// $Id$ #if !defined (ACE_CONTAINERS_T_C) #define ACE_CONTAINERS_T_C #define ACE_BUILD_DLL #include "ace/Malloc.h" #include "ace/Containers.h" #if !defined (__ACE_INLINE__) #include "ace/Containers_T.i" #endif /* __ACE_INLINE__ */ ACE_RCSID(ace, Containers_T, "$Id$") ACE_ALLOC_HOOK_DEFINE(ACE_Bounded_Stack) template void ACE_Bounded_Stack::dump (void) const { ACE_TRACE ("ACE_Bounded_Stack::dump"); } template ACE_Bounded_Stack::ACE_Bounded_Stack (size_t size) : top_ (0), size_ (size) { ACE_NEW (this->stack_, T[size]); ACE_TRACE ("ACE_Bounded_Stack::ACE_Bounded_Stack"); } template ACE_Bounded_Stack::ACE_Bounded_Stack (const ACE_Bounded_Stack &s) : top_ (s.top_), size_ (s.size_) { ACE_NEW (this->stack_, T[s.size_]); ACE_TRACE ("ACE_Bounded_Stack::ACE_Bounded_Stack"); for (size_t i = 0; i < this->top_; i++) this->stack_[i] = s.stack_[i]; } template void ACE_Bounded_Stack::operator= (const ACE_Bounded_Stack &s) { ACE_TRACE ("ACE_Bounded_Stack::operator="); if (&s != this) { if (this->size_ < s.size_) { delete [] this->stack_; ACE_NEW (this->stack_, T[s.size_]); } this->top_ = s.top_; for (size_t i = 0; i < this->top_; i++) this->stack_[i] = s.stack_[i]; } } template ACE_Bounded_Stack::~ACE_Bounded_Stack (void) { ACE_TRACE ("ACE_Bounded_Stack::~ACE_Bounded_Stack"); delete [] this->stack_; } // ---------------------------------------- ACE_ALLOC_HOOK_DEFINE(ACE_Fixed_Stack) template void ACE_Fixed_Stack::dump (void) const { ACE_TRACE ("ACE_Fixed_Stack::dump"); } template ACE_Fixed_Stack::ACE_Fixed_Stack (void) : top_ (0), size_ (ACE_SIZE) { ACE_TRACE ("ACE_Fixed_Stack::ACE_Fixed_Stack"); } template ACE_Fixed_Stack::ACE_Fixed_Stack (const ACE_Fixed_Stack &s) : top_ (s.top_), size_ (s.size_) { ACE_TRACE ("ACE_Fixed_Stack::ACE_Fixed_Stack"); for (size_t i = 0; i < this->top_; i++) this->stack_[i] = s.stack_[i]; } template void ACE_Fixed_Stack::operator= (const ACE_Fixed_Stack &s) { ACE_TRACE ("ACE_Fixed_Stack::operator="); if (&s != this) { this->top_ = s.top_; for (size_t i = 0; i < this->top_; i++) this->stack_[i] = s.stack_[i]; } } template ACE_Fixed_Stack::~ACE_Fixed_Stack (void) { ACE_TRACE ("ACE_Fixed_Stack::~ACE_Fixed_Stack"); delete [] this->stack_; } //---------------------------------------- ACE_ALLOC_HOOK_DEFINE(ACE_Unbounded_Stack) template void ACE_Unbounded_Stack::dump (void) const { // ACE_TRACE ("ACE_Unbounded_Stack::dump"); } template ACE_Unbounded_Stack::ACE_Unbounded_Stack (ACE_Allocator *alloc) : head_ (0), cur_size_ (0), allocator_ (alloc) { // ACE_TRACE ("ACE_Unbounded_Stack::ACE_Unbounded_Stack"); if (this->allocator_ == 0) this->allocator_ = ACE_Allocator::instance (); ACE_NEW_MALLOC (this->head_, (ACE_Node*) this->allocator_->malloc (sizeof (ACE_Node)), ACE_Node); this->head_->next_ = this->head_; } template void ACE_Unbounded_Stack::delete_all_nodes (void) { // ACE_TRACE ("ACE_Unbounded_Stack::delete_all_nodes"); while (this->is_empty () == 0) { ACE_Node *temp = this->head_->next_; this->head_->next_ = temp->next_; ACE_DES_FREE_TEMPLATE (temp, this->allocator_->free, ACE_Node, ); } this->cur_size_ = 0; ACE_ASSERT (this->head_ == this->head_->next_ && this->is_empty ()); } template void ACE_Unbounded_Stack::copy_all_nodes (const ACE_Unbounded_Stack &s) { // ACE_TRACE ("ACE_Unbounded_Stack::copy_all_nodes"); ACE_ASSERT (this->head_ == this->head_->next_); ACE_Node *temp = this->head_; for (ACE_Node *s_temp = s.head_->next_; s_temp != s.head_; s_temp = s_temp->next_) { ACE_Node *nptr = temp->next_; ACE_NEW_MALLOC (temp->next_, (ACE_Node*) this->allocator_->malloc (sizeof (ACE_Node)), ACE_Node (s_temp->item_, nptr)); temp = temp->next_; } this->cur_size_ = s.cur_size_; } template ACE_Unbounded_Stack::ACE_Unbounded_Stack (const ACE_Unbounded_Stack &s) : head_ (0), cur_size_ (0), allocator_ (s.allocator_) { if (this->allocator_ == 0) this->allocator_ = ACE_Allocator::instance (); ACE_NEW_MALLOC (this->head_, (ACE_Node*) this->allocator_->malloc( sizeof (ACE_Node)), ACE_Node); this->head_->next_ = this->head_; // ACE_TRACE ("ACE_Unbounded_Stack::ACE_Unbounded_Stack"); this->copy_all_nodes (s); } template void ACE_Unbounded_Stack::operator= (const ACE_Unbounded_Stack &s) { // ACE_TRACE ("ACE_Unbounded_Stack::operator="); if (this != &s) { this->delete_all_nodes (); this->copy_all_nodes (s); } } template ACE_Unbounded_Stack::~ACE_Unbounded_Stack (void) { // ACE_TRACE ("ACE_Unbounded_Stack::~ACE_Unbounded_Stack"); this->delete_all_nodes (); ACE_DES_FREE_TEMPLATE (head_, this->allocator_->free, ACE_Node, ); } template int ACE_Unbounded_Stack::push (const T &new_item) { // ACE_TRACE ("ACE_Unbounded_Stack::push"); ACE_Node *temp; ACE_NEW_MALLOC_RETURN (temp, (ACE_Node*) this->allocator_->malloc (sizeof (ACE_Node)), ACE_Node (new_item, this->head_->next_), -1); this->head_->next_ = temp; this->cur_size_++; return 0; } template int ACE_Unbounded_Stack::pop (T &item) { // ACE_TRACE ("ACE_Unbounded_Stack::pop"); if (this->is_empty ()) return -1; else { ACE_Node *temp = this->head_->next_; item = temp->item_; this->head_->next_ = temp->next_; ACE_DES_FREE_TEMPLATE (temp, this->allocator_->free, ACE_Node, ); this->cur_size_--; return 0; } } template int ACE_Unbounded_Stack::find (const T &item) const { // ACE_TRACE ("ACE_Unbounded_Stack::find"); // Set into the dummy node. this->head_->item_ = item; ACE_Node *temp = this->head_->next_; // Keep looping until we find the item. while (!(temp->item_ == item)) temp = temp->next_; // If we found the dummy node then it's not really there, otherwise, // it is there. return temp == this->head_ ? -1 : 0; } template int ACE_Unbounded_Stack::insert (const T &item) { // ACE_TRACE ("ACE_Unbounded_Stack::insert"); if (this->find (item) == 0) return 1; else return this->push (item); } template int ACE_Unbounded_Stack::remove (const T &item) { // ACE_TRACE ("ACE_Unbounded_Stack::remove"); // Insert the item to be founded into the dummy node. this->head_->item_ = item; ACE_Node *curr = this->head_; while (!