_granularity_ = 0; int ACE::out_of_handles (int error) { // EMFILE is common to all platforms. if (error == EMFILE || #if defined (ACE_WIN32) // On Win32, we need to check for ENOBUFS also. error == ENOBUFS || #elif defined (HPUX) // On HPUX, we need to check for EADDRNOTAVAIL also. error == EADDRNOTAVAIL || #elif defined (linux) // On linux, we need to check for ENOENT also. error == ENOENT || // For RedHat5.2, need to check for EINVAL too. error == EINVAL || // Without threads check for EOPNOTSUPP error == EOPNOTSUPP || #elif defined (sun) // On sun, we need to check for ENOSR also. error == ENOSR || // Without threads check for ENOTSUP error == ENOTSUP || #elif defined (__FreeBSD__) // On FreeBSD we need to check for EOPNOTSUPP (LinuxThreads) or // ENOSYS (libc_r threads) also. error == EOPNOTSUPP || error == ENOSYS || #endif /* ACE_WIN32 */ error == ENFILE) return 1; else return 0; } u_int ACE::major_version (void) { return ACE_MAJOR_VERSION; } u_int ACE::minor_version (void) { return ACE_MINOR_VERSION; } u_int ACE::beta_version (void) { return ACE_BETA_VERSION; } const ACE_TCHAR * ACE::compiler_name (void) { #ifdef ACE_CC_NAME return ACE_CC_NAME; #else return ""; #endif } u_int ACE::compiler_major_version (void) { #ifdef ACE_CC_MAJOR_VERSION return ACE_CC_MAJOR_VERSION; #else return 0; #endif } u_int ACE::compiler_minor_version (void) { #ifdef ACE_CC_MINOR_VERSION return ACE_CC_MINOR_VERSION; #else return 0; #endif } u_int ACE::compiler_beta_version (void) { #ifdef ACE_CC_BETA_VERSION return ACE_CC_BETA_VERSION; #else return 0; #endif } int ACE::terminate_process (pid_t pid) { #if defined (ACE_HAS_PACE) return pace_kill (pid, 9); #elif defined (ACE_HAS_PHARLAP) ACE_UNUSED_ARG (pid); ACE_NOTSUP_RETURN (-1); #elif defined (ACE_WIN32) // Create a handle for the given process id. ACE_HANDLE process_handle = ::OpenProcess (PROCESS_TERMINATE, FALSE, // New handle is not inheritable. pid); if (process_handle == ACE_INVALID_HANDLE || process_handle == 0) return -1; else { // Kill the process associated with process_handle. BOOL terminate_result = ::TerminateProcess (process_handle, 0); // Free up the kernel resources. ACE_OS::close (process_handle); return terminate_result; } #elif defined (CHORUS) KnCap cap_; // Use the pid to find out the actor's capability, then kill it. # if defined(CHORUS_4) if (::acap (pid, &cap_) == 0) # else if (::acap (AM_MYSITE, pid, &cap_) == 0) # endif return ::akill (&cap_); else return -1; #else return ACE_OS::kill (pid, 9); #endif /* ACE_HAS_PACE */ } int ACE::process_active (pid_t pid) { #if defined (ACE_HAS_PACE) int retval = pace_kill (pid, 0); if (retval == 0) return 1; else if (errno == ESRCH) return 0; else return -1; #elif !defined(ACE_WIN32) int retval = ACE_OS::kill (pid, 0); if (retval == 0) return 1; else if (errno == ESRCH) return 0; else return -1; #else // Create a handle for the given process id. ACE_HANDLE process_handle = ::OpenProcess (PROCESS_QUERY_INFORMATION, FALSE, pid); if (process_handle == ACE_INVALID_HANDLE || process_handle == 0) return 0; else { DWORD status; if (::GetExitCodeProcess (process_handle, &status) == 0 || status != STILL_ACTIVE) return 0; else return 1; } #endif /* ACE_HAS_PACE */ } const ACE_TCHAR * ACE::execname (const ACE_TCHAR *old_name) { #if defined (ACE_WIN32) if (ACE_OS::strstr (old_name, ACE_LIB_TEXT (".exe")) == 0) { ACE_TCHAR *new_name; size_t size = ACE_OS::strlen (old_name) + ACE_OS::strlen (ACE_LIB_TEXT (".exe")) + 1; ACE_NEW_RETURN (new_name, ACE_TCHAR[size], 0); ACE_TCHAR *end = new_name; end = ACE_OS::strecpy (new_name, old_name); // Concatenate the .exe suffix onto the end of the executable. ACE_OS::strcpy (end, ACE_LIB_TEXT (".exe")); return new_name; } #endif /* ACE_WIN32 */ return old_name; } u_long ACE::hash_pjw (const char *str, size_t len) { u_long hash = 0; for (size_t i = 0; i < len; i++) { const char temp = str[i]; hash = (hash << 4) + (temp * 13); u_long g = hash & 0xf0000000; if (g) { hash ^= (g >> 24); hash ^= g; } } return hash; } u_long ACE::hash_pjw (const char *str) { return ACE::hash_pjw (str, ACE_OS::strlen (str)); } #if defined (ACE_HAS_WCHAR) u_long ACE::hash_pjw (const wchar_t *str, size_t len) { u_long hash = 0; for (size_t i = 0; i < len; i++) { // @@ UNICODE: Does this function do the correct thing with wchar's? const wchar_t temp = str[i]; hash = (hash << 4) + (temp * 13); u_long g = hash & 0xf0000000; if (g) { hash ^= (g >> 24); hash ^= g; } } return hash; } u_long ACE::hash_pjw (const wchar_t *str) { return ACE::hash_pjw (str, ACE_OS::strlen (str)); } #endif /* ACE_HAS_WCHAR */ // The CRC routine was taken from the FreeBSD implementation of cksum, // that falls under the following license: /*- * Copyright (c) 1991, 1993 * The Regents of the University of California. All rights reserved. * * This code is derived from software contributed to Berkeley by * James W. Williams of NASA Goddard Space Flight Center. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the University of * California, Berkeley and its contributors. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ u_long ACE::crc_table_[] = { 0x0, 0x04c11db7, 0x09823b6e, 0x0d4326d9, 0x130476dc, 0x17c56b6b, 0x1a864db2, 0x1e475005, 0x2608edb8, 0x22c9f00f, 0x2f8ad6d6, 0x2b4bcb61, 0x350c9b64, 0x31cd86d3, 0x3c8ea00a, 0x384fbdbd, 0x4c11db70, 0x48d0c6c7, 0x4593e01e, 0x4152fda9, 0x5f15adac, 0x5bd4b01b, 0x569796c2, 0x52568b75, 0x6a1936c8, 0x6ed82b7f, 0x639b0da6, 0x675a1011, 0x791d4014, 0x7ddc5da3, 0x709f7b7a, 0x745e66cd, 0x9823b6e0, 0x9ce2ab57, 0x91a18d8e, 0x95609039, 0x8b27c03c, 0x8fe6dd8b, 0x82a5fb52, 0x8664e6e5, 0xbe2b5b58, 0xbaea46ef, 0xb7a96036, 0xb3687d81, 0xad2f2d84, 0xa9ee3033, 0xa4ad16ea, 0xa06c0b5d, 0xd4326d90, 0xd0f37027, 0xddb056fe, 0xd9714b49, 0xc7361b4c, 0xc3f706fb, 0xceb42022, 0xca753d95, 0xf23a8028, 0xf6fb9d9f, 0xfbb8bb46, 0xff79a6f1, 0xe13ef6f4, 0xe5ffeb43, 0xe8bccd9a, 0xec7dd02d, 0x34867077, 0x30476dc0, 0x3d044b19, 0x39c556ae, 0x278206ab, 0x23431b1c, 0x2e003dc5, 0x2ac12072, 0x128e9dcf, 0x164f8078, 0x1b0ca6a1, 0x1fcdbb16, 0x018aeb13, 0x054bf6a4, 0x0808d07d, 0x0cc9cdca, 0x7897ab07, 0x7c56b6b0, 0x71159069, 0x75d48dde, 0x6b93dddb, 0x6f52c06c, 0x6211e6b5, 0x66d0fb02, 0x5e9f46bf, 0x5a5e5b08, 0x571d7dd1, 0x53dc6066, 0x4d9b3063, 0x495a2dd4, 0x44190b0d, 0x40d816ba, 0xaca5c697, 0xa864db20, 0xa527fdf9, 0xa1e6e04e, 0xbfa1b04b, 0xbb60adfc, 0xb6238b25, 0xb2e29692, 0x8aad2b2f, 0x8e6c3698, 0x832f1041, 0x87ee0df6, 0x99a95df3, 0x9d684044, 0x902b669d, 0x94ea7b2a, 0xe0b41de7, 0xe4750050, 0xe9362689, 0xedf73b3e, 0xf3b06b3b, 0xf771768c, 0xfa325055, 0xfef34de2, 0xc6bcf05f, 0xc27dede8, 0xcf3ecb31, 0xcbffd686, 0xd5b88683, 0xd1799b34, 0xdc3abded, 0xd8fba05a, 0x690ce0ee, 0x6dcdfd59, 0x608edb80, 0x644fc637, 0x7a089632, 0x7ec98b85, 0x738aad5c, 0x774bb0eb, 0x4f040d56, 0x4bc510e1, 0x46863638, 0x42472b8f, 0x5c007b8a, 0x58c1663d, 0x558240e4, 0x51435d53, 0x251d3b9e, 0x21dc2629, 0x2c9f00f0, 0x285e1d47, 0x36194d42, 0x32d850f5, 0x3f9b762c, 0x3b5a6b9b, 0x0315d626, 0x07d4cb91, 0x0a97ed48, 0x0e56f0ff, 0x1011a0fa, 0x14d0bd4d, 0x19939b94, 0x1d528623, 0xf12f560e, 0xf5ee4bb9, 0xf8ad6d60, 0xfc6c70d7, 0xe22b20d2, 0xe6ea3d65, 0xeba91bbc, 0xef68060b, 0xd727bbb6, 0xd3e6a601, 0xdea580d8, 0xda649d6f, 0xc423cd6a, 0xc0e2d0dd, 0xcda1f604, 0xc960ebb3, 0xbd3e8d7e, 0xb9ff90c9, 0xb4bcb610, 0xb07daba7, 0xae3afba2, 0xaafbe615, 0xa7b8c0cc, 0xa379dd7b, 0x9b3660c6, 0x9ff77d71, 0x92b45ba8, 0x9675461f, 0x8832161a, 0x8cf30bad, 0x81b02d74, 0x857130c3, 0x5d8a9099, 0x594b8d2e, 0x5408abf7, 0x50c9b640, 0x4e8ee645, 0x4a4ffbf2, 0x470cdd2b, 0x43cdc09c, 0x7b827d21, 0x7f436096, 0x7200464f, 0x76c15bf8, 0x68860bfd, 0x6c47164a, 0x61043093, 0x65c52d24, 0x119b4be9, 0x155a565e, 0x18197087, 0x1cd86d30, 0x029f3d35, 0x065e2082, 0x0b1d065b, 0x0fdc1bec, 0x3793a651, 0x3352bbe6, 0x3e119d3f, 0x3ad08088, 0x2497d08d, 0x2056cd3a, 0x2d15ebe3, 0x29d4f654, 0xc5a92679, 0xc1683bce, 0xcc2b1d17, 0xc8ea00a0, 