// -*- C++ -*- // // $Id$ #include "ace/CDR_Base.h" #include "ace/Message_Block.h" #if !defined (__ACE_INLINE__) # include "ace/CDR_Base.inl" #endif /* ! __ACE_INLINE__ */ ACE_RCSID(ace, CDR_Base, "$Id$") // // See comments in CDR_Base.i about optimization cases for swap_XX_array. // void ACE_CDR::swap_2_array (const char* orig, char* target, size_t n) { // ACE_ASSERT(n > 0); The caller checks that n > 0 // Later, we try to read in 32 or 64 bit chunks, // so make sure we don't do that for unaligned addresses. #if ACE_SIZEOF_LONG == 8 const char* const o8 = ACE_ptr_align_binary(orig, 8); while (orig < o8 && n > 0) { ACE_CDR::swap_2 (orig, target); orig += 2; target += 2; --n; } #else const char* const o4 = ACE_ptr_align_binary(orig, 4); // this is an _if_, not a _while_. The mistmatch can only be by 2. if (orig != o4) { ACE_CDR::swap_2 (orig, target); orig += 2; target += 2; --n; } #endif if (n == 0) return; // // Loop unrolling. Here be dragons. // // (n & (~3)) is the greatest multiple of 4 not bigger than n. // In the while loop ahead, orig will move over the array by 8 byte // increments (4 elements of 2 bytes). // end marks our barrier for not falling outside. const char* const end = orig + 2*(n & (~3)); // See if we're aligned for writting in 64 or 32 bit chunks... #if ACE_SIZEOF_LONG == 8 if (target == ACE_ptr_align_binary(target, 8)) #else if (target == ACE_ptr_align_binary(target, 4)) #endif { while (orig < end) { #if defined(ACE_HAS_PENTIUM) && defined(__GNUG__) unsigned int a = * ACE_reinterpret_cast(const unsigned int*, orig); unsigned int b = * ACE_reinterpret_cast(const unsigned int*, orig + 4); asm( "bswap %1" : "=r" (a) : "0" (a) ); asm( "bswap %1" : "=r" (b) : "0" (b) ); asm( "rol $16, %1" : "=r" (a) : "0" (a) ); asm( "rol $16, %1" : "=r" (b) : "0" (b) ); * ACE_reinterpret_cast(unsigned int*, target) = a; * ACE_reinterpret_cast(unsigned int*, target + 4) = b; #elif defined(ACE_HAS_PENTIUM) \ && (defined(_MSC_VER) || defined(__BORLANDC__)) \ && !defined(ACE_LACKS_INLINE_ASSEMBLY) __asm mov ecx, orig; __asm mov edx, target; __asm mov eax, [ecx]; __asm mov ebx, 4[ecx]; __asm bswap eax; __asm bswap ebx; __asm rol eax, 16; __asm rol ebx, 16; __asm mov [edx], eax; __asm mov 4[edx], ebx; #elif ACE_SIZEOF_LONG == 8 // 64 bit architecture. register unsigned long a = * ACE_reinterpret_cast(const unsigned long*, orig); register unsigned long a1 = (a & 0x00ff00ff00ff00ffUL) << 8; register unsigned long a2 = (a & 0xff00ff00ff00ff00UL) >> 8; a = (a1 | a2); * ACE_reinterpret_cast(unsigned long*, target) = a; #else register ACE_UINT32 a = * ACE_reinterpret_cast(const ACE_UINT32*, orig); register ACE_UINT32 b = * ACE_reinterpret_cast(const ACE_UINT32*, orig + 4); register ACE_UINT32 a1 = (a & 0x00ff00ffU) << 8; register ACE_UINT32 b1 = (b & 0x00ff00ffU) << 8; register ACE_UINT32 a2 = (a & 0xff00ff00U) >> 8; register ACE_UINT32 b2 = (b & 0xff00ff00U) >> 8; a = (a1 | a2); b = (b1 | b2); * ACE_reinterpret_cast(ACE_UINT32*, target) = a; * ACE_reinterpret_cast(ACE_UINT32*, target + 4) = b; #endif orig += 8; target += 8; } } else { // We're out of luck. We have to write in 2 