(curr->next_->item_ == item)) curr = curr->next_; if (curr->next_ == this->head_) return -1; // Item was not found. else { ACE_Node *temp = curr->next_; // Skip over the node that we're deleting. curr->next_ = temp->next_; this->cur_size_--; ACE_DES_FREE_TEMPLATE (temp, this->allocator_->free, ACE_Node, ); return 0; } } template ACE_Unbounded_Queue::ACE_Unbounded_Queue (ACE_Allocator *alloc) : head_ (0), cur_size_ (0), allocator_ (alloc) { // ACE_TRACE ("ACE_Unbounded_Queue::ACE_Unbounded_Queue (void)"); if (this->allocator_ == 0) this->allocator_ = ACE_Allocator::instance (); ACE_NEW_MALLOC (this->head_, (ACE_Node*) this->allocator_->malloc (sizeof (ACE_Node)), ACE_Node); // Make the list circular by pointing it back to itself. this->head_->next_ = this->head_; } template ACE_Unbounded_Queue::ACE_Unbounded_Queue (const ACE_Unbounded_Queue &us) : head_ (0), cur_size_ (0), allocator_ (us.allocator_) { // ACE_TRACE ("ACE_Unbounded_Queue::ACE_Unbounded_Queue"); if (this->allocator_ == 0) this->allocator_ = ACE_Allocator::instance (); ACE_NEW_MALLOC (this->head_, (ACE_Node*) this->allocator_->malloc (sizeof (ACE_Node)), ACE_Node); this->head_->next_ = this->head_; this->copy_nodes (us); } template void ACE_Unbounded_Queue::operator= (const ACE_Unbounded_Queue &us) { // ACE_TRACE ("ACE_Unbounded_Queue::operator="); if (this != &us) { this->delete_nodes (); this->copy_nodes (us); } } template ACE_Unbounded_Queue_Iterator ACE_Unbounded_Queue::begin (void) { // ACE_TRACE ("ACE_Unbounded_Queue::begin"); return ACE_Unbounded_Queue_Iterator (*this); } template ACE_Unbounded_Queue_Iterator ACE_Unbounded_Queue::end (void) { // ACE_TRACE ("ACE_Unbounded_Queue::end"); return ACE_Unbounded_Queue_Iterator (*this, 1); } ACE_ALLOC_HOOK_DEFINE(ACE_Unbounded_Queue) template void ACE_Unbounded_Queue::dump (void) const { // ACE_TRACE ("ACE_Unbounded_Queue::dump"); ACE_DEBUG ((LM_DEBUG, ACE_BEGIN_DUMP, this)); ACE_DEBUG ((LM_DEBUG, ASYS_TEXT ("\nhead_ = %u"), this->head_)); ACE_DEBUG ((LM_DEBUG, ASYS_TEXT ("\nhead_->next_ = %u"), this->head_->next_)); ACE_DEBUG ((LM_DEBUG, ASYS_TEXT ("\ncur_size_ = %d\n"), this->cur_size_)); T *item = 0; size_t count = 1; for (ACE_Unbounded_Queue_Iterator iter (*(ACE_Unbounded_Queue *) this); iter.next (item) != 0; iter.advance ()) ACE_DEBUG ((LM_DEBUG, ASYS_TEXT ("count = %d\n"), count++)); ACE_DEBUG ((LM_DEBUG, ACE_END_DUMP)); } template void ACE_Unbounded_Queue::copy_nodes (const ACE_Unbounded_Queue &us) { for (ACE_Node *curr = us.head_->next_; curr != us.head_; curr = curr->next_) if (this->enqueue_tail (curr->item_) == -1) // @@ What's the right thing to do here? this->delete_nodes (); } template void ACE_Unbounded_Queue::delete_nodes (void) { ACE_Node *curr = this->head_->next_; // Keep looking until we've hit the dummy node. while (curr != this->head_) { ACE_Node *temp = curr; curr = curr->next_; ACE_DES_FREE_TEMPLATE (temp, this->allocator_->free, ACE_Node, ); this->cur_size_--; } // Reset the list to be a circular list with just a dummy node. this->head_->next_ = this->head_; } template ACE_Unbounded_Queue::~ACE_Unbounded_Queue (void) { // ACE_TRACE ("ACE_Unbounded_Queue::~ACE_Unbounded_Queue (void)"); this->delete_nodes (); ACE_DES_FREE_TEMPLATE (head_, this->allocator_->free, ACE_Node, ); this->head_ = 0; } template int ACE_Unbounded_Queue::enqueue_head (const T &new_item) { // ACE_TRACE ("ACE_Unbounded_Queue::enqueue_tail"); ACE_Node *temp; // Create a new node that points to the original head. ACE_NEW_MALLOC_RETURN (temp, (ACE_Node*) this->allocator_->malloc (sizeof (ACE_Node)), ACE_Node (new_item, this->head_->next_), -1); // Link this pointer into the front of the list. this->head_->next_ = temp; this->cur_size_++; return 0; } template int ACE_Unbounded_Queue::enqueue_tail (const T &new_item) { // ACE_TRACE ("ACE_Unbounded_Queue::enqueue_head"); ACE_Node *temp; // Insert into the old dummy node location. this->head_->item_ = new_item; // Create a new dummy node. ACE_NEW_MALLOC_RETURN (temp, (ACE_Node*) this->allocator_->malloc (sizeof (ACE_Node)), ACE_Node (this->head_->next_), -1); // Link this dummy pointer into the list. this->head_->next_ = temp; // Point the head to the new dummy node. this->head_ = temp; this->cur_size_++; return 0; } template int ACE_Unbounded_Queue::dequeue_head (T &item) { // ACE_TRACE ("ACE_Unbounded_Queue::dequeue_head"); // Check for empty queue. if (this->is_empty ()) return -1; ACE_Node *temp = this->head_->next_; item = temp->item_; this->head_->next_ = temp->next_; ACE_DES_FREE_TEMPLATE (temp, this->allocator_->free, ACE_Node, ); --this->cur_size_; return 0; } template void ACE_Unbounded_Queue::reset (void) { ACE_TRACE ("reset"); this->delete_nodes (); } template int ACE_Unbounded_Queue::get (T *&item, size_t index) const { // ACE_TRACE ("ACE_Unbounded_Queue::get"); ACE_Node *curr = this->head_->next_; size_t i; for (i = 0; i < this->cur_size_; i++) { if (i == index) break; curr = curr->next_; } if (i < this->cur_size_) { item = &curr->item_; return 0; } else return -1; } template int ACE_Unbounded_Queue::set (const T &item, size_t index) { // ACE_TRACE ("ACE_Unbounded_Queue::set"); ACE_Node *curr = this->head_->next_; size_t i; for (i = 0; i < index && i < this->cur_size_; i++) curr = curr->next_; if (i < this->cur_size_) { // We're in range, so everything's cool. curr->item_ = item; return 0; } else { // We need to expand the list. // A common case will be increasing the set size by 1. // Therefore, we'll optimize for this case. if (i == index) { // Try to expand the size of the set by 1. if (this->enqueue_tail (item) == -1) return -1; else return 0; } else { T dummy; // We need to expand the list by multiple (dummy) items. for (; i < index; i++) { // This head points to the existing dummy