0xd6ad50a5, 0xd26c4d12, 0xdf2f6bcb, 0xdbee767c, 0xe3a1cbc1, 0xe760d676, 0xea23f0af, 0xeee2ed18, 0xf0a5bd1d, 0xf464a0aa, 0xf9278673, 0xfde69bc4, 0x89b8fd09, 0x8d79e0be, 0x803ac667, 0x84fbdbd0, 0x9abc8bd5, 0x9e7d9662, 0x933eb0bb, 0x97ffad0c, 0xafb010b1, 0xab710d06, 0xa6322bdf, 0xa2f33668, 0xbcb4666d, 0xb8757bda, 0xb5365d03, 0xb1f740b4}; // Compute a POSIX 1003.2 checksum. The routine takes an string and // computes the CRC for it (it stops on the first '\0' character). // UNICOS UINT32's are 64-bit on the Cray PVP architecture #if !defined(_UNICOS) # define COMPUTE(var, ch) (var) = ((var) << 8) ^ ACE::crc_table_[(((var) >> 24) ^ (ch))&0xff] #else /* ! _UNICOS */ # define COMPUTE(var, ch) (var) = ( 0x00000000ffffffff & ((var) << 8)) ^ ACE::crc_table_[(((var) >> 24) ^ (ch))&0xff] #endif /* ! _UNICOS */ u_long ACE::crc32 (const char *string) { register ACE_UINT32 crc = 0; u_long len = 0; for (const char *p = string; *p != 0; ++p) { COMPUTE (crc, *p); ++len; } // Include the length of the string. for (; len != 0; len >>= 8) COMPUTE (crc, len & 0xff); return ~crc; } u_long ACE::crc32 (const char *buffer, ACE_UINT32 len) { register ACE_UINT32 crc = 0; for (const char *p = buffer; p != buffer + len; ++p) { COMPUTE (crc, *p); } // Include the length of the string. for (; len != 0; len >>= 8) COMPUTE (crc, len & 0xff); return ~crc; } #undef COMPUTE #if !defined (ACE_HAS_WINCE) ACE_TCHAR * ACE::strenvdup (const ACE_TCHAR *str) { ACE_TRACE ("ACE::strenvdup"); return ACE_OS::strenvdup (str); } #endif /* ACE_HAS_WINCE */ /* Examples: Source NT UNIX ================================================================== netsvc netsvc.dll libnetsvc.so (PATH will be (LD_LIBRARY_PATH evaluated) evaluated) libnetsvc.dll libnetsvc.dll libnetsvc.dll + warning netsvc.so netsvc.so + warning libnetsvc.so ..\../libs/netsvc ..\..\libs\netsvc.dll ../../libs/netsvc.so (absolute path used) (absolute path used) */ const ACE_TCHAR * ACE::basename (const ACE_TCHAR *pathname, ACE_TCHAR delim) { ACE_TRACE ("ACE::basename"); const ACE_TCHAR *temp = ACE_OS::strrchr (pathname, delim); if (temp == 0) return pathname; else return temp + 1; } const ACE_TCHAR * ACE::dirname (const ACE_TCHAR *pathname, ACE_TCHAR delim) { ACE_TRACE ("ACE::basename"); static ACE_TCHAR return_dirname[MAXPATHLEN + 1]; const ACE_TCHAR *temp = ACE_OS::strrchr (pathname, delim); if (temp == 0) { return_dirname[0] = '.'; return_dirname[1] = '\0'; return return_dirname; } else { ACE_OS::strncpy (return_dirname, pathname, MAXPATHLEN); return_dirname[temp - pathname] = '\0'; return return_dirname; } } ssize_t ACE::recv (ACE_HANDLE handle, void *buf, size_t len, int flags, const ACE_Time_Value *timeout) { if (timeout == 0) return ACE_OS::recv (handle, (char *) buf, len, flags); else { #if defined (ACE_HAS_RECV_TIMEDWAIT) ACE_Time_Value copy = *timeout; copy += ACE_OS::gettimeofday (); timespec_t ts = copy; return ::recv_timedwait (handle, buf, len, flags, &ts); #else int val = 0; if (ACE::enter_recv_timedwait (handle, timeout, val) ==-1) return -1; else { ssize_t bytes_transferred = ACE_OS::recv (handle, (char *) buf, len, flags); ACE::restore_non_blocking_mode (handle, val); return bytes_transferred; } #endif /* ACE_HAS_RECV_TIMEDWAIT */ } } #if defined (ACE_HAS_TLI) ssize_t ACE::t_rcv (ACE_HANDLE handle, void *buf, size_t len, int *flags, const ACE_Time_Value *timeout) { if (timeout == 0) return ACE_OS::t_rcv (handle, (char *) buf, len, flags); else { int val = 0; if (ACE::enter_recv_timedwait (handle, timeout, val) ==-1) return -1; else { ssize_t bytes_transferred = ACE_OS::t_rcv (handle, (char *) buf, len, flags); ACE::restore_non_blocking_mode (handle, val); return bytes_transferred; } } } #endif /* ACE_HAS_TLI */ ssize_t ACE::recv (ACE_HANDLE handle, void *buf, size_t n, const ACE_Time_Value *timeout) { if (timeout == 0) return ACE::recv_i (handle, buf, n); else { #if defined (ACE_HAS_READ_TIMEDWAIT) ACE_Time_Value copy = *timeout; copy += ACE_OS::gettimeofday (); timespec_t ts = copy; return ::read_timedwait (handle, buf, n, &ts); #else int val = 0; if (ACE::enter_recv_timedwait (handle, timeout, val) == -1) return -1; else { ssize_t bytes_transferred = ACE::recv_i (handle, buf, n); ACE::restore_non_blocking_mode (handle, val); return bytes_transferred; } #endif /* ACE_HAS_READ_TIMEDWAIT */ } } ssize_t ACE::recvmsg (ACE_HANDLE handle, struct msghdr *msg, int flags, const ACE_Time_Value *timeout) { if (timeout == 0) return ACE_OS::recvmsg (handle, msg, flags); else { #if defined (ACE_HAS_RECVMSG_TIMEDWAIT) ACE_Time_Value copy = *timeout; copy += ACE_OS::gettimeofday (); timespec_t ts = copy; return ::recvmsg_timedwait (handle, msg, flags, &ts); #else int val = 0; if (ACE::enter_recv_timedwait (handle, timeout, val) == -1) return -1; else { int bytes_transferred = ACE_OS::recvmsg (handle, msg, flags); ACE::restore_non_blocking_mode (handle, val); return bytes_transferred; } #endif /* ACE_HAS_RECVMSG_TIMEDWAIT */ } } ssize_t ACE::recvfrom (ACE_HANDLE handle, char *buf, int len, int flags, struct sockaddr *addr, int *addrlen, const ACE_Time_Value *timeout) { if (timeout == 0) return ACE_OS::recvfrom (handle, buf, len, flags, addr, addrlen); else { #if defined (ACE_HAS_RECVFROM_TIMEDWAIT) ACE_Time_Value copy = *timeout; copy += ACE_OS::gettimeofday (); timespec_t ts = copy; return ::recvfrom_timedwait (handle, buf, len, flags, addr, addrlen, &ts); #else int val = 0; if (ACE::enter_recv_timedwait (handle, timeout, val) == -1) return -1; else { int bytes_transferred = ACE_OS::recvfrom (handle, buf, len, flags, addr, addrlen); ACE::restore_non_blocking_mode (handle, val); return bytes_transferred; } #endif /* ACE_HAS_RECVFROM_TIMEDWAIT */ } } ssize_t ACE::recv_n_i (ACE_HANDLE handle, void *buf, size_t len, int flags, size_t *bt) { size_t temp; size_t &bytes_transferred = bt == 0 ? temp : *bt; ssize_t n; for (bytes_transferred = 0; bytes_transferred < len; bytes_transferred += n) { // Try to transfer as much of the remaining data as possible. n = ACE_OS::recv (handle, (char *) buf + bytes_transferred, len - bytes_transferred, flags); // Check EOF. if (n == 0) return 0; // Check for other errors. if (n == -1) { // Check for possible blocking. if (errno == EWOULDBLOCK) { // Wait for the blocking to subside. int result = ACE::handle_read_ready (handle, 0); // Did select() succeed? if (result != -1) { // Blocking subsided. Continue data transfer. n = 0; continue; } } // Other data transfer or select() failures. return -1; } } return bytes_transferred; } ssize_t ACE::recv_n_i (ACE_HANDLE handle, void *buf, size_t len, int flags, const ACE_Time_Value *timeout, size_t *bt) { size_t temp; size_t &bytes_transferred = bt == 0 ? temp : *bt; ssize_t n; ssize_t result = 0; int error = 0; int val = 0; ACE::record_and_set_non_blocking_mode (handle, val); for (bytes_transferred = 0; bytes_transferred < len; bytes_transferred += n) { // Try to transfer as much of the remaining data as possible. // Since the socket is in non-blocking mode, this call will not // block. n = ACE_OS::recv (handle, (char *) buf + bytes_transferred, len - bytes_transferred, flags); // Check for errors. if (n == 0 || n == -1) { // Check for possible blocking. if (n == -1 && errno == EWOULDBLOCK) { // Wait upto for the blocking to subside. int rtn = ACE::handle_read_ready (handle, timeout); // Did select() succeed? if (rtn != -1) { // Blocking subsided in period. Continue // data transfer. n = 0; continue; } } // Wait in select() timed out or other data transfer or // select() failures. error = 1; result = n; break; } } ACE::restore_non_blocking_mode (handle, val); if (error) return result; else return bytes_transferred; } #if defined (ACE_HAS_TLI) ssize_t ACE::t_rcv_n_i (ACE_HANDLE handle, void *buf, size_t len, int *flags, size_t *bt) { size_t temp; size_t &bytes_transferred = bt == 0 ? temp : *bt; ssize_t