// $Id$ // OS.cpp #define ACE_BUILD_DLL #include "ace/OS.h" #include "ace/SString.h" #include "ace/Sched_Params.h" #if defined (ACE_WIN32) #include "ace/ARGV.h" #endif /* ACE_WIN32 */ // Perhaps we should *always* include ace/OS.i in order to make sure // we can always link against the OS symbols? #if !defined (ACE_HAS_INLINED_OSCALLS) #include "ace/OS.i" #endif /* ACE_HAS_INLINED_OS_CALLS */ #include "ace/Synch_T.h" #include "ace/Containers.h" #if defined (ACE_MT_SAFE) && (ACE_MT_SAFE != 0) #include "ace/Object_Manager.h" // This is lock defines a monitor that is shared by all threads // calling certain ACE_OS methods. static ACE_Thread_Mutex ace_os_monitor_lock; #if defined (ACE_LACKS_NETDB_REENTRANT_FUNCTIONS) int ACE_OS::netdb_acquire (void) { return ace_os_monitor_lock.acquire (); } int ACE_OS::netdb_release (void) { return ace_os_monitor_lock.release (); } #endif /* defined (ACE_LACKS_NETDB_REENTRANT_FUNCTIONS) */ #endif /* defined (ACE_MT_SAFE) */ // Static constant representing `zero-time'. const ACE_Time_Value ACE_Time_Value::zero; ACE_ALLOC_HOOK_DEFINE(ACE_Time_Value) // Initializes the ACE_Time_Value object from a timeval. #if defined(ACE_WIN32) // Initializes the ACE_Time_Value object from a Win32 FILETIME ACE_Time_Value::ACE_Time_Value (const FILETIME &file_time) { // ACE_TRACE ("ACE_Time_Value::ACE_Time_Value"); this->set (file_time); } void ACE_Time_Value::set (const FILETIME &file_time) { // Initializes the ACE_Time_Value object from a Win32 FILETIME ACE_QWORD _100ns = ACE_MAKE_QWORD (file_time.dwLowDateTime, file_time.dwHighDateTime); // Convert 100ns units to seconds; this->tv_.tv_sec = long (_100ns / (10000 * 1000)); // Convert remainder to microseconds; this->tv_.tv_usec = long ((_100ns - (this->tv_.tv_sec * (10000 * 1000))) / 10); } // Returns the value of the object as a Win32 FILETIME. ACE_Time_Value::operator FILETIME () const { // ACE_TRACE ("ACE_Time_Value::operator FILETIME"); ACE_QWORD _100ns = ((ACE_QWORD) this->tv_.tv_sec * (1000 * 1000) + this->tv_.tv_usec) * 10; FILETIME file_time; file_time.dwLowDateTime = ACE_LOW_DWORD (_100ns); file_time.dwHighDateTime = ACE_HIGH_DWORD (_100ns); return file_time; } #endif void ACE_Time_Value::dump (void) const { // ACE_TRACE ("ACE_Time_Value::dump"); ACE_DEBUG ((LM_DEBUG, ACE_BEGIN_DUMP, this)); ACE_DEBUG ((LM_DEBUG, "\ntv_sec_ = %d", this->tv_.tv_sec)); ACE_DEBUG ((LM_DEBUG, "\ntv_usec_ = %d\n", this->tv_.tv_usec)); ACE_DEBUG ((LM_DEBUG, ACE_END_DUMP)); } void ACE_Time_Value::normalize (void) { // ACE_TRACE ("ACE_Time_Value::normalize"); // New code from Hans Rohnert... if (this->tv_.tv_usec >= ONE_SECOND) { do { this->tv_.tv_sec++; this->tv_.tv_usec -= ONE_SECOND; } while (this->tv_.tv_usec >= ONE_SECOND); } else if (this->tv_.tv_usec <= -ONE_SECOND) { do { this->tv_.tv_sec--; this->tv_.tv_usec += ONE_SECOND; } while (this->tv_.tv_usec <= -ONE_SECOND); } if (this->tv_.tv_sec >= 1 && this->tv_.tv_usec < 0) { this->tv_.tv_sec--; this->tv_.tv_usec += ONE_SECOND; } else if (this->tv_.tv_sec < 0 && this->tv_.tv_usec > 0) { this->tv_.tv_sec++; this->tv_.tv_usec -= ONE_SECOND; } } int ACE_Countdown_Time::start (void) { this->start_time_ = ACE_OS::gettimeofday (); this->stopped_ = 0; return 0; } int ACE_Countdown_Time::update (void) { return (this->stop () == 