node, which is // about to be overwritten when we add the new dummy // node. curr = this->head_; // Try to expand the size of the set by 1, but don't // store anything in the dummy node (yet). if (this->enqueue_tail (dummy) == -1) return -1; } curr->item_ = item; return 0; } } } template void ACE_Unbounded_Queue_Iterator::dump (void) const { // ACE_TRACE ("ACE_Unbounded_Queue_Iterator::dump"); } template ACE_Unbounded_Queue_Iterator::ACE_Unbounded_Queue_Iterator (ACE_Unbounded_Queue &q, int end) : current_ (end == 0 ? q.head_->next_ : q.head_ ), queue_ (q) { // ACE_TRACE ("ACE_Unbounded_Queue_Iterator::ACE_Unbounded_Queue_Iterator"); } template int ACE_Unbounded_Queue_Iterator::advance (void) { // ACE_TRACE ("ACE_Unbounded_Queue_Iterator::advance"); this->current_ = this->current_->next_; return this->current_ != this->queue_.head_; } template int ACE_Unbounded_Queue_Iterator::first (void) { // ACE_TRACE ("ACE_Unbounded_Queue_Iterator::first"); this->current_ = this->queue_.head_->next_; return this->current_ != this->queue_.head_; } template int ACE_Unbounded_Queue_Iterator::done (void) const { ACE_TRACE ("ACE_Unbounded_Queue_Iterator::done"); return this->current_ == this->queue_.head_; } template int ACE_Unbounded_Queue_Iterator::next (T *&item) { // ACE_TRACE ("ACE_Unbounded_Queue_Iterator::next"); if (this->current_ == this->queue_.head_) return 0; else { item = &this->current_->item_; return 1; } } //-------------------------------------------------- ACE_ALLOC_HOOK_DEFINE(ACE_Double_Linked_List_Iterator) template ACE_Double_Linked_List_Iterator::ACE_Double_Linked_List_Iterator (ACE_Double_Linked_List &dll) : dllist_ (dll) { this->current_ = ACE_static_cast (T*, dll.head_->next_); // Initialize head ptr. } template T * ACE_Double_Linked_List_Iterator::not_done (void) const { if (this->current_ != this->dllist_.head_) return this->current_; else return 0; } template T * ACE_Double_Linked_List_Iterator::do_advance (void) { if (this->not_done ()) { this->current_ = ACE_static_cast (T*, this->current_->next_); return this->not_done (); } else return 0; } template T * ACE_Double_Linked_List_Iterator::next (void) const { return this->not_done (); } template int ACE_Double_Linked_List_Iterator::advance (void) { return this->do_advance () ? 1 : 0; } template int ACE_Double_Linked_List_Iterator::first (void) { this->current_ = ACE_static_cast (T*, dllist_.head_->next_); return this->not_done () ? 1 : 0; } template int ACE_Double_Linked_List_Iterator::done (void) const { return this->not_done () ? 0 : 1; } template void ACE_Double_Linked_List_Iterator::dump (void) const { // Dump the state of an object. } ACE_ALLOC_HOOK_DEFINE(ACE_Double_Linked_List) template ACE_Double_Linked_List:: ACE_Double_Linked_List (ACE_Allocator *alloc) : size_ (0), allocator_ (alloc) { if (this->allocator_ == 0) this->allocator_ = ACE_Allocator::instance (); ACE_NEW_MALLOC (this->head_, (T *) this->allocator_->malloc (sizeof (T)), T); this->init_head (); } template ACE_Double_Linked_List::ACE_Double_Linked_List (ACE_Double_Linked_List &cx) : allocator_ (cx.allocator_) { if (this->allocator_ == 0) this->allocator_ = ACE_Allocator::instance (); ACE_NEW_MALLOC (this->head_, (T *) this->allocator_->malloc (sizeof (T)), T); this->init_head (); this->copy_nodes (cx); } template void ACE_Double_Linked_List::operator= (ACE_Double_Linked_List &cx) { if (this != &cx) { this->delete_nodes (); this->copy_nodes (cx); } } template ACE_Double_Linked_List::~ACE_Double_Linked_List (void) { this->delete_nodes (); ACE_DES_FREE (head_, this->allocator_->free, T); this->head_ = 0; } template int ACE_Double_Linked_List::is_empty (void) const { return this->size () ? 0 : 1; } template int ACE_Double_Linked_List::is_full (void) const { return 0; // We have no bound. } template T * ACE_Double_Linked_List::insert_tail (T *new_item) { // Insert it before , i.e., at tail. this->insert_element (new_item, 1); return new_item; } template T * ACE_Double_Linked_List::insert_head (T *new_item) { this->insert_element (new_item); // Insert it after , i.e., at head. return new_item; } template T * ACE_Double_Linked_List::delete_head (void) { T *temp; if (this->is_empty ()) return 0; temp = ACE_static_cast (T *, this->head_->next_); this->remove_element (temp); // Detach it from the list. return temp; } template T * ACE_Double_Linked_List::delete_tail (void) { T *temp; if (this->is_empty ()) return 0; temp = ACE_static_cast (T*, this->head_->prev_); this->remove_element (temp); // Detach it from the list. return temp; } template void ACE_Double_Linked_List::reset (void) { this->delete_nodes (); } template int ACE_Double_Linked_List::get (T *&item, size_t index) { ACE_Double_Linked_List_Iterator iter (*this); for (size_t i = 0; i < index && !iter.done (); i++) iter.advance (); item = iter.next (); return item ? 0 : 1; } template size_t ACE_Double_Linked_List::size (void) const { return this->size_; } template void ACE_Double_Linked_List::dump (void) const { // Dump the state of an object. } #if 0 template T * ACE_Double_Linked_List::find (const T &item) { for (ACE_Double_Linked_List_Iterator iter (*this); !iter.done (); iter.advance ()) { T *temp = iter.next (); if (*temp == item) return temp; } return 0; } template int ACE_Double_Linked_List::remove (const T &item) { T *temp = this->find (item); if (temp != 0) return this->remove (temp); else return -1; } #endif /* 0 */ template int ACE_Double_Linked_List::remove (T *n) { return this->remove_element (n); } template void ACE_Double_Linked_List::delete_nodes (void) { while (! this->is_empty ()) { T * temp = ACE_static_cast (T*, this->head_->next_); this->remove_element (temp); delete temp; } } template void ACE_Double_Linked_List::copy_nodes (ACE_Double_Linked_List &c) { for (ACE_Double_Linked_List_Iterator iter (c); !iter.done (); iter.advance ()) this->insert_head (new T (*iter.next ())); } template void ACE_Double_Linked_List::init_head (void) { this->head_->next_ = this->head_->prev_ = this->head_; } template int ACE_Double_Linked_List::insert_element (T *new_item, int before, T *old_item) { if (old_item == 0) old_item = this->head_; if (before) old_item = ACE_static_cast (T*, old_item->prev_); new_item->next_ = old_item->next_; new_item->next_->prev_ = new_item; new_item->prev_ = old_item; old_item->next_ = new_item; this->size_++; return 0; // Well, what will cause errors here? } template int ACE_Double_Linked_List::remove_element (T *item) { // Notice that you have to ensure that item is an element of this // list. We can't do much checking here. if (item == this->head_ || item->next_ == 0 || item->prev_ == 0 || this->size () == 0) // Can't remove head return -1; item->prev_->next_ = item->next_; item->next_->prev_ = item->prev_; item->next_ = item->prev_ = 0; // reset pointers to prevent double removal. this->size_--; return 0; } //-------------------------------------------------- ACE_ALLOC_HOOK_DEFINE(ACE_Fixed_Set) template size_t ACE_Fixed_Set::size (void) const { return this->cur_size_; } template size_t ACE_Bounded_Set::size (void) const { ACE_TRACE ("ACE_Bounded_Set::size"); return this->cur_size_; } template void ACE_Fixed_Set::dump (void) const { ACE_TRACE ("ACE_Fixed_Set::dump"); } template ACE_Fixed_Set::~ACE_Fixed_Set (void) { ACE_TRACE ("ACE_Fixed_Set::~ACE_Fixed_Set"); this->cur_size_ = 0; } template ACE_Fixed_Set::ACE_Fixed_Set (const ACE_Fixed_Set &fs) : cur_size_ (fs.cur_size_) { ACE_TRACE ("ACE_Fixed_Set::ACE_Fixed_Set"); for (size_t i = 0; i < this->cur_size_; i++) this->search_structure_[i] = fs.search_structure_[i]; } template void ACE_Fixed_Set::operator= (const ACE_Fixed_Set &fs) { ACE_TRACE ("ACE_Fixed_Set::operator="); if (this != &fs) { this->cur_size_ = fs.cur_size_; for (size_t i = 0; i < this->cur_size_; i++) this->search_structure_[i] = fs.search_structure_[i]; } } template ACE_Fixed_Set::ACE_Fixed_Set (void) : cur_size_ (0), max_size_ (ACE_SIZE) { ACE_TRACE ("ACE_Fixed_Set::ACE_Fixed_Set"); for (size_t i = 0; i < this->max_size_; i++) this->search_structure_[i].is_free_ = 1; } template int ACE_Fixed_Set::find (const T &item) const { ACE_TRACE ("ACE_Fixed_Set::find"); for (size_t i = 0; i < this->cur_size_; i++) if (this->search_structure_[i].item_ == item && this->search_structure_[i].is_free_ == 0) return 0; return -1; } template int ACE_Fixed_Set::insert (const T &item) { ACE_TRACE ("ACE_Fixed_Set::insert"); int first_free = -1; // Keep track of first free slot. size_t i; for (i = 0; i < this->cur_size_; i++) // First, make sure we don't allow duplicates. if (this->search_structure_[i].item_ == item && this->search_structure_[i].is_free_ == 0) return 1; else if (this->search_structure_[i].is_free_ && first_free == -1) first_free = i; // If we found a free spot let's reuse it. if (first_free > -1) { this->search_structure_[first_free].item_ = item; this->search_structure_[first_free].is_free_ = 0; return 0; } // Insert at the end of the active portion. else if (i < this->max_size_) { this->search_structure_[i].item_ = item; this->search_structure_[i].is_free_ = 0; this->cur_size_++; return 0; } else /* No more room! */ { errno = ENOMEM; return -1; } } template int ACE_Fixed_Set::remove (const T &item) { ACE_TRACE ("ACE_Fixed_Set::remove"); for (size_t i = 0; i < this->cur_size_; i++) if (this->search_structure_[i].item_ == item) { // Mark this entry as being free. this->search_structure_[i].is_free_ = 1; // If we just unbound the highest entry, then we need to // figure out where the next highest active entry is. if (i + 1 == this->cur_size_) { while (i > 0 && this->search_structure_[--i].is_free_) continue; if (i == 0 && this->search_structure_[i].is_free_) this->cur_size_ = 0; else this->cur_size_ = i + 1; } return 0; } return -1; } ACE_ALLOC_HOOK_DEFINE(ACE_Fixed_Set_Iterator) template void ACE_Fixed_Set_Iterator::dump (void) const { ACE_TRACE ("ACE_Fixed_Set_Iterator::dump"); } template ACE_Fixed_Set_Iterator::ACE_Fixed_Set_Iterator (ACE_Fixed_Set &s) : s_ (s), next_ (-1) { ACE_TRACE ("ACE_Fixed_Set_Iterator::ACE_Fixed_Set_Iterator"); this->advance (); } template int ACE_Fixed_Set_Iterator::advance (void) { ACE_TRACE ("ACE_Fixed_Set_Iterator::advance"); for (++this->next_; ACE_static_cast(size_t, this->next_) < this->s_.cur_size_ && this->s_.search_structure_[this->next_].is_free_; ++this->next_) continue; return ACE_static_cast(size_t, this->next_) < this->s_.cur_size_; } template int ACE_Fixed_Set_Iterator::first (void) { ACE_TRACE ("ACE_Fixed_Set_Iterator::first"); next_ = -1; return this->advance (); } template int ACE_Fixed_Set_Iterator::done (void) const { ACE_TRACE ("ACE_Fixed_Set_Iterator::done"); return ACE_static_cast (ACE_CAST_CONST size_t, this->next_) >= this->s_.cur_size_; } template int ACE_Fixed_Set_Iterator::next (T *&item) { ACE_TRACE ("ACE_Fixed_Set_Iterator::next"); if (ACE_static_cast (size_t, this->next_) < this->s_.cur_size_) { item = &this->s_.search_structure_[this->next_].item_; return 1; } else return 0; } ACE_ALLOC_HOOK_DEFINE(ACE_Bounded_Set) template void ACE_Bounded_Set::dump (void) const { ACE_TRACE ("ACE_Bounded_Set::dump"); } template ACE_Bounded_Set::~ACE_Bounded_Set (void) { ACE_TRACE ("ACE_Bounded_Set::~ACE_Bounded_Set"); delete [] this->search_structure_; } template ACE_Bounded_Set::ACE_Bounded_Set (void) : cur_size_ (0), max_size_ (ACE_static_cast(size_t, ACE_Bounded_Set::DEFAULT_SIZE)) { ACE_TRACE ("ACE_Bounded_Set::ACE_Bounded_Set"); ACE_NEW (this->search_structure_, ACE_Bounded_Set::Search_Structure[this->max_size_]); for (size_t i = 0; i < this->max_size_; i++) this->search_structure_[i].is_free_ = 1; } template ACE_Bounded_Set::ACE_Bounded_Set (const ACE_Bounded_Set &bs) : cur_size_ (bs.cur_size_), max_size_ (bs.max_size_) { ACE_TRACE ("ACE_Bounded_Set::ACE_Bounded_Set"); ACE_NEW (this->search_structure_, ACE_Bounded_Set::Search_Structure[this->max_size_]); for (size_t i = 0; i < this->cur_size_; i++) this->search_structure_[i] = bs.search_structure_[i]; } template void ACE_Bounded_Set::operator= (const ACE_Bounded_Set &bs) { ACE_TRACE ("ACE_Bounded_Set::operator="); if (this != &bs) { if (this->max_size_ < bs.cur_size_) { delete [] this->search_structure_; ACE_NEW (this->search_structure_, ACE_Bounded_Set::Search_Structure[bs.cur_size_]); this->max_size_ = bs.cur_size_; } this->cur_size_ = bs.cur_size_; for (size_t i = 0; i < this->cur_size_; i++) this->search_structure_[i] = bs.search_structure_[i]; } } template ACE_Bounded_Set::ACE_Bounded_Set (size_t size) : cur_size_ (0), max_size_ (size) { ACE_TRACE ("ACE_Bounded_Set::ACE_Bounded_Set"); ACE_NEW (this->search_structure_, ACE_Bounded_Set::Search_Structure[size]); for (size_t i = 0; i < this->max_size_; i++) this->search_structure_[i].is_free_ = 1; } template int ACE_Bounded_Set::find (const T &item) const { ACE_TRACE ("ACE_Bounded_Set::find"); for (size_t i = 0; i < this->cur_size_; i++) if (this->search_structure_[i].item_ == item && this->search_structure_[i].is_free_ == 0) return 0; return -1; } template int ACE_Bounded_Set::insert (const T &item) { ACE_TRACE ("ACE_Bounded_Set::insert"); int first_free = -1; // Keep track of first free slot. size_t i; for (i = 0; i < this->cur_size_; i++) // First, make sure we don't allow duplicates. if (this->search_structure_[i].item_ == item && this->search_structure_[i].is_free_ == 0) return 1; else if (this->search_structure_[i].is_free_ && first_free == -1) first_free = i; if (first_free > -1) // If we found a free spot let's reuse it. { this->search_structure_[first_free].item_ = item; this->search_structure_[first_free].is_free_ = 0; return 0; } else if (i < this->max_size_) // Insert at the end of the active portion. { this->search_structure_[i].item_ = item; this->search_structure_[i].is_free_ = 0; this->cur_size_++; return 0; } else /* No more room! */ { errno = ENOMEM; return -1; } } template int ACE_Bounded_Set::remove (const T &item) { ACE_TRACE ("ACE_Bounded_Set::remove"); for (size_t i = 0; i < this->cur_size_; i++) if (this->search_structure_[i].item_ == item) { // Mark this entry as being free. this->search_structure_[i].is_free_ = 1; // If we just unbound the highest entry, then we need to // figure out where the next highest active entry is. if (i + 1 == this->cur_size_) { while (i > 0 && this->search_structure_[--i].is_free_) continue; if (i == 0 && this->search_structure_[i].is_free_) this->cur_size_ = 0; else this->cur_size_ = i + 1; } return 0; } return -1; } ACE_ALLOC_HOOK_DEFINE(ACE_Bounded_Set_Iterator) template void ACE_Bounded_Set_Iterator::dump (void) const { ACE_TRACE ("ACE_Bounded_Set_Iterator::dump"); } template ACE_Bounded_Set_Iterator::ACE_Bounded_Set_Iterator (ACE_Bounded_Set &s) : s_ (s), next_ (-1) { ACE_TRACE ("ACE_Bounded_Set_Iterator::ACE_Bounded_Set_Iterator"); this->advance (); } template int ACE_Bounded_Set_Iterator::advance (void) { ACE_TRACE ("ACE_Bounded_Set_Iterator::advance"); for (++this->next_; ACE_static_cast(size_t, this->next_) < this->s_.cur_size_ && this->s_.search_structure_[this->next_].is_free_; ++this->next_) continue; return ACE_static_cast(size_t, this->next_) < this->s_.cur_size_; } template T* ACE_Double_Linked_List_Iterator::advance_and_remove (int dont_remove) { T* item = 0; if (dont_remove) this->do_advance (); else { item = this->next (); this->do_advance (); this->dllist_.remove_element (item); } return item; } template int ACE_Bounded_Set_Iterator::first (void) { ACE_TRACE ("ACE_Bounded_Set_Iterator::first"); next_ = -1; return this->advance (); } template int ACE_Bounded_Set_Iterator::done (void) const { ACE_TRACE ("ACE_Bounded_Set_Iterator::done"); return ACE_static_cast (ACE_CAST_CONST size_t, this->next_) >= this->s_.cur_size_; } template int ACE_Bounded_Set_Iterator::next (T *&item) { ACE_TRACE ("ACE_Bounded_Set_Iterator::next"); if (ACE_static_cast(size_t, this->next_) < this->s_.cur_size_) { item = &this->s_.search_structure_[this->next_].item_; return 1; } else return 0; } ACE_ALLOC_HOOK_DEFINE(ACE_Node) # if ! defined (ACE_HAS_BROKEN_NOOP_DTORS) template ACE_Node::~ACE_Node (void) { } # endif /* ! defined (ACE_HAS_BROKEN_NOOP_DTORS) */ template ACE_Node::ACE_Node (const T &i, ACE_Node *n) : next_ (n), item_ (i) { // ACE_TRACE ("ACE_Node::ACE_Node"); } template ACE_Node::ACE_Node (ACE_Node *n, int) : next_ (n) { // ACE_TRACE ("ACE_Node::ACE_Node"); } template ACE_Node::ACE_Node (const ACE_Node &s) : next_ (s.next_), item_ (s.item_) { // ACE_TRACE ("ACE_Node::ACE_Node"); } ACE_ALLOC_HOOK_DEFINE(ACE_DNode) template ACE_DNode::ACE_DNode (const T &i, ACE_DNode *n, ACE_DNode *p) : next_ (n), prev_ (p), item_ (i) { } template ACE_DNode::~ACE_DNode (void) { } ACE_ALLOC_HOOK_DEFINE(ACE_Unbounded_Set) template size_t ACE_Unbounded_Set::size (void) const { // ACE_TRACE ("ACE_Unbounded_Set::size"); return this->cur_size_; } template int ACE_Unbounded_Set::insert_tail (const T &item) { // ACE_TRACE ("ACE_Unbounded_Queue::insert_tail"); ACE_Node *temp; // Insert into the old dummy node location. this->head_->item_ = item; // Create a new dummy node. ACE_NEW_MALLOC_RETURN (temp, (ACE_Node*) this->allocator_->malloc (sizeof (ACE_Node)), ACE_Node (this->head_->next_), -1); // Link this pointer into the list. this->head_->next_ = temp; // Point the head to the new dummy node. this->head_ = temp; this->cur_size_++; return 0; } template void ACE_Unbounded_Set::reset (void) { ACE_TRACE ("reset"); this->delete_nodes (); } template void ACE_Unbounded_Set::dump (void) const { ACE_TRACE ("ACE_Unbounded_Set::dump"); ACE_DEBUG ((LM_DEBUG, ACE_BEGIN_DUMP, this)); ACE_DEBUG ((LM_DEBUG, ASYS_TEXT ("\nhead_ = %u"), this->head_)); ACE_DEBUG ((LM_DEBUG, ASYS_TEXT ("\nhead_->next_ = %u"), this->head_->next_)); ACE_DEBUG ((LM_DEBUG, ASYS_TEXT ("\ncur_size_ = %d\n"), this->cur_size_)); T *item = 0; size_t count = 1; for (ACE_Unbounded_Set_Iterator iter (*(ACE_Unbounded_Set *) this); iter.next (item) != 0; iter.advance ()) ACE_DEBUG ((LM_DEBUG, ASYS_TEXT ("count = %d\n"), count++)); ACE_DEBUG ((LM_DEBUG, ACE_END_DUMP)); } template void ACE_Unbounded_Set::copy_nodes (const ACE_Unbounded_Set &us) { for (ACE_Node *curr = us.head_->next_; curr != us.head_; curr = curr->next_) this->insert_tail (curr->item_); } template void ACE_Unbounded_Set::delete_nodes (void) { ACE_Node *curr = this->head_->next_; // Keep looking until we've hit the dummy node. while (curr != this->head_) { ACE_Node *temp = curr; curr = curr->next_; ACE_DES_FREE_TEMPLATE (temp, this->allocator_->free, ACE_Node, ); this->cur_size_--; } // Reset the list to be a circular list with just a dummy node. this->head_->next_ = this->head_; } template ACE_Unbounded_Set::~ACE_Unbounded_Set (void) { // ACE_TRACE ("ACE_Unbounded_Set::~ACE_Unbounded_Set"); this->delete_nodes (); // Delete the dummy node. ACE_DES_FREE_TEMPLATE (head_, this->allocator_->free, ACE_Node, ); this->head_ = 0; } template ACE_Unbounded_Set::ACE_Unbounded_Set (ACE_Allocator *alloc) : head_ (0), cur_size_ (0), allocator_ (alloc) { // ACE_TRACE ("ACE_Unbounded_Set::ACE_Unbounded_Set"); if (this->allocator_ == 0) this->allocator_ = ACE_Allocator::instance (); ACE_NEW_MALLOC (this->head_, (ACE_Node*) this->allocator_->malloc (sizeof (ACE_Node)), ACE_Node); // Make the list circular by pointing it back to itself. this->head_->next_ = this->head_; } template ACE_Unbounded_Set::ACE_Unbounded_Set (const ACE_Unbounded_Set &us) : head_ (0), cur_size_ (0), allocator_ (us.allocator_) { ACE_TRACE ("ACE_Unbounded_Set::ACE_Unbounded_Set"); if (this->allocator_ == 0) this->allocator_ = ACE_Allocator::instance (); ACE_NEW_MALLOC (this->head_, (ACE_Node*) this->allocator_->malloc (sizeof (ACE_Node)), ACE_Node); this->head_->next_ = this->head_; this->copy_nodes (us); } template void ACE_Unbounded_Set::operator= (const ACE_Unbounded_Set &us) { ACE_TRACE ("ACE_Unbounded_Set::operator="); if (this != &us) { this->delete_nodes (); this->copy_nodes (us); } } template int ACE_Unbounded_Set::find (const T &item) const { // ACE_TRACE ("ACE_Unbounded_Stack::find"); // Set into the dummy node. this->head_->item_ = item; ACE_Node *temp = this->head_->next_; // Keep looping until we find the item. while (!(temp->item_ == item)) temp = temp->next_; // If we found the dummy node then it's not really there, otherwise, // it is there. return temp == this->head_ ? -1 : 0; } template int ACE_Unbounded_Set::insert (const T &item) { // ACE_TRACE ("ACE_Unbounded_Set::insert"); if (this->find (item) == 0) return 1; else return this->insert_tail (item); } template int ACE_Unbounded_Set::remove (const T &item) { // ACE_TRACE ("ACE_Unbounded_Set::remove"); // Insert the item to be founded into the dummy node. this->head_->item_ = item; ACE_Node *curr = this->head_; while (!(curr->next_->item_ == item)) curr = curr->next_; if (curr->next_ == this->head_) return -1; // Item was not found. else { ACE_Node *temp = curr->next_; // Skip over the node that we're deleting. curr->next_ = temp->next_; this->cur_size_--; ACE_DES_FREE_TEMPLATE (temp, this->allocator_->free, ACE_Node, ); return 0; } } template ACE_Unbounded_Set_Iterator ACE_Unbounded_Set::begin (void) { // ACE_TRACE ("ACE_Unbounded_Set::begin"); return ACE_Unbounded_Set_Iterator (*this); } template ACE_Unbounded_Set_Iterator ACE_Unbounded_Set::end (void) { // ACE_TRACE ("ACE_Unbounded_Set::end"); return ACE_Unbounded_Set_Iterator (*this, 1); } ACE_ALLOC_HOOK_DEFINE(ACE_Unbounded_Set_Iterator) template void ACE_Unbounded_Set_Iterator::dump (void) const { // ACE_TRACE ("ACE_Unbounded_Set_Iterator::dump"); } template ACE_Unbounded_Set_Iterator::ACE_Unbounded_Set_Iterator (ACE_Unbounded_Set &s, int end) : current_ (end == 0 ? s.head_->next_ : s.head_ ), set_ (&s) { // ACE_TRACE ("ACE_Unbounded_Set_Iterator::ACE_Unbounded_Set_Iterator"); } template int ACE_Unbounded_Set_Iterator::advance (void) { // ACE_TRACE ("ACE_Unbounded_Set_Iterator::advance"); this->current_ = this->current_->next_; return this->current_ != this->set_->head_; } template int ACE_Unbounded_Set_Iterator::first (void) { // ACE_TRACE ("ACE_Unbounded_Set_Iterator::first"); this->current_ = this->set_->head_->next_; return this->current_ != this->set_->head_; } template int ACE_Unbounded_Set_Iterator::done (void) const { ACE_TRACE ("ACE_Unbounded_Set_Iterator::done"); return this->current_ == this->set_->head_; } template int ACE_Unbounded_Set_Iterator::next (T *&item) { // ACE_TRACE ("ACE_Unbounded_Set_Iterator::next"); if (this->current_ == this->set_->head_) return 0; else { item = &this->current_->item_; return 1; } } template ACE_Unbounded_Set_Iterator ACE_Unbounded_Set_Iterator::operator++ (void) { //ACE_TRACE ("ACE_Unbounded_Set_Iterator::operator++ ()"); ACE_Unbounded_Set_Iterator retv (*this); this->advance (); return retv; } template ACE_Unbounded_Set_Iterator& ACE_Unbounded_Set_Iterator::operator++ (int) { // ACE_TRACE ("ACE_Unbounded_Set_Iterator::operator++ (int)"); this->advance (); return *this; } template T& ACE_Unbounded_Set_Iterator::operator* (void) { //ACE_TRACE ("ACE_Unbounded_Set_Iterator::operator*"); T *retv = 0; ACE_ASSERT (this->next (retv) != 0); return *retv; } template int ACE_Unbounded_Set_Iterator::operator== (const ACE_Unbounded_Set_Iterator &rhs) const { //ACE_TRACE ("ACE_Unbounded_Set_Iterator::operator=="); return (this->set_ == rhs.set_ && this->current_ == rhs.current_); } template int ACE_Unbounded_Set_Iterator::operator!= (const ACE_Unbounded_Set_Iterator &rhs) const { //ACE_TRACE ("ACE_Unbounded_Set_Iterator::operator!