n; for (bytes_transferred = 0; bytes_transferred < len; bytes_transferred += n) { // Try to transfer as much of the remaining data as possible. n = ACE_OS::t_rcv (handle, (char *) buf + bytes_transferred, len - bytes_transferred, flags); // Check EOF. if (n == 0) return 0; // Check for other errors. if (n == -1) { // Check for possible blocking. if (errno == EWOULDBLOCK) { // Wait for the blocking to subside. int result = ACE::handle_read_ready (handle, 0); // Did select() succeed? if (result != -1) { // Blocking subsided. Continue data transfer. n = 0; continue; } } // Other data transfer or select() failures. return -1; } } return bytes_transferred; } ssize_t ACE::t_rcv_n_i (ACE_HANDLE handle, void *buf, size_t len, int *flags, const ACE_Time_Value *timeout, size_t *bt) { size_t temp; size_t &bytes_transferred = bt == 0 ? temp : *bt; ssize_t n; ssize_t result = 0; int error = 0; int val = 0; ACE::record_and_set_non_blocking_mode (handle, val); for (bytes_transferred = 0; bytes_transferred < len; bytes_transferred += n) { // Try to transfer as much of the remaining data as possible. // Since the socket is in non-blocking mode, this call will not // block. n = ACE_OS::t_rcv (handle, (char *) buf + bytes_transferred, len - bytes_transferred, flags); // Check for errors. if (n == 0 || n == -1) { // Check for possible blocking. if (n == -1 && errno == EWOULDBLOCK) { // Wait upto for the blocking to subside. int rtn = ACE::handle_read_ready (handle, timeout); // Did select() succeed? if (rtn != -1) { // Blocking subsided in period. Continue // data transfer. n = 0; continue; } } // Wait in select() timed out or other data transfer or // select() failures. error = 1; result = n; break; } } ACE::restore_non_blocking_mode (handle, val); if (error) return result; else return bytes_transferred; } #endif /* ACE_HAS_TLI */ ssize_t ACE::recv_n_i (ACE_HANDLE handle, void *buf, size_t len, size_t *bt) { size_t temp; size_t &bytes_transferred = bt == 0 ? temp : *bt; ssize_t n; for (bytes_transferred = 0; bytes_transferred < len; bytes_transferred += n) { // Try to transfer as much of the remaining data as possible. n = ACE::recv_i (handle, (char *) buf + bytes_transferred, len - bytes_transferred); // Check EOF. if (n == 0) return 0; // Check for other errors. if (n == -1) { // Check for possible blocking. if (errno == EWOULDBLOCK) { // Wait for the blocking to subside. int result = ACE::handle_read_ready (handle, 0); // Did select() succeed? if (result != -1) { // Blocking subsided. Continue data transfer. n = 0; continue; } } // Other data transfer or select() failures. return -1; } } return bytes_transferred; } ssize_t ACE::recv_n_i (ACE_HANDLE handle, void *buf, size_t len, const ACE_Time_Value *timeout, size_t *bt) { size_t temp; size_t &bytes_transferred = bt == 0 ? temp : *bt; ssize_t n; ssize_t result = 0; int error = 0; int val = 0; ACE::record_and_set_non_blocking_mode (handle, val); for (bytes_transferred = 0; bytes_transferred < len; bytes_transferred += n) { // Try to transfer as much of the remaining data as possible. // Since the socket is in non-blocking mode, this call will not // block. n = ACE::recv_i (handle, (char *) buf + bytes_transferred, len - bytes_transferred); // Check for errors. if (n == 0 || n == -1) { // Check for possible blocking. if (n == -1 && errno == EWOULDBLOCK) { // Wait upto for the blocking to subside. int rtn = ACE::handle_read_ready (handle, timeout); // Did select() succeed? if (rtn != -1) { // Blocking subsided in period. Continue // data transfer. n = 0; continue; } } // Wait in select() timed out or other data transfer or // select() failures. error = 1; result = n; break; } } ACE::restore_non_blocking_mode (handle, val); if (error) return result; else return bytes_transferred; } // This is basically an interface to ACE_OS::readv, that doesn't use // the struct iovec explicitly. The ... can be passed as an arbitrary // number of (char *ptr, int len) tuples. However, the count N is the // *total* number of trailing arguments, *not* a couple of the number // of tuple pairs! ssize_t ACE::recv (ACE_HANDLE handle, size_t n, ...) { va_list argp; size_t total_tuples = n / 2; iovec *iovp; #if defined (ACE_HAS_ALLOCA) iovp = (iovec *) alloca (total_tuples * sizeof (iovec)); #else ACE_NEW_RETURN (iovp, iovec[total_tuples], -1); #endif /* !defined (ACE_HAS_ALLOCA) */ va_start (argp, n); for (size_t i = 0; i < total_tuples; i++) { iovp[i].iov_base = va_arg (argp, char *); iovp[i].iov_len = va_arg (argp, ssize_t); } ssize_t result = ACE_OS::recvv (handle, iovp, total_tuples); #if !defined (ACE_HAS_ALLOCA) delete [] iovp; #endif /* !defined (ACE_HAS_ALLOCA) */ va_end (argp); return result; } ssize_t ACE::recvv (ACE_HANDLE handle, iovec *iov, int iovcnt, const ACE_Time_Value *timeout) { if (timeout == 0) return ACE_OS::recvv (handle, iov, iovcnt); else { #if defined (ACE_HAS_READV_TIMEDWAIT) ACE_Time_Value copy = *timeout; copy += ACE_OS::gettimeofday (); timespec_t ts = copy; return ::readv_timedwait (handle, iov, iovcnt, &ts); #else int val = 0; if (ACE::enter_recv_timedwait (handle, timeout, val) == -1) return -1; else { ssize_t bytes_transferred = ACE_OS::recvv (handle, iov, iovcnt); ACE::restore_non_blocking_mode (handle, val); return bytes_transferred; } #endif /* ACE_HAS_READV_TIMEDWAIT */ } } ssize_t ACE::recvv_n_i (ACE_HANDLE handle, iovec *iov, int iovcnt, size_t *bt) { size_t temp; size_t &bytes_transferred = bt == 0 ? temp : *bt; bytes_transferred = 0; for (int s = 0; s < iovcnt; ) { // Try to transfer as much of the remaining data as possible. ssize_t n = ACE_OS::recvv (handle, iov + s, iovcnt - s); // Check EOF. if (n == 0) return 0; // Check for other errors. if (n == -1) { // Check for possible blocking. if (errno == EWOULDBLOCK) { // Wait for the blocking to subside. int result = ACE::handle_read_ready (handle, 0); // Did select() succeed? if (result != -1) { // Blocking subsided. Continue data transfer. n = 0; continue; } } // Other data transfer or select() failures. return -1; } for (bytes_transferred += n; s < iovcnt && n >= ACE_static_cast (ssize_t, iov[s].iov_len); s++) n -= iov[s].iov_len; if (n != 0) { char *base = ACE_reinterpret_cast (char *, iov[s].iov_base); iov[s].iov_base = base + n; iov[s].iov_len = iov[s].iov_len - n; } } return bytes_transferred; } ssize_t ACE::recvv_n_i (ACE_HANDLE handle, iovec *iov, int iovcnt, const ACE_Time_Value *timeout, size_t *bt) { size_t temp; size_t &bytes_transferred = bt == 0 ? temp : *bt; bytes_transferred = 0; ssize_t result = 0; int error = 0; int val = 0; ACE::record_and_set_non_blocking_mode (handle, val); for (int s = 0; s < iovcnt; ) { // Try to transfer as much of the remaining data as possible. // Since the socket is in non-blocking mode, this call will not // block. ssize_t n = ACE_OS::recvv (handle, iov + s, iovcnt - s); // Check for errors. if (n == 0 || n == -1) { // Check for possible blocking. if (n == -1 && errno == EWOULDBLOCK) { // Wait upto for the blocking to subside. int rtn = ACE::handle_read_ready (handle, timeout); // Did select() succeed? if (rtn != -1) { // Blocking subsided in period. Continue // data transfer. n = 0; continue; } } // Wait in select() timed out or other data transfer or // select() failures. error = 1; result = n; break; } for (bytes_transferred += n; s < iovcnt && n >= ACE_static_cast (ssize_t, iov[s].iov_len); s++) n -= iov[s].iov_len; if (n != 0) { char *base = ACE_reinterpret_cast (char *, iov[s].iov_base); iov[s].iov_base = base + n; iov[s].iov_len = iov[s].iov_len - n; } } ACE::restore_non_blocking_mode (handle, val); if (error) return result; else return bytes_transferred; } ssize_t ACE::recv_n (ACE_HANDLE handle, ACE_Message_Block *message_block, const ACE_Time_Value *timeout, size_t *bt) { size_t temp; size_t &bytes_transferred = bt == 0 ? temp : *bt; bytes_transferred = 0; iovec iov[IOV_MAX]; int iovcnt = 0; while (message_block != 0) { // Our current message block chain. const ACE_Message_Block *current_message_block = message_block; while (current_message_block != 0) { size_t current_message_block_length = current_message_block->length (); // Check if this block has any space for incoming data. if (current_message_block_length > 0) { // Collect the data in the iovec. iov[iovcnt].iov_base = current_message_block->rd_ptr (); iov[iovcnt].iov_len = current_message_block_length; // Increment iovec counter. iovcnt++; // The buffer is full make a OS call. @@ TODO find a way to // find IOV_MAX for platforms that do not define it rather // than simply setting IOV_MAX to some arbitrary value such // as 16. if (iovcnt == IOV_MAX) { size_t current_transfer = 0; ssize_t result = ACE::recvv_n (handle, iov, iovcnt, timeout, ¤t_transfer); // Add to total bytes transferred. bytes_transferred += current_transfer; // Errors. if (result == -1 || result == 0) return result; // Reset iovec counter. iovcnt = 0; } } // Select the next message block in the chain. current_message_block = current_message_block->cont (); } // Selection of the next message block chain. message_block = message_block->next (); } // Check for remaining buffers to be sent. This will happen when // IOV_MAX is not a multiple of the number of message blocks. if (iovcnt != 0) { size_t current_transfer = 0; ssize_t result = ACE::recvv_n (handle, iov, iovcnt, timeout, ¤t_transfer); // Add to total bytes transferred. bytes_transferred += current_transfer; // Errors. if (result == -1 || result == 0) return result; } // Return total bytes transferred. return bytes_transferred; } ssize_t ACE::send (ACE_HANDLE handle, const void *buf, size_t n, int flags, const ACE_Time_Value *timeout) { if (timeout == 0) return ACE_OS::send (handle, (const char *) buf, n, flags); else { #if defined (ACE_HAS_SEND_TIMEDWAIT) ACE_Time_Value copy = *timeout; copy += ACE_OS::gettimeofday(); timespec_t ts = copy; return ::send_timedwait (handle, buf, n, flags, &ts); #else int val = 0; if (ACE::enter_send_timedwait (handle, timeout, val) == -1) return -1; else { ssize_t bytes_transferred = ACE_OS::send (handle, (const char *) buf, n, flags); ACE::restore_non_blocking_mode (handle, val); return bytes_transferred; } #endif /* ACE_HAS_SEND_TIMEDWAIT */ } } #if defined (ACE_HAS_TLI) ssize_t ACE::t_snd (ACE_HANDLE handle, const void *buf, size_t n, int flags, const ACE_Time_Value *timeout) { if (timeout == 0) return ACE_OS::t_snd (handle, (const char *) buf, n, flags); else { int val = 0; if (ACE::enter_send_timedwait (handle, timeout, val) == -1) return -1; else { ssize_t bytes_transferred = ACE_OS::t_snd (handle, (const char *) buf, n, flags); ACE::restore_non_blocking_mode (handle, val); return bytes_transferred; } } } #endif /* ACE_HAS_TLI */ ssize_t ACE::send (ACE_HANDLE handle, const void *buf, size_t n, const ACE_Time_Value *timeout) { if (timeout == 0) return ACE::send_i (handle, buf, n); else { #if defined (ACE_HAS_WRITE_TIMEDWAIT) ACE_Time_Value copy = *timeout; copy += ACE_OS::gettimeofday (); timespec_t ts = copy; return ::write_timedwait (handle, buf, n, &ts); #else int val = 0; if (ACE::enter_send_timedwait (handle, timeout, val) == -1) return -1; else { ssize_t bytes_transferred = ACE::send_i (handle, buf, n); ACE::restore_non_blocking_mode (handle, val); return bytes_transferred; } #endif /* ACE_HAS_WRITE_TIMEDWAIT */ } } ssize_t ACE::sendmsg (ACE_HANDLE handle, const struct msghdr *msg, int flags, const ACE_Time_Value *timeout) { if (timeout == 0) return ACE_OS::sendmsg (handle, msg, flags); else { #if defined (ACE_HAS_SENDMSG_TIMEDWAIT) ACE_Time_Value copy = *timeout; copy += ACE_OS::gettimeofday (); timespec_t ts = copy; return ::sendmsg_timedwait (handle, msg, flags, &ts); #else int val = 0; if (ACE::enter_send_timedwait (handle, timeout, val) == -1) return -1; else { int bytes_transferred = ACE_OS::sendmsg (handle, msg, flags); ACE::restore_non_blocking_mode (handle, val); return bytes_transferred; } #endif /* ACE_HAS_SENDMSG_TIMEDWAIT */ } } ssize_t ACE::sendto (ACE_HANDLE handle, const char *buf, int len, int flags, const struct sockaddr *addr, int addrlen, const ACE_Time_Value *timeout) { if (timeout == 0) return ACE_OS::sendto (handle, buf, len, flags, addr, addrlen); else { #if defined (ACE_HAS_SENDTO_TIMEDWAIT) ACE_Time_Value copy = *timeout; copy += ACE_OS::gettimeofday (); timespec_t ts = copy; return ::sendto_timedwait (handle, buf, len, flags, addr, addrlen, ts); #else int val = 0; if (ACE::enter_send_timedwait (handle, timeout, val) == -1) return -1; else { int bytes_transferred = ACE_OS::sendto (handle, buf, len, flags, addr, addrlen); ACE::restore_non_blocking_mode (handle, val); return bytes_transferred; } #endif /* ACE_HAS_SENDTO_TIMEDWAIT */ } } ssize_t ACE::send_n_i (ACE_HANDLE handle, const void *buf, size_t len, int flags, size_t *bt) { size_t temp; size_t &bytes_transferred = bt == 0 ? temp : *bt; ssize_t n; for (bytes_transferred = 0; bytes_transferred < len; bytes_transferred += n) { // Try to transfer as much of the remaining data as possible. n = ACE_OS::send (handle, (char *) buf + bytes_transferred, len - bytes_transferred, flags); // Check EOF. if (n == 0) return 0; // Check for other errors. if (n == -1) { // Check for possible blocking. if (errno == EWOULDBLOCK) { // Wait for the blocking to subside. int result = ACE::handle_write_ready (handle, 0); // Did select() succeed? if (result != -1) { // Blocking subsided. Continue data transfer. n = 0; continue; } } // Other data transfer or select() failures. return -1; } } return bytes_transferred; } ssize_t ACE::send_n_i (ACE_HANDLE handle, const void *buf, size_t len, int flags, const ACE_Time_Value *timeout, size_t *bt) { size_t temp; size_t &bytes_transferred = bt == 0 ? temp : *bt; ssize_t n; ssize_t result = 0; int error = 0; int val = 0; ACE::record_and_set_non_blocking_mode (handle, val); for (bytes_transferred = 0; bytes_transferred < len; bytes_transferred += n) { // Try to transfer as much of the remaining data as possible. // Since the socket is in non-blocking mode, this call will not // block. n = ACE_OS::send (handle, (char *) buf + bytes_transferred, len - bytes_transferred, flags); // Check for errors. if (n == 0 || n == -1) { // Check for possible blocking. if (n == -1 && errno == EWOULDBLOCK) { // Wait upto for the blocking to subside. int rtn = ACE::handle_write_ready (handle, timeout); // Did select() succeed? if (rtn != -1) { // Blocking subsided in period. Continue // data transfer. n = 0; continue; } } // Wait in select() timed out or other data transfer or // select() failures. error = 1; result = n; break; } } ACE::restore_non_blocking_mode (handle, val); if (error) return result; else return bytes_transferred; } #if defined (ACE_HAS_TLI) ssize_t ACE::t_snd_n_i (ACE_HANDLE handle, const void *buf, size_t len, int flags, size_t *bt) { size_t temp; size_t &bytes_transferred = bt == 0 ? temp : *bt; ssize_t n; for (bytes_transferred = 0; bytes_transferred < len; bytes_transferred += n) { // Try to transfer as much of the remaining data as possible. n = ACE_OS::t_snd (handle, (char *) buf + bytes_transferred, len - bytes_transferred, flags); // Check EOF. if (n == 0) return 0; // Check for other errors. if (n == -1) { // Check for possible blocking. if (errno == EWOULDBLOCK) { // Wait for the blocking to subside. int result = ACE::handle_write_ready (handle, 0); // Did select() succeed? if (result != -1) { // Blocking subsided. Continue data transfer. n = 0; continue; } } // Other data transfer or select() failures. return -1; } } return bytes_transferred; } ssize_t ACE::t_snd_n_i (ACE_HANDLE handle, const void *buf, size_t len, int flags, const ACE_Time_Value *timeout, size_t *bt) { size_t temp; size_t &bytes_transferred = bt == 0 ? temp : *bt; ssize_t n; ssize_t result = 0; int error = 0; int val = 0; ACE::record_and_set_non_blocking_mode (handle, val); for (bytes_transferred = 0; bytes_transferred < len; bytes_transferred += n) { // Try to transfer as much of the remaining data as possible. // Since the socket is in non-blocking mode, this call will not // block. n = ACE_OS::t_snd (handle, (char *) buf + bytes_transferred, len - bytes_transferred, flags); // Check for errors. if (n == 0 || n == -1) { // Check for possible blocking. if (n == -1 && errno == EWOULDBLOCK) { // Wait upto for the blocking to subside. int rtn = ACE::handle_write_ready (handle, timeout); // Did select() succeed? if (rtn != -1) { // Blocking subsided in period. Continue // data transfer. n = 0; continue; } } // Wait in select() timed out or other data transfer or // select() failures. error = 1; result = n; break; } } ACE::restore_non_blocking_mode (handle, val); if (error) return result; else return bytes_transferred; } #endif /* ACE_HAS_TLI */ ssize_t ACE::send_n_i (ACE_HANDLE handle, const void *buf, size_t len, size_t *bt) { size_t temp; size_t &bytes_transferred = bt == 0 ? temp : *bt; ssize_t n; for (bytes_transferred = 0; bytes_transferred < len; bytes_transferred += n) { // Try to transfer as much of the remaining data as possible. n = ACE::send_i (handle, (char *) buf + bytes_transferred, len - bytes_transferred); // Check EOF. if (n == 0) return 0; // Check for other errors. if (n == -1) { // Check for possible blocking. if (errno == EWOULDBLOCK) { // Wait for the blocking to subside. int result = ACE::handle_write_ready (handle, 0); // Did select() succeed? if (result != -1) { // Blocking subsided. Continue data transfer. n = 0; continue; } } // Other data transfer or select() failures. return -1; } } return bytes_transferred; } ssize_t ACE::send_n_i (ACE_HANDLE handle, const void *buf, size_t len, const ACE_Time_Value *timeout, size_t *bt) { size_t temp; size_t &bytes_transferred = bt == 0 ? temp : *bt; ssize_t n; ssize_t result = 0; int error = 0; int val = 0; ACE::record_and_set_non_blocking_mode (handle, val); for (bytes_transferred = 0; bytes_transferred < len; bytes_transferred += n) { // Try to transfer as much of the remaining data as possible. // Since the socket is in non-blocking mode, this call will not // block. n = ACE::send_i (handle, (char *) buf + bytes_transferred, len - bytes_transferred); // Check for errors. if (n == 0 || n == -1) { // Check for possible blocking. if (n == -1 && errno == EWOULDBLOCK) { // Wait upto for the blocking to subside. int rtn = ACE::handle_write_ready (handle, timeout); // Did select() succeed? if (rtn != -1) { // Blocking subsided in period. Continue // data transfer. n = 0; continue; } } // Wait in select() timed out or other data transfer or // select() failures. error = 1; result = n; break; } } ACE::restore_non_blocking_mode (handle, val); if (error) return result; else return bytes_transferred; } // Send N char *ptrs and int lengths. Note that the char *'s precede // the ints (basically, an varargs version of writev). The count N is // the *total* number of trailing arguments, *not* a couple of the // number of tuple pairs! ssize_t ACE::send (ACE_HANDLE handle, size_t n, ...) { va_list argp; size_t total_tuples = n / 2; iovec *iovp; #if defined (ACE_HAS_ALLOCA) iovp = (iovec *) alloca (total_tuples * sizeof (iovec)); #else ACE_NEW_RETURN (iovp, iovec[total_tuples], -1); #endif /* !defined (ACE_HAS_ALLOCA) */ va_start (argp, n); for (size_t i = 0; i < total_tuples; i++) { iovp[i].iov_base = va_arg (argp, char *); iovp[i].iov_len = va_arg (argp, ssize_t); } ssize_t result = ACE_OS::sendv (handle, iovp, total_tuples); #if !defined (ACE_HAS_ALLOCA) delete [] iovp; #endif /* !defined (ACE_HAS_ALLOCA) */ va_end (argp); return result; } ssize_t ACE::sendv (ACE_HANDLE handle, const iovec *iov, int iovcnt, const ACE_Time_Value *timeout) { if (timeout == 0) return ACE_OS::sendv (handle, iov, iovcnt); else { #if defined (ACE_HAS_WRITEV_TIMEDWAIT) ACE_Time_Value copy = *timeout; copy += ACE_OS::gettimeofday (); timespec_t ts = copy; return ::sendv_timedwait (handle, iov, iovcnt, &ts); #else int val = 0; if (ACE::enter_send_timedwait (handle, timeout, val) == -1) return -1; else { ssize_t bytes_transferred = ACE_OS::sendv (handle, iov, iovcnt); ACE::restore_non_blocking_mode (handle, val); return bytes_transferred; } #endif /* ACE_HAS_WRITEV_TIMEDWAIT */ } } ssize_t ACE::sendv_n_i (ACE_HANDLE handle, const iovec *i, int iovcnt, size_t *bt) { size_t temp; size_t &bytes_transferred = bt == 0 ? temp : *bt; bytes_transferred = 0; iovec *iov = ACE_const_cast (iovec *, i); for (int s = 0; s < iovcnt; ) { // Try to transfer as much of the remaining data as possible. ssize_t n = ACE_OS::sendv (handle, iov + s, iovcnt - s); // Check EOF. if (n == 0) return 0; // Check for other errors. if (n == -1) { // Check for possible blocking. if (errno == EWOULDBLOCK) { // Wait for the blocking to subside. int result = ACE::handle_write_ready (handle, 0); // Did select() succeed? if (result != -1) { // Blocking subsided. Continue data transfer. n = 0; continue; } } // Other data transfer or select() failures. return -1; } for (bytes_transferred += n; s < iovcnt && n >= ACE_static_cast (ssize_t, iov[s].iov_len); s++) n -= iov[s].iov_len; if (n != 0) { char *base = ACE_reinterpret_cast (char *, iov[s].iov_base); iov[s].iov_base = base + n; iov[s].iov_len = iov[s].iov_len - n; } } return bytes_transferred; } ssize_t ACE::sendv_n_i (ACE_HANDLE handle, const iovec *i, int iovcnt, const ACE_Time_Value *timeout, size_t *bt) { size_t temp; size_t &bytes_transferred = bt == 0 ? temp : *bt; bytes_transferred = 0; ssize_t result = 0; int error = 0; int val = 0; ACE::record_and_set_non_blocking_mode (handle, val); iovec *iov = ACE_const_cast (iovec *, i); for (int s = 0; s < iovcnt; ) { // Try to transfer as much of the remaining data as possible. // Since the socket is in non-blocking mode, this call will not // block. ssize_t n = ACE_OS::sendv (handle, iov + s, iovcnt - s); // Check for errors. if (n == 0 || n == -1) { // Check for possible blocking. if (n == -1 && errno == EWOULDBLOCK) { // Wait upto for the blocking to subside. int rtn = ACE::handle_write_ready (handle, timeout); // Did select() succeed? if (rtn != -1) { // Blocking subsided in period. Continue // data transfer. n = 0; continue; } } // Wait in select() timed out or other data transfer or // select() failures. error = 1; result = n; break; } for (bytes_transferred += n; s < iovcnt && n >= ACE_static_cast (ssize_t, iov[s].iov_len); s++) n -= iov[s].iov_len; if (n != 0) { char *base = ACE_reinterpret_cast (char *, iov[s].iov_base); iov[s].iov_base = base + n; iov[s].iov_len = iov[s].iov_len - n; } } ACE::restore_non_blocking_mode (handle, val); if (error) return result; else return bytes_transferred; } ssize_t ACE::send_n (ACE_HANDLE handle, const ACE_Message_Block *message_block, const ACE_Time_Value *timeout, size_t *bt) { size_t temp; size_t &bytes_transferred = bt == 0 ? temp : *bt; bytes_transferred = 0; iovec iov[IOV_MAX]; int iovcnt = 0; while (message_block != 0) { // Our current message block chain. const ACE_Message_Block *current_message_block = message_block; while (current_message_block != 0) { size_t current_message_block_length = current_message_block->length (); // Check if this block has any data to be sent. if (current_message_block_length > 0) { // Collect the data in the iovec. iov[iovcnt].iov_base = current_message_block->rd_ptr (); iov[iovcnt].iov_len = current_message_block_length; // Increment iovec counter. iovcnt++; // The buffer is full make a OS call. @@ TODO find a way to // find IOV_MAX for platforms that do not define it rather // than simply setting IOV_MAX to some arbitrary value such // as 