byte chunks. while (orig < end) { #if defined(ACE_HAS_PENTIUM) && defined(__GNUG__) unsigned int a = * ACE_reinterpret_cast(const unsigned int*, orig); unsigned int b = * ACE_reinterpret_cast(const unsigned int*, orig + 4); asm( "bswap %1" : "=r" (a) : "0" (a) ); asm( "bswap %1" : "=r" (b) : "0" (b) ); // We're little endian. * ACE_reinterpret_cast(unsigned short*, target + 2) = (unsigned short) (a & 0xffff); * ACE_reinterpret_cast(unsigned short*, target + 6) = (unsigned short) (b & 0xffff); asm( "shrl $16, %1" : "=r" (a) : "0" (a) ); asm( "shrl $16, %1" : "=r" (b) : "0" (b) ); * ACE_reinterpret_cast(unsigned short*, target + 0) = (unsigned short) (a & 0xffff); * ACE_reinterpret_cast(unsigned short*, target + 4) = (unsigned short) (b & 0xffff); #elif defined(ACE_HAS_PENTIUM) \ && (defined(_MSC_VER) || defined(__BORLANDC__)) \ && !defined(ACE_LACKS_INLINE_ASSEMBLY) __asm mov ecx, orig; __asm mov edx, target; __asm mov eax, [ecx]; __asm mov ebx, 4[ecx]; __asm bswap eax; __asm bswap ebx; // We're little endian. __asm mov 2[edx], ax; __asm mov 6[edx], bx; __asm shr eax, 16; __asm shr ebx, 16; __asm mov 0[edx], ax; __asm mov 4[edx], bx; #elif ACE_SIZEOF_LONG == 8 // 64 bit architecture. register unsigned long a = * ACE_reinterpret_cast(const unsigned long*, orig); register unsigned long a1 = (a & 0x00ff00ff00ff00ffUL) << 8; register unsigned long a2 = (a & 0xff00ff00ff00ff00UL) >> 8; a = (a1 | a2); ACE_UINT16 b1 = ACE_static_cast(ACE_UINT16, (a >> 48)); ACE_UINT16 b2 = ACE_static_cast(ACE_UINT16, ((a >> 32) & 0xffff)); ACE_UINT16 b3 = ACE_static_cast(ACE_UINT16, ((a >> 16) & 0xffff)); ACE_UINT16 b4 = ACE_static_cast(ACE_UINT16, (a & 0xffff)); #if defined(ACE_LITTLE_ENDIAN) * ACE_reinterpret_cast(ACE_UINT16*, target) = b4; * ACE_reinterpret_cast(ACE_UINT16*, target + 2) = b3; * ACE_reinterpret_cast(ACE_UINT16*, target + 4) = b2; * ACE_reinterpret_cast(ACE_UINT16*, target + 6) = b1; #else * ACE_reinterpret_cast(ACE_UINT16*, target) = b1; * ACE_reinterpret_cast(ACE_UINT16*, target + 2) = b2; * ACE_reinterpret_cast(ACE_UINT16*, target + 4) = b3; * ACE_reinterpret_cast(ACE_UINT16*, target + 6) = b4; #endif #else register ACE_UINT32 a = * ACE_reinterpret_cast(const ACE_UINT32*, orig); register ACE_UINT32 b = * ACE_reinterpret_cast(const ACE_UINT32*, orig + 4); register ACE_UINT32 a1 = (a & 0x00ff00ff) << 8; register ACE_UINT32 b1 = (b & 0x00ff00ff) << 8; register ACE_UINT32 a2 = (a & 0xff00ff00) >> 8; register ACE_UINT32 b2 = (b & 0xff00ff00) >> 8; a = (a1 | a2); b = (b1 | b2); ACE_UINT32 c1 = ACE_static_cast(ACE_UINT16, (a >> 16)); ACE_UINT32 c2 = ACE_static_cast(ACE_UINT16, (a & 0xffff)); ACE_UINT32 c3 = ACE_static_cast(ACE_UINT16, (b >> 16)); ACE_UINT32 c4 = ACE_static_cast(ACE_UINT16, (b & 0xffff)); #if defined(ACE_LITTLE_ENDIAN) * ACE_reinterpret_cast(ACE_UINT16*, target) = c2; * ACE_reinterpret_cast(ACE_UINT16*, target + 2) = c1; * ACE_reinterpret_cast(ACE_UINT16*, target + 4) = c4; * ACE_reinterpret_cast(ACE_UINT16*, target + 6) = c3; #else * ACE_reinterpret_cast(ACE_UINT16*, target) = c1; * ACE_reinterpret_cast(ACE_UINT16*, target + 2) = c2; * ACE_reinterpret_cast(ACE_UINT16*, target + 4) = c3; * ACE_reinterpret_cast(ACE_UINT16*, target + 6) = c4; #endif #endif orig += 8; target += 8; } } // (n & 3) == (n % 4). switch (n&3) { case 3: ACE_CDR::swap_2 (orig, target); orig += 2; target += 2; case 2: ACE_CDR::swap_2 (orig, target); orig += 2; target += 2; case 1: ACE_CDR::swap_2 (orig, target); } } void ACE_CDR::swap_4_array (const char* orig, char* target, size_t n) { // ACE_ASSERT(n > 0); The caller checks that n > 0 #if ACE_LONG_SIZE == 8 // Later, we read from *orig in 64 bit chunks, // so make sure we don't generate unaligned readings. const char* const o8 = ACE_ptr_align_binary(orig, 8); // The mistmatch can only be by 4. if (orig != o8) { ACE_CDR::swap_4 (orig, target); orig += 4; target += 4; --n; } #endif if (n == 0) return; // // Loop unrolling. Here be dragons. // // (n & (~3)) is the greatest multiple of 4 not bigger than n. // In the while loop, orig will move over the array by 16 byte // increments (4 elements of 4 bytes). // ends marks our barrier for not falling outside. const char* const end = orig + 4*(n & (~3)); #if ACE_LONG_SIZE == 8 // 64 bits architecture. // See if we can write in 8 byte chunks. if (target == ACE_ptr_align_binary(target, 8)) { while (orig < end) { register unsigned long a = * ACE_reinterpret_cast(const long*, orig); register unsigned long b = * ACE_reinterpret_cast(const long*, orig + 8); register unsigned long a84 = (a & 0x000000ff000000ffL) << 24; register unsigned long b84 = (b & 0x000000ff000000ffL) << 24; register unsigned long a73 = (a & 0x0000ff000000ff00L) << 8; register unsigned long b73 = (b & 0x0000ff000000ff00L) << 8; register unsigned long a62 = (a & 0x00ff000000ff0000L) >> 8; register unsigned long b62 = (b & 0x00ff000000ff0000L) >> 8; register unsigned long a51 = (a & 0xff000000ff000000L) >> 24; register unsigned long b51 = (b & 0xff000000ff000000L) >> 24; a = (a84 | a73 | a62 | a51); b = (b84 | b73 | b62 | b51); * ACE_reinterpret_cast(long*, target) = a; * ACE_reinterpret_cast(long*, target + 8) = b; orig += 16; target += 16; } } else { // We are out of luck, we have to write in 4 byte chunks. while (orig < end) { register unsigned long a = * ACE_reinterpret_cast(const long*, orig); register unsigned long b = * ACE_reinterpret_cast(const long*, orig + 8); register unsigned long a84 = (a & 0x000000ff000000ffL) << 24; register unsigned long b84 = (b & 0x000000ff000000ffL) << 24; register unsigned long a73 = (a & 0x0000ff000000ff00L) << 8; register unsigned long b73 = (b & 0x0000ff000000ff00L) << 8; register unsigned long a62 = (a & 0x00ff000000ff0000L) >> 8; register unsigned long b62 = (b & 0x00ff000000ff0000L) >> 8; register unsigned long a51 = (a & 0xff000000ff000000L) >> 24; register unsigned long b51 = (b & 0xff000000ff000000L) >> 24; a = (a84 | a73 | a62 | a51); b = (b84 | b73 | b62 | b51); ACE_UINT32 c1 = ACE_static_cast(ACE_UINT32, (a >> 32)); ACE_UINT32 c2 = ACE_static_cast(ACE_UINT32, (a & 0xffffffff)); ACE_UINT32 c3 = ACE_static_cast(ACE_UINT32, (b >> 32)); ACE_UINT32 c4 = ACE_static_cast(ACE_UINT32, (b & 0xffffffff)); #if defined(ACE_LITTLE_ENDIAN) * ACE_reinterpret_cast(ACE_UINT32*, target + 0) = c2; * ACE_reinterpret_cast(ACE_UINT32*, target + 4) = c1; * ACE_reinterpret_cast(ACE_UINT32*, target + 8) = c4; * ACE_reinterpret_cast(ACE_UINT32*, target + 12) = c3; #else * ACE_reinterpret_cast(ACE_UINT32*, target + 0) = c1; * ACE_reinterpret_cast(ACE_UINT32*, target + 4) = c2; * ACE_reinterpret_cast(ACE_UINT32*, target + 8) = c3; * ACE_reinterpret_cast(ACE_UINT32*, target + 12) = c4; #endif orig += 16; target += 16; } } #else /* ACE_LONG_SIZE != 8 */ while (orig < end) { #if defined(ACE_HAS_PENTIUM) && defined(__GNUG__) register unsigned int a = *ACE_reinterpret_cast(const unsigned int*, orig); register unsigned int b = *ACE_reinterpret_cast(const unsigned int*, orig + 4); register unsigned int c = *ACE_reinterpret_cast(const unsigned int*, orig + 8); register unsigned int d = *ACE_reinterpret_cast(const unsigned int*, orig + 12); asm ("bswap %1" : "=r" (a) : "0" (a)); asm ("bswap %1" : "=r" (b) : "0" (b)); asm ("bswap %1" : "=r" (c) : "0" (c)); asm ("bswap %1" : "=r" (d) : "0" (d)); *ACE_reinterpret_cast(unsigned int*, target) = a; *ACE_reinterpret_cast(unsigned int*, target + 4) = b; *ACE_reinterpret_cast(unsigned int*, target + 8) = c; *ACE_reinterpret_cast(unsigned int*, target + 12) = d; #elif defined(ACE_HAS_PENTIUM) \ && (defined(_MSC_VER) || defined(__BORLANDC__)) \ && !defined(ACE_LACKS_INLINE_ASSEMBLY) __asm mov eax, orig __asm mov esi, target __asm mov edx, [eax] __asm mov ecx, 4[eax] __asm mov ebx, 8[eax] __asm mov eax, 12[eax] __asm bswap edx __asm bswap ecx __asm bswap ebx __asm bswap eax __asm mov [esi], edx __asm mov 4[esi], ecx __asm mov 8[esi], ebx __asm mov 12[esi], eax #else register ACE_UINT32 a = * ACE_reinterpret_cast(const ACE_UINT32*, orig); register ACE_UINT32 b = * ACE_reinterpret_cast(const ACE_UINT32*, orig + 4); register ACE_UINT32 c = * ACE_reinterpret_cast(const ACE_UINT32*, orig + 8); register ACE_UINT32 d = * ACE_reinterpret_cast(const ACE_UINT32*, orig + 12); // Expect the optimizer reordering this A LOT. // We leave it this way for clarity. a = (a << 24) | ((a & 0xff00) << 8) | ((a & 0xff0000) >> 8) | (a >> 24); b = (b << 24) | ((b & 0xff00) << 8) | ((b & 0xff0000) >> 8) | (b >> 24); c = (c << 24) | ((c & 0xff00) << 8) | ((c & 0xff0000) >> 8) | (c >> 24); d = (d << 24) | ((d & 0xff00) << 8) | ((d & 0xff0000) >> 8) | (d >> 24); * ACE_reinterpret_cast(ACE_UINT32*, target) = a; * ACE_reinterpret_cast(ACE_UINT32*, target + 4) = b; * ACE_reinterpret_cast(ACE_UINT32*, target + 8) = c; * ACE_reinterpret_cast(ACE_UINT32*, target + 12) = d; #endif orig += 16; target += 16; } #endif /* ACE_LONG_SIZE == 8 */ // (n & 3) == (n % 4). switch (n&3) { case 3: ACE_CDR::swap_4 (orig, target); orig += 4; target += 4; case 2: ACE_CDR::swap_4 (orig, target); orig += 4; target += 4; case 1: ACE_CDR::swap_4 (orig, target); } } // // We don't benefit from unrolling in swap_8_array and swap_16_array // (swap_8 and swap_16 are big enough). // void ACE_CDR::swap_8_array (const char* orig, char* target, size_t n) { // ACE_ASSERT(n > 0); The caller checks that n > 0 const char* const end = orig + 8*n; while (orig < end) { swap_8(orig, target); orig += 8; target += 8; } } void ACE_CDR::swap_16_array (const char* orig, char* target, size_t n) { // ACE_ASSERT(n > 0); The caller checks that n > 0 const char* const end = orig + 16*n; while (orig < end) { swap_16(orig, target); orig += 16; target += 16; } } int ACE_CDR::grow (ACE_Message_Block *mb, size_t minsize) { size_t newsize = ACE_CDR::first_size (minsize + ACE_CDR::MAX_ALIGNMENT); if (newsize <= mb->size ()) return 0; ACE_Data_Block *db = mb->data_block ()->clone_nocopy (); if (db->size (newsize) == -1) return -1; ACE_Message_Block tmp (db); ACE_CDR::mb_align (&tmp); tmp.copy (mb->rd_ptr (), mb->length()); mb->data_block (tmp.data_block ()->duplicate ()); mb->rd_ptr (tmp.rd_ptr ()); mb->wr_ptr (tmp.wr_ptr ()); // Remove the DONT_DELETE flags from mb mb->clr_self_flags (ACE_Message_Block::DONT_DELETE); return 0; } size_t ACE_CDR::total_length (const ACE_Message_Block* begin, const ACE_Message_Block* end) { size_t l = 0; // Compute the total size. for (const ACE_Message_Block *i = begin; i != end; i = i->cont ()) l += i->length (); return l; } void ACE_CDR::consolidate (ACE_Message_Block *dst, const ACE_Message_Block *src) { if (src == 0) return; // If we do not have a chain of message blocks, all that is needed // is an increment of the reference count. if(src->cont () != 0) { size_t newsize = ACE_CDR::first_size (ACE_CDR::total_length (src, 0) + ACE_CDR::MAX_ALIGNMENT); dst->size (newsize); // We must copy the contents of into the new buffer, but // respecting the alignment. ptrdiff_t srcalign = ptrdiff_t(src->rd_ptr ()) % ACE_CDR::MAX_ALIGNMENT; ptrdiff_t dstalign = ptrdiff_t(dst->rd_ptr ()) % ACE_CDR::MAX_ALIGNMENT; int offset = srcalign - dstalign; if (offset < 0) offset += ACE_CDR::MAX_ALIGNMENT; dst->rd_ptr (offset); dst->wr_ptr (dst->rd_ptr ()); for (const ACE_Message_Block* i = src; i != 0; i = i->cont ()) { dst->copy (i->rd_ptr (), i->length ()); } } else { // Just increment the refcount of the underlying datablock and // assign the data block to the message block dst->data_block (src->data_block()->duplicate()); // Adjust rd/wr pointers dst->rd_ptr (src->rd_ptr()); dst->wr_ptr (src->wr_ptr()); } } #if defined (NONNATIVE_LONGLONG) int ACE_CDR::LongLong::operator== (const ACE_CDR::LongLong &rhs) const { return this->h == rhs.h && this->l == rhs.l; } int ACE_CDR::LongLong::operator!= (const ACE_CDR::LongLong &rhs) const { return this->l != rhs.l || this->h != rhs.h; } #endif /* NONNATIVE_LONGLONG */ #if defined (NONNATIVE_LONGDOUBLE) int ACE_CDR::LongDouble::operator== (const ACE_CDR::LongDouble &rhs) const { return ACE_OS::memcmp (this->ld, rhs.ld, 16) == 0; } int ACE_CDR::LongDouble::operator!= (const ACE_CDR::LongDouble &rhs) const { return ACE_OS::memcmp (this->ld, rhs.ld, 16) != 0; } #endif /* NONNATIVE_LONGDOUBLE */ #if defined(_UNICOS) && !defined(_CRAYMPP) // placeholders to get things compiling ACE_CDR::Float::Float() { } ACE_CDR::Float::Float(const float & init) { } ACE_CDR::Float & ACE_CDR::Float::operator= (const float &rhs) { return *this; } int ACE_CDR::Float::operator!= (const ACE_CDR::Float &rhs) const { return 0; } #endif /* _UNICOS */