="); return (this->set_ != rhs.set_ || this->current_ != rhs.current_); } template void ACE_Unbounded_Stack_Iterator::dump (void) const { // ACE_TRACE ("ACE_Unbounded_Stack_Iterator::dump"); } template ACE_Unbounded_Stack_Iterator::ACE_Unbounded_Stack_Iterator (ACE_Unbounded_Stack &q) : current_ (q.head_->next_), stack_ (q) { // ACE_TRACE ("ACE_Unbounded_Stack_Iterator::ACE_Unbounded_Stack_Iterator"); } template int ACE_Unbounded_Stack_Iterator::advance (void) { // ACE_TRACE ("ACE_Unbounded_Stack_Iterator::advance"); this->current_ = this->current_->next_; return this->current_ != this->stack_.head_; } template int ACE_Unbounded_Stack_Iterator::first (void) { // ACE_TRACE ("ACE_Unbounded_Stack_Iterator::first"); this->current_ = this->stack_.head_->next_; return this->current_ != this->stack_.head_; } template int ACE_Unbounded_Stack_Iterator::done (void) const { ACE_TRACE ("ACE_Unbounded_Stack_Iterator::done"); return this->current_ == this->stack_.head_; } template int ACE_Unbounded_Stack_Iterator::next (T *&item) { // ACE_TRACE ("ACE_Unbounded_Stack_Iterator::next"); if (this->current_ == this->stack_.head_) return 0; else { item = &this->current_->item_; return 1; } } ACE_ALLOC_HOOK_DEFINE(ACE_Ordered_MultiSet) template ACE_Ordered_MultiSet::ACE_Ordered_MultiSet (ACE_Allocator *alloc) : head_ (0) , tail_ (0) , cur_size_ (0) , allocator_ (alloc) { // ACE_TRACE ("ACE_Ordered_MultiSet::ACE_Ordered_MultiSet"); if (this->allocator_ == 0) this->allocator_ = ACE_Allocator::instance (); } template ACE_Ordered_MultiSet::ACE_Ordered_MultiSet (const ACE_Ordered_MultiSet &us) : head_ (0) , tail_ (0) , cur_size_ (0) , allocator_ (us.allocator_) { ACE_TRACE ("ACE_Ordered_MultiSet::ACE_Ordered_MultiSet"); if (this->allocator_ == 0) this->allocator_ = ACE_Allocator::instance (); this->copy_nodes (us); } template ACE_Ordered_MultiSet::~ACE_Ordered_MultiSet (void) { // ACE_TRACE ("ACE_Ordered_MultiSet::~ACE_Ordered_MultiSet"); this->delete_nodes (); } template void ACE_Ordered_MultiSet::operator= (const ACE_Ordered_MultiSet &us) { ACE_TRACE ("ACE_Ordered_MultiSet::operator="); if (this != &us) { this->delete_nodes (); this->copy_nodes (us); } } template int ACE_Ordered_MultiSet::insert (const T &item) { // ACE_TRACE ("ACE_Ordered_MultiSet::insert"); return this->insert_from (item, this->head_, 0); } template int ACE_Ordered_MultiSet::insert (const T &item, ACE_Ordered_MultiSet_Iterator &iter) { // ACE_TRACE ("ACE_Ordered_MultiSet::insert using iterator"); return this->insert_from (item, iter.current_, &iter.current_); } template int ACE_Ordered_MultiSet::remove (const T &item) { // ACE_TRACE ("ACE_Ordered_MultiSet::remove"); ACE_DNode *node = 0; int result = locate (item, 0, node); // if we found the node, remove from list and free it if (node && (result == 0)) { if (node->prev_) { node->prev_->next_ = node->next_; } else { head_ = node->next_; } if (node->next_) { node->next_->prev_ = node->prev_; } else { tail_ = node->prev_; } this->cur_size_--; ACE_DES_FREE_TEMPLATE (node, this->allocator_->free, ACE_DNode, ); return 0; } return -1; } template int ACE_Ordered_MultiSet::find (const T &item, ACE_Ordered_MultiSet_Iterator &iter) const { // search an occurance of item, using iterator's current position as a hint ACE_DNode *node = iter.current_; int result = locate (item, node, node); // if we found the node, update the iterator and indicate success if (node && (result == 0)) { iter.current_ = node; return 0; } return -1; } template void ACE_Ordered_MultiSet::reset (void) { ACE_TRACE ("reset"); this->delete_nodes (); } template void ACE_Ordered_MultiSet::dump (void) const { // ACE_TRACE ("ACE_Ordered_MultiSet::dump"); // // ACE_DEBUG ((LM_DEBUG, ACE_BEGIN_DUMP, this)); // ACE_DEBUG ((LM_DEBUG, ASYS_TEXT ("\nhead_ = %u"), this->head_)); // ACE_DEBUG ((LM_DEBUG, ASYS_TEXT ("\nhead_->next_ = %u"), this->head_->next_)); // ACE_DEBUG ((LM_DEBUG, ASYS_TEXT ("\ncur_size_ = %d\n"), this->cur_size_)); // // T *item = 0; // size_t count = 1; // // for (ACE_Ordered_MultiSet_Iterator iter (*(ACE_Ordered_MultiSet *) this); // iter.next (item) != 0; // iter.advance ()) // ACE_DEBUG ((LM_DEBUG, ASYS_TEXT ("count = %d\n"), count++)); // // ACE_DEBUG ((LM_DEBUG, ACE_END_DUMP)); } template int ACE_Ordered_MultiSet::insert_from (const T &item, ACE_DNode *position, ACE_DNode **new_position) { // ACE_TRACE ("ACE_Unbounded_Queue::insert_tail"); // create a new node ACE_DNode *temp; ACE_NEW_MALLOC_RETURN ( temp, (ACE_DNode*) this->allocator_->malloc (sizeof (ACE_DNode)), ACE_DNode (item), -1); // obtain approximate location of the node int result = locate (item, position, position); // if there are nodes in the multiset if (position) { switch (result) { // insert after the approximate position case -1: // if there is a following node if (position->next_) { // link up with the following node position->next_->prev_ = temp; temp->next_ = position->next_; } else { // appending to the end of the set tail_ = temp; } // link up with the preceeding node temp->prev_ = position; position->next_ = temp; break; // insert before the position case 0: case 1: // if there is a preceeding node if (position->prev_) { // link up with the preceeding node position->prev_->next_ = temp; temp->prev_ = position->prev_; } else { // prepending to the start of the set head_ = temp; } // link up with the preceeding node temp->next_ = position; position->prev_ = temp; break; default: return -1; } } else { // point the head and tail to the new node. this->head_ = temp; this->tail_ = temp; } this->cur_size_++; if (new_position) { *new_position = temp; } return 0; } template int ACE_Ordered_MultiSet::locate (const T &item, ACE_DNode *start_position, ACE_DNode *&new_position) const { if (! start_position) { start_position = this->head_; } // if starting before the item, move forward // until at or just before