16. if (iovcnt == IOV_MAX) { size_t current_transfer = 0; ssize_t result = ACE::sendv_n (handle, iov, iovcnt, timeout, ¤t_transfer); // Add to total bytes transferred. bytes_transferred += current_transfer; // Errors. if (result == -1 || result == 0) return result; // Reset iovec counter. iovcnt = 0; } } // Select the next message block in the chain. current_message_block = current_message_block->cont (); } // Selection of the next message block chain. message_block = message_block->next (); } // Check for remaining buffers to be sent. This will happen when // IOV_MAX is not a multiple of the number of message blocks. if (iovcnt != 0) { size_t current_transfer = 0; ssize_t result = ACE::sendv_n (handle, iov, iovcnt, timeout, ¤t_transfer); // Add to total bytes transferred. bytes_transferred += current_transfer; // Errors. if (result == -1 || result == 0) return result; } // Return total bytes transferred. return bytes_transferred; } ssize_t ACE::readv_n (ACE_HANDLE handle, iovec *iov, int iovcnt, size_t *bt) { size_t temp; size_t &bytes_transferred = bt == 0 ? temp : *bt; bytes_transferred = 0; for (int s = 0; s < iovcnt; ) { ssize_t n = ACE_OS::readv (handle, iov + s, iovcnt - s); if (n == -1 || n == 0) return n; for (bytes_transferred += n; s < iovcnt && n >= ACE_static_cast (ssize_t, iov[s].iov_len); s++) n -= iov[s].iov_len; if (n != 0) { char *base = ACE_reinterpret_cast (char *, iov[s].iov_base); iov[s].iov_base = base + n; iov[s].iov_len = iov[s].iov_len - n; } } return bytes_transferred; } ssize_t ACE::writev_n (ACE_HANDLE handle, const iovec *i, int iovcnt, size_t *bt) { size_t temp; size_t &bytes_transferred = bt == 0 ? temp : *bt; bytes_transferred = 0; iovec *iov = ACE_const_cast (iovec *, i); for (int s = 0; s < iovcnt; ) { ssize_t n = ACE_OS::writev (handle, iov + s, iovcnt - s); if (n == -1 || n == 0) return n; for (bytes_transferred += n; s < iovcnt && n >= ACE_static_cast (ssize_t, iov[s].iov_len); s++) n -= iov[s].iov_len; if (n != 0) { char *base = ACE_reinterpret_cast (char *, iov[s].iov_base); iov[s].iov_base = base + n; iov[s].iov_len = iov[s].iov_len - n; } } return bytes_transferred; } int ACE::handle_ready (ACE_HANDLE handle, const ACE_Time_Value *timeout, int read_ready, int write_ready, int exception_ready) { #if defined (ACE_HAS_POLL) && defined (ACE_HAS_LIMITED_SELECT) struct pollfd fds; fds.fd = handle; fds.events = read_ready ? POLLIN : POLLOUT; fds.revents = 0; int result = ACE_OS::poll (&fds, 1, *timeout); #else ACE_Handle_Set handle_set; handle_set.set_bit (handle); // Wait for data or for the timeout to elapse. int result = ACE_OS::select (int (handle) + 1, read_ready ? handle_set.fdset () : 0, // read_fds. write_ready ? handle_set.fdset () : 0, // write_fds. exception_ready ? handle_set.fdset () : 0, // exception_fds. timeout); #endif /* ACE_HAS_POLL && ACE_HAS_LIMITED_SELECT */ switch (result) { case 0: // Timer expired. errno = ETIME; /* FALLTHRU */ case -1: // we got here directly - select() returned -1. return -1; case 1: // Handle has data. /* FALLTHRU */ default: // default is case result > 0; return a // ACE_ASSERT (result == 1); return result; } } int ACE::enter_recv_timedwait (ACE_HANDLE handle, const ACE_Time_Value *timeout, int &val) { int result = ACE::handle_read_ready (handle, timeout); if (result == -1) return -1; ACE::record_and_set_non_blocking_mode (handle, val); return result; } int ACE::enter_send_timedwait (ACE_HANDLE handle, const ACE_Time_Value *timeout, int &val) { int result = ACE::handle_write_ready (handle, timeout); if (result == -1) return -1; ACE::record_and_set_non_blocking_mode (handle, val); return result; } void ACE::record_and_set_non_blocking_mode (ACE_HANDLE handle, int &val) { // We need to record whether we are already *in* nonblocking mode, // so that we can correctly reset the state when we're done. val = ACE::get_flags (handle); if (ACE_BIT_DISABLED (val, ACE_NONBLOCK)) // Set the handle into non-blocking mode if it's not already in // it. ACE::set_flags (handle, ACE_NONBLOCK); } void ACE::restore_non_blocking_mode (ACE_HANDLE handle, int val) { if (ACE_BIT_DISABLED (val, ACE_NONBLOCK)) { // Save/restore errno. ACE_Errno_Guard error (errno); // Only disable ACE_NONBLOCK if we weren't in non-blocking mode // originally. ACE::clr_flags (handle, ACE_NONBLOCK); } } // Format buffer into printable format. This is useful for debugging. // Portions taken from mdump by J.P. Knight (J.P.Knight@lut.ac.uk) // Modifications by Todd Montgomery. int ACE::format_hexdump (const char *buffer, int size, ACE_TCHAR *obuf, int obuf_sz) { ACE_TRACE ("ACE::format_hexdump"); u_char c; ACE_TCHAR textver[16 + 1]; int maxlen = (obuf_sz / 68) * 16; if (size > maxlen) size = maxlen; int i; for (i = 0; i < (size >> 4); i++) { int j; for (j = 0 ; j < 16; j++) { c = (u_char) buffer[(i << 4) + j]; ACE_OS::sprintf (obuf, ACE_LIB_TEXT ("%02x "), c); obuf += 3; if (j == 7) { ACE_OS::sprintf (obuf, ACE_LIB_TEXT (" ")); obuf++; } textver[j] = ACE_OS::ace_isprint (c) ? c : '.'; } textver[j] = 0; ACE_OS::sprintf (obuf, ACE_LIB_TEXT (" %s\n"), textver); while (*obuf != '\0') obuf++; } if (size % 16) { for (i = 0 ; i < size % 16; i++) { c = (u_char) buffer[size - size % 16 + i]; ACE_OS::sprintf (obuf, ACE_LIB_TEXT ("%02x "), c); obuf += 3; if (i == 7) { ACE_OS::sprintf (obuf, ACE_LIB_TEXT (" ")); obuf++; } textver[i] = ACE_OS::ace_isprint (c) ? c : '.'; } for (i = size % 16; i < 16; i++) { ACE_OS::sprintf (obuf, ACE_LIB_TEXT (" ")); obuf += 3; textver[i] = ' '; } textver[i] = 0; ACE_OS::sprintf (obuf, ACE_LIB_TEXT (" %s\n"), textver); } return size; } // Returns the current timestamp in the form // "hour:minute:second:microsecond." The month, day, and year are // also stored in the beginning of the date_and_time array. Returns 0 // if unsuccessful, else returns pointer to beginning of the "time" // portion of . ACE_TCHAR * ACE::timestamp (ACE_TCHAR date_and_time[], int date_and_timelen) { //ACE_TRACE ("ACE::timestamp"); if (date_and_timelen < 35) { errno = EINVAL; return 0; } #if defined (WIN32) // @@ Jesper, I think Win32 supports all the UNIX versions below. // Therefore, we can probably remove this WIN32 ifdef altogether. SYSTEMTIME local; ::GetLocalTime (&local); ACE_OS::sprintf (date_and_time, ACE_LIB_TEXT ("%02d/%02d/%04d %02d.%02d.%02d.%06d"), (int) local.wMonth, // new, also the %02d in sprintf (int) local.wDay, // new, also the %02d in sprintf (int) local.wYear, // new, also the %02d in sprintf (int) local.wHour, (int) local.wMinute, (int) local.wSecond, (int) local.wMilliseconds * 1000); date_and_time[26] = '\0'; return &date_and_time[11]; #else /* UNIX */ ACE_TCHAR timebuf[26]; // This magic number is based on the ctime(3c) man page. ACE_Time_Value cur_time = ACE_OS::gettimeofday (); time_t secs = cur_time.sec (); ACE_OS::ctime_r (&secs, timebuf, sizeof timebuf); ACE_OS::strncpy (date_and_time, timebuf, date_and_timelen); char yeartmp[5]; ACE_OS::strncpy (yeartmp, &date_and_time[20], 4); yeartmp[4] = '\0'; char timetmp[9]; ACE_OS::strncpy (timetmp, &date_and_time[11], 8); timetmp[8] = '\0'; ACE_OS::sprintf (&date_and_time[11], "%s %s.%06ld", yeartmp, timetmp, cur_time.usec ()); date_and_time[33] = '\0'; return &date_and_time[15]; #endif /* WIN32 */ } // This function rounds the request to a multiple of the page size. size_t ACE::round_to_pagesize (off_t len) { ACE_TRACE ("ACE::round_to_pagesize"); if (ACE::pagesize_ == 0) ACE::pagesize_ = ACE_OS::getpagesize (); return (len + (ACE::pagesize_ - 1)) & ~(ACE::pagesize_ - 1); } size_t ACE::round_to_allocation_granularity (off_t len) { ACE_TRACE ("ACE::round_to_allocation_granularity"); if (ACE::allocation_granularity_ == 0) ACE::allocation_granularity_ = ACE_OS::allocation_granularity (); return (len + (ACE::allocation_granularity_ - 1)) & ~(ACE::allocation_granularity_ - 1); } ACE_HANDLE ACE::handle_timed_complete (ACE_HANDLE h, const ACE_Time_Value *timeout, int is_tli) { ACE_TRACE ("ACE::handle_timed_complete"); #if !defined (ACE_WIN32) && defined (ACE_HAS_POLL) && defined (ACE_HAS_LIMITED_SELECT) struct pollfd fds; fds.fd = h; fds.events = POLLIN | POLLOUT; fds.revents = 0; #else ACE_Handle_Set rd_handles; ACE_Handle_Set wr_handles; rd_handles.set_bit (h); wr_handles.set_bit (h); #endif /* !ACE_WIN32 && ACE_HAS_POLL && ACE_HAS_LIMITED_SELECT */ #if defined (ACE_WIN32) ACE_Handle_Set ex_handles; ex_handles.set_bit (h); #endif /* ACE_WIN32 */ int need_to_check; #if defined (ACE_WIN32) int n = ACE_OS::select (int (h) + 1, rd_handles, wr_handles, ex_handles, timeout); #else # if defined (ACE_HAS_POLL) && defined (ACE_HAS_LIMITED_SELECT) int n = ACE_OS::poll (&fds, 1, timeout); # else int n = ACE_OS::select (int (h) + 1, rd_handles, wr_handles, 0, timeout); # endif /* ACE_HAS_POLL && ACE_HAS_LIMITED_SELECT */ #endif /* ACE_WIN32 */ // If we failed to connect within the time period allocated by the // caller, then we fail (e.g., the remote host might have been too // busy to accept our call). if (n <= 0) { if (n == 0 && timeout != 0) errno = ETIMEDOUT; return ACE_INVALID_HANDLE; } // Check if the handle is ready for reading and the handle is *not* // ready for writing, which may indicate a problem. But we need to // make sure... #if defined (ACE_WIN32) need_to_check = rd_handles.is_set (h) || ex_handles.is_set (h); #elif defined (VXWORKS) ACE_UNUSED_ARG (is_tli); // Force the check on VxWorks. The read handle for "h" is not set, // so "need_to_check" is false at this point. The write handle is // set, for what it's worth. need_to_check = 1; #else if (is_tli) # if defined (ACE_HAS_POLL) && defined (ACE_HAS_LIMITED_SELECT) need_to_check = (fds.revents & POLLIN) && !(fds.revents & POLLOUT); # else need_to_check = rd_handles.is_set (h) && !wr_handles.is_set (h); # endif /* ACE_HAS_POLL && ACE_HAS_LIMITED_SELECT */ else #if defined(AIX) // AIX is broken... both success and failed connect will set the // write handle only, so always check. need_to_check = 1; #else # if defined (ACE_HAS_POLL) && defined (ACE_HAS_LIMITED_SELECT) need_to_check = (fds.revents & POLLIN); # else need_to_check = rd_handles.is_set (h); # endif /* ACE_HAS_POLL && ACE_HAS_LIMITED_SELECT */ #endif /* AIX */ #endif /* ACE_WIN32 */ if (need_to_check) { char dummy; // The following recv() won't block provided that the // ACE_NONBLOCK flag has not been turned off . n = ACE::recv (h, &dummy, 1, MSG_PEEK); // If no data was read/peeked at, check to see if it's because // of a non-connected socket (and therefore an error) or there's // just no data yet. if (n <= 0) { if (n == 0) { errno = ECONNREFUSED; h = ACE_INVALID_HANDLE; } else if (errno != EWOULDBLOCK && errno != EAGAIN) h = ACE_INVALID_HANDLE; } } // 1. The HANDLE is ready for writing and doesn't need to be checked or // 2. recv() returned an indication of the state of the socket - if there is // either data present, or a recv is legit but there's no data yet, // the connection was successfully established. return h; } // Wait up to amount of time to accept a connection. int ACE::handle_timed_accept (ACE_HANDLE listener, ACE_Time_Value *timeout, int restart) { ACE_TRACE ("ACE::handle_timed_accept"); // Make sure we don't bomb out on erroneous values. if (listener == ACE_INVALID_HANDLE) return -1; #if defined (ACE_HAS_POLL) && defined (ACE_HAS_LIMITED_SELECT) struct pollfd fds; fds.fd = listener; fds.events = POLLIN; fds.revents = 0; #else // Use the select() implementation rather than poll(). ACE_Handle_Set rd_handle; rd_handle.set_bit (listener); #endif /* ACE_HAS_POLL && ACE_HAS_LIMITED_SELECT */ // We need a loop here if is enabled. for (;;) { #if defined (ACE_HAS_POLL) && defined (ACE_HAS_LIMITED_SELECT) int n = ACE_OS::poll (&fds, 1, timeout); #else int n = ACE_OS::select (int (listener) + 1, rd_handle, 0, 0, timeout); #endif /* ACE_HAS_POLL && ACE_HAS_LIMITED_SELECT */ switch (n) { case -1: if (errno == EINTR && restart) continue; else return -1; /* NOTREACHED */ case 0: if (timeout != 0 && timeout->sec () == 0 && timeout->usec () == 0) errno = EWOULDBLOCK; else errno = ETIMEDOUT; return -1; /* NOTREACHED */ case 1: return 0; /* NOTREACHED */ default: errno = EINVAL; return -1; /* NOTREACHED */ } } ACE_NOTREACHED (return 0); } // Make the current process a UNIX daemon. This is based on Stevens // code from APUE. int ACE::daemonize (const ACE_TCHAR pathname[], int close_all_handles, const ACE_TCHAR program_name[]) { ACE_TRACE ("ACE::daemonize"); #if !defined (ACE_LACKS_FORK) pid_t pid = ACE_OS::fork (); if (pid == -1) return -1; else if (pid != 0) ACE_OS::exit (0); // Parent exits. // 1st child continues. ACE_OS::setsid (); // Become session leader. ACE_OS::signal (SIGHUP, SIG_IGN); pid = ACE_OS::fork (program_name); if (pid != 0) ACE_OS::exit (0); // First child terminates. // Second child continues. if (pathname != 0) // change working directory. ACE_OS::chdir (pathname); ACE_OS::umask (0); // clear our file mode creation mask. // Close down the files. if (close_all_handles) for (int i = ACE::max_handles () - 1; i >= 0; i--) ACE_OS::close (i); return 0; #else ACE_UNUSED_ARG (pathname); ACE_UNUSED_ARG (close_all_handles); ACE_UNUSED_ARG (program_name); ACE_NOTSUP_RETURN (-1); #endif /* ACE_LACKS_FORK */ } pid_t ACE::fork (const ACE_TCHAR *program_name, int avoid_zombies) { if (avoid_zombies == 0) return ACE_OS::fork (program_name); else { // This algorithm is adapted from an example in the Stevens book // "Advanced Programming in the Unix Environment" and an item in // Andrew Gierth's Unix Programming FAQ. It creates an orphan // process that's inherited by the init process; init cleans up // when the orphan process terminates. // // Another way to avoid zombies is to ignore or catch the // SIGCHLD signal; we don't use that approach here. pid_t pid = ACE_OS::fork (); if (pid == 0) { // The child process forks again to create a grandchild. switch (ACE_OS::fork (program_name)) { case 0: // grandchild returns 0. return 0; case -1: // assumes all errnos are < 256 ACE_OS::_exit (errno); default: // child terminates, orphaning grandchild ACE_OS::_exit (0); } } // Parent process waits for child to terminate. #if defined (ACE_HAS_UNION_WAIT) union wait status; if (pid < 0 || ACE_OS::waitpid (pid, &(status.w_status), 0) < 0) #else ACE_exitcode status; if (pid < 0 || ACE_OS::waitpid (pid, &status, 0) < 0) #endif /* ACE_HAS_UNION_WAIT */ return -1; // child terminated by calling exit()? if (WIFEXITED ((status))) { // child terminated normally? if (WEXITSTATUS ((status)) == 0) return 1; else errno = WEXITSTATUS ((status)); } else // child didn't call exit(); perhaps it received a signal? errno = EINTR; return -1; } } int ACE::max_handles (void) { ACE_TRACE ("ACE::max_handles"); #if defined (RLIMIT_NOFILE) && !defined (ACE_LACKS_RLIMIT) rlimit rl; ACE_OS::getrlimit (RLIMIT_NOFILE, &rl); # if !defined (RLIM_INFINITY) return rl.rlim_cur; #else if (rl.rlim_cur != RLIM_INFINITY) return rl.rlim_cur; // If == RLIM_INFINITY, fall through to the ACE_LACKS_RLIMIT sections # endif /* RLIM_INFINITY */ #endif /* RLIMIT_NOFILE && !ACE_LACKS_RLIMIT */ #if defined (_SC_OPEN_MAX) return ACE_OS::sysconf (_SC_OPEN_MAX); #elif defined (FD_SETSIZE) return FD_SETSIZE; #else ACE_NOTSUP_RETURN (-1); #endif /* _SC_OPEN_MAX */ } // Set the number of currently open handles in the process. // // If NEW_LIMIT == -1 set the limit to the maximum allowable. // Otherwise, set it to be the value of NEW_LIMIT. int ACE::set_handle_limit (int new_limit) { ACE_TRACE ("ACE::set_handle_limit"); int cur_limit = ACE::max_handles (); int max_limit = cur_limit; if (cur_limit == -1) return -1; #if !defined (ACE_LACKS_RLIMIT) && defined (RLIMIT_NOFILE) struct rlimit rl; ACE_OS::memset ((void *) &rl, 0, sizeof