item while (start_position && start_position->item_ < item && start_position->next_) { start_position = start_position->next_; } // if starting after the item, move back // until at or just after item while (start_position && item < start_position->item_ && start_position->prev_) { start_position = start_position->prev_; } // save the (approximate) location in the passed pointer new_position = start_position; // show the location is after (1), before (-1) , or at (0) the item if (! new_position ) { return 1; } else if (item < new_position->item_) { return 1; } else if (new_position->item_ < item) { return -1; } else { return 0; } } // looks for first occurance of in the ordered set, using the // passed starting position as a hint: if there is such an instance, it // updates the new_position pointer to point to one such node and returns 0; // if there is no such node, then if there is a node before where the // item would have been, it updates the new_position pointer to point // to this node and returns -1; if there is no such node, then if there // is a node after where the item would have been, it updates the // new_position pointer to point to this node (or 0 if there is no such // node) and returns 1; template void ACE_Ordered_MultiSet::copy_nodes (const ACE_Ordered_MultiSet &us) { ACE_DNode *insertion_point = this->head_; for (ACE_DNode *curr = us.head_; curr; curr = curr->next_) { this->insert_from (curr->item_, insertion_point, &insertion_point); } } template void ACE_Ordered_MultiSet::delete_nodes (void) { // iterate through list, deleting nodes ACE_DNode *curr = this->head_; while (curr) { ACE_DNode *temp = curr; curr = curr->next_; ACE_DES_FREE_TEMPLATE (temp, this->allocator_->free, ACE_DNode, ); } this->head_ = 0; this->tail_ = 0; this->cur_size_ = 0; } ACE_ALLOC_HOOK_DEFINE(ACE_Ordered_MultiSet_Iterator) template ACE_Ordered_MultiSet_Iterator::ACE_Ordered_MultiSet_Iterator (ACE_Ordered_MultiSet &s) : current_ (s.head_), set_ (s) { // ACE_TRACE ("ACE_Ordered_MultiSet_Iterator::ACE_Ordered_MultiSet_Iterator"); } template int ACE_Ordered_MultiSet_Iterator::next (T *&item) const { // ACE_TRACE ("ACE_Ordered_MultiSet_Iterator::next"); if (this->current_) { item = &this->current_->item_; return 1; } return 0; } ACE_ALLOC_HOOK_DEFINE (ACE_DLList_Node) template T * ACE_DLList::insert_tail (T *new_item) { ACE_DLList_Node *temp1, *temp2; ACE_NEW_MALLOC_RETURN ( temp1, (ACE_DLList_Node *) this->allocator_->malloc (sizeof (ACE_DLList_Node)), ACE_DLList_Node ((void *&)new_item), 0); temp2 = ACE_DLList_Base::insert_tail (temp1); return (T *) (temp2 ? temp2->item_ : 0); } template T * ACE_DLList::insert_head (T *new_item) { ACE_DLList_Node *temp1, *temp2; ACE_NEW_MALLOC_RETURN ( temp1, (ACE_DLList_Node *) this->allocator_->malloc (sizeof (ACE_DLList_Node)), ACE_DLList_Node ((void *&)new_item), 0); temp2 = ACE_DLList_Base::insert_head (temp1); return (T *) (temp2 ? temp2->item_ : 0); } template T * ACE_DLList::delete_head (void) { ACE_DLList_Node *temp1 = ACE_DLList_Base::delete_head (); T *temp2 = (T *) (temp1 ? temp1->item_ : 0); ACE_DES_FREE (temp1, this->allocator_->free, ACE_DLList_Node); return temp2; } template T * ACE_DLList::delete_tail (void) { ACE_DLList_Node *temp1 = ACE_DLList_Base::delete_tail (); T *temp2 = (T *) (temp1 ? temp1->item_ : 0); ACE_DES_FREE (temp1, this->allocator_->free, ACE_DLList_Node); return temp2; } // Dynamically initialize an array. template ACE_Array::ACE_Array (size_t size) : max_size_ (size), cur_size_ (size) { if (size != 0) ACE_NEW (this->array_, T[size]); else this->array_ = 0; } template ACE_Array::ACE_Array (size_t size, const T &default_value) : max_size_ (size), cur_size_ (size) { ACE_NEW (this->array_, T[size]); for (size_t i = 0; i < size; i++) this->array_[i] = default_value; } // The copy constructor (performs initialization). template ACE_Array::ACE_Array (const ACE_Array &s) : max_size_ (s.size ()), cur_size_ (s.size ()) { ACE_NEW (this->array_, T[s.size ()]); for (size_t i = 0; i < this->size (); i++) this->array_[i] = s.array_[i]; } // Assignment operator (performs assignment). template void ACE_Array::operator= (const ACE_Array &s) { // Check for "self-assignment". if (this == &s) return; else if (this->max_size_ < s.size ()) { delete [] this->array_; ACE_NEW (this->array_, T[s.size ()]); this->max_size_ = s.size (); } this->cur_size_ = s.size (); for (size_t i = 0; i < this->size (); i++) this->array_[i] = s.array_[i]; } // Set an item in the array at location index. template int ACE_Array::set (const T &new_item, size_t index) { if (this->in_range (index)) { this->array_[index] = new_item; return 0; } else return -1; } // Get an item in the array at location index. template int ACE_Array::get (T &item, size_t index) const { if (this->in_range (index)) { item = this->array_[index]; // Copies the item. If you don't // want to copy, use operator [] instead // (but then you'll be responsible for // range checking). return 0; } else return -1; } template int ACE_Array::size (size_t new_size) { if (new_size >= this->max_size_) { // @@ We should use auto_ptr<>! T* tmp; ACE_NEW_RETURN (tmp, T[new_size], -1); for (size_t i = 0; i < this->cur_size_; ++i) tmp[i] = this->array_[i]; delete[] this->array_; this->array_ = tmp; this->max_size_ = new_size; } this->cur_size_ = new_size; return 0; } // Compare this array with for equality. template int ACE_Array::operator== (const ACE_Array &s) const { if (this == &s) return 1; else if (this->cur_size_ != s.cur_size_) return 0; for (size_t index = 0; index < s.cur_size_; index++) if (this->array_[index] != s.array_[index]) return 0; return 1; } template int ACE_Array_Iterator::next (T *&item) { // ACE_TRACE ("ACE_Array_Iterator::next"); if (this->done ()) { item = 0; return 0; } else { item = &array_[current_]; return 1; } } #endif /* ACE_CONTAINERS_T_C */