rl); ACE_OS::getrlimit (RLIMIT_NOFILE, &rl); max_limit = rl.rlim_max; #endif /* ACE_LACKS_RLIMIT */ if (new_limit == -1) new_limit = max_limit; if (new_limit < 0) { errno = EINVAL; return -1; } else if (new_limit > cur_limit) { #if !defined (ACE_LACKS_RLIMIT) && defined (RLIMIT_NOFILE) rl.rlim_cur = new_limit; return ACE_OS::setrlimit (RLIMIT_NOFILE, &rl); #else // Must return EINVAL errno. ACE_NOTSUP_RETURN (-1); #endif /* ACE_LACKS_RLIMIT */ } else { #if !defined (ACE_LACKS_RLIMIT) && defined (RLIMIT_NOFILE) rl.rlim_cur = new_limit; return ACE_OS::setrlimit (RLIMIT_NOFILE, &rl); #else // We give a chance to platforms without RLIMIT to work. // Instead of ACE_NOTSUP_RETURN (0), just return 0 because // new_limit is <= cur_limit, so it's a no-op. return 0; #endif /* ACE_LACKS_RLIMIT */ } // Irix complains without this return statement. DEC cxx // (correctly) says that it's not reachable. ACE_NOTREACHED won't // work here, because it handles both platforms the same. // IRIX does not complain anymore [7.2] ACE_NOTREACHED (return 0); } int ACE::map_errno (int error) { switch (error) { #if defined (ACE_WIN32) case WSAEWOULDBLOCK: return EAGAIN; // Same as UNIX errno EWOULDBLOCK. #endif /* ACE_WIN32 */ } return error; } // Euclid's greatest common divisor algorithm. u_long ACE::gcd (u_long x, u_long y) { if (y == 0) { return x; } else { return ACE::gcd (y, x % y); } } // Calculates the minimum enclosing frame size for the given values. u_long ACE::minimum_frame_size (u_long period1, u_long period2) { // if one of the periods is zero, treat it as though it as // uninitialized and return the other period as the frame size if (0 == period1) { return period2; } if (0 == period2) { return period1; } // if neither is zero, find the greatest common divisor of the two periods u_long greatest_common_divisor = ACE::gcd (period1, period2); // explicitly consider cases to reduce risk of possible overflow errors if (greatest_common_divisor == 1) { // periods are relative primes: just multiply them together return period1 * period2; } else if (greatest_common_divisor == period1) { // the first period divides the second: return the second return period2; } else if (greatest_common_divisor == period2) { // the second period divides the first: return the first return period1; } else { // the current frame size and the entry's effective period // have a non-trivial greatest common divisor: return the // product of factors divided by those in their gcd. return (period1 * period2) / greatest_common_divisor; } } u_long ACE::is_prime (const u_long n, const u_long min_factor, const u_long max_factor) { if (n > 3) for (u_long factor = min_factor; factor <= max_factor; ++factor) if (n / factor * factor == n) return factor; return 0; } const ACE_TCHAR * ACE::sock_error (int error) { #if defined (ACE_WIN32) static ACE_TCHAR unknown_msg[64]; switch (error) { case WSAVERNOTSUPPORTED: return ACE_LIB_TEXT ("version of WinSock not supported"); /* NOTREACHED */ case WSASYSNOTREADY: return ACE_LIB_TEXT ("WinSock not present or not responding"); /* NOTREACHED */ case WSAEINVAL: return ACE_LIB_TEXT ("app version not supported by DLL"); /* NOTREACHED */ case WSAHOST_NOT_FOUND: return ACE_LIB_TEXT ("Authoritive: Host not found"); /* NOTREACHED */ case WSATRY_AGAIN: return ACE_LIB_TEXT ("Non-authoritive: host not found or server failure"); /* NOTREACHED */ case WSANO_RECOVERY: return ACE_LIB_TEXT ("Non-recoverable: refused or not implemented"); /* NOTREACHED */ case WSANO_DATA: return ACE_LIB_TEXT ("Valid name, no data record for type"); /* NOTREACHED */ /* case WSANO_ADDRESS: return "Valid name, no MX record"; */ case WSANOTINITIALISED: return ACE_LIB_TEXT ("WSA Startup not initialized"); /* NOTREACHED */ case WSAENETDOWN: return ACE_LIB_TEXT ("Network subsystem failed"); /* NOTREACHED */ case WSAEINPROGRESS: return ACE_LIB_TEXT ("Blocking operation in progress"); /* NOTREACHED */ case WSAEINTR: return ACE_LIB_TEXT ("Blocking call cancelled"); /* NOTREACHED */ case WSAEAFNOSUPPORT: return ACE_LIB_TEXT ("address family not supported"); /* NOTREACHED */ case WSAEMFILE: return ACE_LIB_TEXT ("no file handles available"); /* NOTREACHED */ case WSAENOBUFS: return ACE_LIB_TEXT ("no buffer space available"); /* NOTREACHED */ case WSAEPROTONOSUPPORT: return ACE_LIB_TEXT ("specified protocol not supported"); /* NOTREACHED */ case WSAEPROTOTYPE: return ACE_LIB_TEXT ("protocol wrong type for this socket"); /* NOTREACHED */ case WSAESOCKTNOSUPPORT: return ACE_LIB_TEXT ("socket type not supported for address family"); /* NOTREACHED */ case WSAENOTSOCK: return ACE_LIB_TEXT ("handle is not a socket"); /* NOTREACHED */ case WSAEWOULDBLOCK: return ACE_LIB_TEXT ("socket marked as non-blocking and SO_LINGER set not 0"); /* NOTREACHED */ case WSAEADDRINUSE: return ACE_LIB_TEXT ("address already in use"); /* NOTREACHED */ case WSAECONNABORTED: return ACE_LIB_TEXT ("connection aborted"); /* NOTREACHED */ case WSAECONNRESET: return ACE_LIB_TEXT ("connection reset"); /* NOTREACHED */ case WSAENOTCONN: return ACE_LIB_TEXT ("not connected"); /* NOTREACHED */ case WSAETIMEDOUT: return ACE_LIB_TEXT ("connection timed out"); /* NOTREACHED */ case WSAECONNREFUSED: return ACE_LIB_TEXT ("connection refused"); /* NOTREACHED */ case WSAEHOSTDOWN: return ACE_LIB_TEXT ("host down"); /* NOTREACHED */ case WSAEHOSTUNREACH: return ACE_LIB_TEXT ("host unreachable"); /* NOTREACHED */ case WSAEADDRNOTAVAIL: return ACE_LIB_TEXT ("address not available"); /* NOTREACHED */ default: ACE_OS::sprintf (unknown_msg, ACE_LIB_TEXT ("unknown error: %d"), error); return unknown_msg; /* NOTREACHED */ } #else ACE_UNUSED_ARG (error); ACE_NOTSUP_RETURN (0); #endif /* ACE_WIN32 */ } char * ACE::strndup (const char *str, size_t n) { const char *t = str; size_t len; // Figure out how long this string is (remember, it might not be // NUL-terminated). for (len = 0; len < n && *t++ != '\0'; len++) continue; char *s; ACE_ALLOCATOR_RETURN (s, (char *) ACE_OS::malloc (len + 1), 0); s[len] = '\0'; return ACE_OS::strncpy (s, str, len); } #if defined (ACE_HAS_WCHAR) wchar_t * ACE::strndup (const wchar_t *str, size_t n) { const wchar_t *t = str; size_t len; // Figure out how long this string is (remember, it might not be // NUL-terminated). for (len = 0; len < n && *t++ != '\0'; len++) continue; wchar_t *s; ACE_ALLOCATOR_RETURN (s, ACE_static_cast (wchar_t *, ACE_OS::malloc ((len + 1) * sizeof (wchar_t))), 0); s[len] = L'\0'; return ACE_OS::strncpy (s, str, len); } #endif /* ACE_HAS_WCHAR */ char * ACE::strnnew (const char *str, size_t n) { const char *t = str; size_t len; // Figure out how long this string is (remember, it might not be // NUL-terminated). for (len = 0; len < n && *t++ != L'\0'; len++) continue; char *s; ACE_NEW_RETURN (s, char[len + 1], 0); s[len] = '\0'; return ACE_OS::strncpy (s, str, len); } #if defined (ACE_HAS_WCHAR) wchar_t * ACE::strnnew (const wchar_t *str, size_t n) { const wchar_t *t = str; size_t len; // Figure out how long this string is (remember, it might not be // NUL-terminated). for (len = 0; len < n && *t++ != L'\0'; len++) continue; wchar_t *s; ACE_NEW_RETURN (s, wchar_t[len + 1], 0); s[len] = L'\0'; return ACE_OS::strncpy (s, str, len); } #endif /* ACE_HAS_WCHAR */ const char * ACE::strend (const char *s) { while (*s++ != '\0') continue; return s; } #if defined ACE_HAS_WCHAR const wchar_t * ACE::strend (const wchar_t *s) { while (*s++ != L'\0') continue; return s; } #endif #if defined (ACE_HAS_EXPLICIT_TEMPLATE_INSTANTIATION) && (defined (__unix) || defined (__Lynx__) || defined (_AIX)) template class ACE_Auto_Array_Ptr; template class ACE_Auto_Basic_Array_Ptr; #elif defined (ACE_HAS_TEMPLATE_INSTANTIATION_PRAGMA) #pragma instantiate ACE_Auto_Array_Ptr #pragma instantiate ACE_Auto_Basic_Array_Ptr #endif /* ACE_HAS_EXPLICIT_TEMPLATE_INSTANTIATION && (__unix || __Lynx_) */