0) && this->start (); } int ACE_Countdown_Time::stop (void) { if (this->max_wait_time_ != 0 && this->stopped_ == 0) { ACE_Time_Value elapsed_time = ACE_OS::gettimeofday () - this->start_time_; if (*this->max_wait_time_ > elapsed_time) *this->max_wait_time_ -= elapsed_time; else { // Used all of timeout. *this->max_wait_time_ = ACE_Time_Value::zero; errno = ETIME; } this->stopped_ = 1; } return 0; } ACE_Countdown_Time::ACE_Countdown_Time (ACE_Time_Value *max_wait_time) : max_wait_time_ (max_wait_time), stopped_ (0) { if (max_wait_time != 0) this->start (); } ACE_Countdown_Time::~ACE_Countdown_Time (void) { this->stop (); } #if ! defined (ACE_WIN32) && ! defined (ACE_HAS_LONGLONG_T) void ACE_U_LongLong::output (FILE *file) const { if (hi_ > 0) ACE_OS::fprintf (file, "0x%lx%0*lx", hi_, 2 * sizeof lo_, lo_); else ACE_OS::fprintf (file, "0x%lx", lo_); } #endif /* !ACE_WIN32 && ! ACE_HAS_LONGLONG_T */ #if defined (ACE_HAS_POWERPC) && defined (ghs) void ACE_OS::readPPCTimeBase (u_long &most, u_long &least) { // ACE_TRACE ("ACE_OS::readPPCTimeBase"); // This function can't be inline because it depends on the arguments // being in particular registers (r3 and r4), in conformance with the // EABI standard. It would be nice if we knew how to put the variable // names directly into the assembler instructions . . . asm("aclock:"); asm("mftb r5,TBU"); asm("mftb r6,TBL"); asm("mftb r7,TBU"); asm("cmpw r5,r7"); asm("bne aclock"); asm("stw r5, 0(r3)"); asm("stw r6, 0(r4)"); } #endif /* ACE_HAS_POWERPC && ghs */ #if defined (ACE_WIN32) || defined (VXWORKS) // Don't inline on those platforms because this function contains // string literals, and some compilers, e.g., g++, don't handle those // efficiently in unused inline functions. int ACE_OS::uname (struct utsname *name) { // ACE_TRACE ("ACE_OS::uname"); #if defined (ACE_WIN32) size_t maxnamelen = sizeof name->nodename; ACE_OS::strcpy (name->sysname, "Win32"); OSVERSIONINFO vinfo; vinfo.dwOSVersionInfoSize = sizeof(OSVERSIONINFO); ::GetVersionEx (&vinfo); SYSTEM_INFO sinfo; ::GetSystemInfo(&sinfo); ACE_OS::strcpy (name->sysname, "Win32"); if (vinfo.dwPlatformId == VER_PLATFORM_WIN32_NT) { // Get information from the two structures ACE_OS::sprintf (name->release, "Windows NT %d.%d", vinfo.dwMajorVersion, vinfo.dwMinorVersion); ACE_OS::sprintf (name->version, "Build %d %s", vinfo.dwBuildNumber, vinfo.szCSDVersion); char processor[10] = "Unknown"; char subtype[10] = "Unknown"; switch (sinfo.wProcessorArchitecture) { case PROCESSOR_ARCHITECTURE_INTEL: ACE_OS::strcpy (processor, "Intel"); if (sinfo.wProcessorLevel == 3) ACE_OS::strcpy (subtype, "80386"); else if (sinfo.wProcessorLevel == 4) ACE_OS::strcpy (subtype, "80486"); else if (sinfo.wProcessorLevel == 5) ACE_OS::strcpy (subtype, "Pentium"); else if (sinfo.wProcessorLevel == 6) ACE_OS::strcpy (subtype, "Pentium Pro"); else if (sinfo.wProcessorLevel == 7) // I'm guessing here ACE_OS::strcpy (subtype, "Pentium II"); break; case PROCESSOR_ARCHITECTURE_MIPS: ACE_OS::strcpy (processor, "MIPS"); ACE_OS::strcpy (subtype, "R4000"); break; case PROCESSOR_ARCHITECTURE_ALPHA: ACE_OS::strcpy (processor, "Alpha"); ACE_OS::sprintf (subtype, "%d", sinfo.wProcessorLevel); break; case PROCESSOR_ARCHITECTURE_PPC: ACE_OS::strcpy (processor, "PPC"); if (sinfo.wProcessorLevel == 1) ACE_OS::strcpy (subtype, "601"); else if (sinfo.wProcessorLevel == 3) ACE_OS::strcpy (subtype, "603"); else if (sinfo.wProcessorLevel == 4) ACE_OS::strcpy (subtype, "604"); else if (sinfo.wProcessorLevel == 6) ACE_OS::strcpy (subtype, "603+"); else if (sinfo.wProcessorLevel == 9) ACE_OS::strcpy (subtype, "804+"); else if (sinfo.wProcessorLevel == 20) ACE_OS::strcpy (subtype, "620"); break; case PROCESSOR_ARCHITECTURE_UNKNOWN: ACE_OS::strcpy (processor, "Unknown"); break; } ACE_OS::sprintf(name->machine, "%s %s", processor, subtype); } else if (vinfo.dwPlatformId == VER_PLATFORM_WIN32_WINDOWS) { // Get Windows 95 Information ACE_OS::strcpy (name->release, "Windows 95"); ACE_OS::sprintf (name->version, "%d", LOWORD (vinfo.dwBuildNumber)); if (sinfo.dwProcessorType == PROCESSOR_INTEL_386) ACE_OS::strcpy (name->machine, "Intel 80386"); else if (sinfo.dwProcessorType == PROCESSOR_INTEL_486) ACE_OS::strcpy (name->machine, "Intel 80486"); else if (sinfo.dwProcessorType == PROCESSOR_INTEL_PENTIUM) ACE_OS::strcpy (name->machine, "Intel Pentium"); } else { // We don't know what this is! ACE_OS::strcpy (name->release, "???"); ACE_OS::strcpy (name->version, "???"); ACE_OS::strcpy (name->machine, "???"); } return ACE_OS::hostname (name->nodename, maxnamelen); #elif defined (VXWORKS) size_t maxnamelen = sizeof name->nodename; ACE_OS::strcpy (name->sysname, "VxWorks"); ACE_OS::strcpy (name->release, "???"); ACE_OS::strcpy (name->version, sysBspRev ()); ACE_OS::strcpy (name->machine, sysModel ()); return ACE_OS::hostname (name->nodename, maxnamelen); #endif /* ACE_WIN32 */ } #endif /* ACE_WIN32 || VXWORKS */ struct hostent * ACE_OS::gethostbyname (const char *name) { // ACE_TRACE ("ACE_OS::gethostbyname"); #if defined (VXWORKS) // not thread safe! static hostent ret; static int first_addr = ::hostGetByName ((char *) name); static char *hostaddr[2]; if (first_addr == -1) return 0; hostaddr[0] = (char *) &first_addr; hostaddr[1] = 0; // might not be official: just echo input arg. ret.h_name = (char *) name; ret.h_addrtype = AF_INET; ret.h_length = 4; // VxWorks 5.2/3 doesn't define IP_ADDR_LEN; ret.h_addr_list = hostaddr; return &ret; #elif defined (ACE_HAS_NONCONST_GETBY) ACE_SOCKCALL_RETURN (::gethostbyname ((char *) name), struct hostent *, 0); #else ACE_SOCKCALL_RETURN (::gethostbyname (name), struct hostent *, 0); #endif /* ACE_HAS_NONCONST_GETBY */ } #if defined (VXWORKS) // not inline because it has the static char array char * ACE_OS::inet_ntoa (const struct in_addr addr) { // ACE_TRACE ("ACE_OS::inet_ntoa"); // the following storage is not thread-specific! static char buf[32]; // assumes that addr is already in network byte order ACE_OS::sprintf (buf, "%d.%d.%d.%d", addr.s_addr / (256*256*256) & 255, addr.s_addr / (256*256) & 255, addr.s_addr / 256 & 255, addr.s_addr & 255); return buf; } #endif /* VXWORKS */ void ACE_OS::ace_flock_t::dump (void) const { // ACE_TRACE ("ACE_OS::ace_flock_t::dump"); ACE_DEBUG ((LM_DEBUG, ACE_BEGIN_DUMP, this)); ACE_DEBUG ((LM_DEBUG, "handle_ = %u", this->handle_)); #if defined (ACE_WIN32) ACE_DEBUG ((LM_DEBUG, "\nInternal = %d", this->overlapped_.Internal)); ACE_DEBUG ((LM_DEBUG, "\nInternalHigh = %d", this->overlapped_.InternalHigh)); ACE_DEBUG ((LM_DEBUG, "\nOffsetHigh = %d", this->overlapped_.OffsetHigh)); ACE_DEBUG ((LM_DEBUG, "\nhEvent = %d", this->overlapped_.hEvent)); #elif !defined (CHORUS) ACE_DEBUG ((LM_DEBUG, "\nl_whence = %d", this->lock_.l_whence)); ACE_DEBUG ((LM_DEBUG, "\nl_start = %d", this->lock_.l_start)); ACE_DEBUG ((LM_DEBUG, "\nl_len = %d", this->lock_.l_len)); ACE_DEBUG ((LM_DEBUG, "\nl_type = %d", this->lock_.l_type)); #endif /* ACE_WIN32 */ ACE_DEBUG ((LM_DEBUG, ACE_END_DUMP)); } void ACE_OS::mutex_lock_cleanup (void *mutex) { // ACE_TRACE ("ACE_OS::mutex_lock_cleanup"); #if defined (ACE_HAS_THREADS) #if defined (ACE_HAS_DCETHREADS) || defined (ACE_HAS_PTHREADS) ACE_mutex_t *p_lock = (ACE_mutex_t *) mutex; ACE_OS::mutex_unlock (p_lock); #else ACE_UNUSED_ARG (mutex); #endif /* ACE_HAS_DCETHREADS */ #else ACE_UNUSED_ARG (mutex); #endif /* ACE_HAS_THREADS */ } // The following *printf functions aren't inline because // they use varargs. int ACE_OS::fprintf (FILE *fp, const char *format, ...) { // ACE_TRACE ("ACE_OS::fprintf"); int result = 0; va_list ap; va_start (ap, format); ACE_OSCALL (::vfprintf (fp, format, ap), int, -1, result); va_end (ap); return result; } int ACE_OS::printf (const char *format, ...) { // ACE_TRACE ("ACE_OS::printf"); int result; va_list ap; va_start (ap, format); ACE_OSCALL (::vprintf (format, ap), int, -1, result); va_end (ap); return result; } int ACE_OS::sprintf (char *buf, const char *format, ...) { // ACE_TRACE ("ACE_OS::sprintf"); int result; va_list ap; va_start (ap, format); ACE_OSCALL (ACE_SPRINTF_ADAPTER (::vsprintf (buf, format, ap)), int, -1, result); va_end (ap); return result; } #if defined (ACE_HAS_UNICODE) #if defined (ACE_WIN32) int ACE_OS::sprintf (wchar_t *buf, const wchar_t *format, ...) { // ACE_TRACE ("ACE_OS::sprintf"); int result; va_list ap; va_start (ap, format); ACE_OSCALL (::vswprintf (buf, format, ap), int, -1, result); va_end (ap); return result; } int ACE_OS::sprintf (wchar_t *buf, const char *format, ...) { // ACE_TRACE ("ACE_OS::sprintf"); const wchar_t *wide_format = ACE_WString (format).fast_rep (); int result; va_list ap; va_start (ap, wide_format); ACE_OSCALL (::vswprintf (buf, wide_format, ap), int, -1, result); va_end (ap); return result; } #endif /* ACE_WIN32 */ #endif /* ACE_HAS_UNICODE */ int ACE_OS::execl (const char * /* path */, const char * /* arg0 */, ...) { // ACE_TRACE ("ACE_OS::execl"); #if defined (ACE_WIN32) || defined (VXWORKS) ACE_NOTSUP_RETURN (-1); #else ACE_NOTSUP_RETURN (-1); // Need to write this code. // ACE_OSCALL_RETURN (::execv (path, argv), int, -1); #endif /* ACE_WIN32 */ } int ACE_OS::execle (const char * /* path */, const char * /* arg0 */, ...) { // ACE_TRACE ("ACE_OS::execle"); #if defined (ACE_WIN32) || defined (VXWORKS) ACE_NOTSUP_RETURN (-1); #else ACE_NOTSUP_RETURN (-1); // Need to write this code. // ACE_OSCALL_RETURN (::execve (path, argv, envp), int, -1); #endif /* ACE_WIN32 */ } int ACE_OS::execlp (const char * /* file */, const char * /* arg0 */, ...) { // ACE_TRACE ("ACE_OS::execlp"); #if defined (ACE_WIN32) || defined (VXWORKS) ACE_NOTSUP_RETURN (-1); #else ACE_NOTSUP_RETURN (-1); // Need to write this code. // ACE_OSCALL_RETURN (::execvp (file, argv), int, -1); #endif /* ACE_WIN32 */ } #if defined (ACE_HAS_STHREADS) #include /**/ #include /**/ #endif /* ACE_HAS_STHREADS */ int ACE_OS::thr_setprio (const ACE_Sched_Priority prio) { // Set the thread priority on the current thread. ACE_hthread_t my_thread_id; ACE_OS::thr_self (my_thread_id); return ACE_OS::thr_setprio (my_thread_id, prio); } int ACE_OS::sched_params (const ACE_Sched_Params &sched_params) { // ACE_TRACE ("ACE_OS::sched_params"); #if defined (CHORUS) int result; struct sched_param param; ACE_thread_t thr_id = ACE_OS::thr_self (); param.sched_priority = sched_params.priority (); ACE_OSCALL_RETURN (ACE_ADAPT_RETVAL (::pthread_setschedparam (thr_id, sched_params.policy (), ¶m), result), int, -1); #elif defined (ACE_HAS_STHREADS) // Set priority class, priority, and quantum of this LWP or process as // specified in sched_params. // Get the priority class ID and attributes. pcinfo_t pcinfo; // The following is just to avoid Purify warnings about unitialized // memory reads. ACE_OS::memset (&pcinfo, 0, sizeof pcinfo); ACE_OS::strcpy (pcinfo.pc_clname, sched_params.policy() == ACE_SCHED_OTHER ? "TS" : "RT"); if (::priocntl (P_ALL /* ignored */, P_MYID /* ignored */, PC_GETCID, (char *) &pcinfo) == -1) { return -1; } // OK, now we've got the class ID in pcinfo.pc_cid. In addition, // the maximum configured real-time priority is in ((rtinfo_t *) // pcinfo.pc_clinfo)->rt_maxpri. pcparms_t pcparms; // The following is just to avoid Purify warnings about unitialized // memory reads. ACE_OS::memset (&pcparms, 0, sizeof pcparms); pcparms.pc_cid = pcinfo.pc_cid; if (sched_params.policy () == ACE_SCHED_OTHER && sched_params.quantum () == ACE_Time_Value::zero) // Solaris doesn't support non-zero quantums in time-sharing class: use // real-time class instead. { tsparms_t tsparms; // The following is just to avoid Purify warnings about unitialized // memory reads. ACE_OS::memset (&tsparms, 0, sizeof tsparms); // Don't change ts_uprilim (user priority limit) tsparms.ts_uprilim = TS_NOCHANGE; tsparms.ts_upri = sched_params.priority (); // Package up the TS class ID and parameters for the ::priocntl () // call. ACE_OS::memcpy (pcparms.pc_clparms, &tsparms, sizeof tsparms); } else if (sched_params.policy () == ACE_SCHED_FIFO || (sched_params.policy () == ACE_SCHED_RR && sched_params.quantum () != ACE_Time_Value::zero)) // must have non-zero quantum for RR, to make it meaningful // A zero quantum with FIFO has special significance: it actually // means infinite time quantum, i.e., run-to-completion. { rtparms_t rtparms; // The following is just to avoid Purify warnings about unitialized // memory reads. ACE_OS::memset (&rtparms, 0, sizeof rtparms); rtparms.rt_pri = sched_params.priority (); if (sched_params.quantum () == ACE_Time_Value::zero) { // rtparms.rt_tqsecs is ignored with RT_TQINF rtparms.rt_tqnsecs = RT_TQINF; } else { rtparms.rt_tqsecs = (ulong) sched_params.quantum ().sec (); rtparms.rt_tqnsecs = sched_params.quantum ().usec () * 1000; } // Package up the RT class ID and parameters for the ::priocntl () // call. ACE_OS::memcpy (pcparms.pc_clparms, &rtparms, sizeof rtparms); } else { errno = EINVAL; return -1; } if (::priocntl ((idtype_t) (sched_params.scope () == ACE_SCOPE_THREAD ? ACE_SCOPE_PROCESS : sched_params.scope ()), P_MYID, PC_SETPARMS, (char *) &pcparms) < 0) { return ACE_OS::last_error (); } return 0; #elif (defined (ACE_HAS_DCETHREADS) || defined (ACE_HAS_PTHREADS)) && !defined (ACE_LACKS_SETSCHED) if (sched_params.quantum () != ACE_Time_Value::zero) { // quantums not supported errno = EINVAL; return -1; } // Thanks to Thilo Kielmann for // providing this code for 1003.1c PThreads. Please note that this // has only been tested for POSIX 1003.1c threads, and may cause problems // with other PThreads flavors! int result; struct sched_param param; param.sched_priority = sched_params.priority (); if (sched_params.scope () == ACE_SCOPE_PROCESS) { ACE_OSCALL_RETURN (ACE_ADAPT_RETVAL (::sched_setscheduler ( 0, // this process sched_params.policy (), ¶m), result), int, -1); } else if (sched_params.scope () == ACE_SCOPE_THREAD) { ACE_thread_t thr_id = ACE_OS::thr_self (); # if defined (ACE_HAS_DCE_DRAFT4_THREADS) return (::pthread_setscheduler(thr_id, sched_params.policy (), sched_params.priority()) == -1 ? -1 : 0); # else ACE_OSCALL_RETURN (ACE_ADAPT_RETVAL (::pthread_setschedparam ( thr_id, sched_params.policy (), ¶m), result), int, -1); # endif /* ACE_HAS_DCE_DRAFT4_THREADS */ } else // sched_params.scope () == ACE_SCOPE_LWP, which isn't POSIX { errno = EINVAL; return -1; } #elif defined (ACE_WIN32) if (sched_params.scope () != ACE_SCOPE_PROCESS || sched_params.quantum () != ACE_Time_Value::zero) { // Win32 only allows setting priority class (therefore, policy) // at the process level. I don't know of a way to set the quantum. errno = EINVAL; return -1; } // Set the priority class of this process to the REALTIME process class // _if_ the policy is ACE_SCHED_FIFO. Otherwise, set to NORMAL. if (! ::SetPriorityClass ( ::GetCurrentProcess (), sched_params.policy () == ACE_SCHED_FIFO ? REALTIME_PRIORITY_CLASS : NORMAL_PRIORITY_CLASS)) { return -1; } // Set the thread priority on the current thread. return ACE_OS::thr_setprio (sched_params.priority ()); #elif defined (VXWORKS) // There is only one class of priorities on VxWorks, and no // time quanta. So, just set the current thread's priority. if (sched_params.policy () != ACE_SCHED_FIFO || sched_params.scope () != ACE_SCOPE_PROCESS || sched_params.quantum () != ACE_Time_Value::zero) { errno = EINVAL; return -1; } // Set the thread priority on the current thread. return ACE_OS::thr_setprio (sched_params.priority ()); #else ACE_UNUSED_ARG (sched_params); ACE_NOTSUP_RETURN (-1); #endif /* ACE_HAS_STHREADS */ } // = Static initialization. // This is necessary to deal with POSIX pthreads insanity. This // guarantees that we've got a "zero'd" thread id even when // ACE_thread_t, ACE_hthread_t, and ACE_thread_key_t are implemented // as structures... ACE_thread_t ACE_OS::NULL_thread; ACE_hthread_t ACE_OS::NULL_hthread; ACE_thread_key_t ACE_OS::NULL_key = 0; ACE_OS::ACE_OS (void) { // ACE_TRACE ("ACE_OS::ACE_OS"); } #if defined (ACE_WIN32) // = Static initialization. // Keeps track of whether we've initialized the WinSock DLL. int ACE_OS::socket_initialized_; // We need this to initialize the WinSock DLL. BOOL WINAPI DllMain (HINSTANCE, // DLL module handle DWORD fdwReason, // Reason called LPVOID) // Reserved { switch (fdwReason) { case DLL_PROCESS_ATTACH: if (ACE_OS::socket_init (ACE_WSOCK_VERSION) != 0) return FALSE; break; case DLL_PROCESS_DETACH: if (ACE_OS::socket_fini () != 0) return FALSE; break; case DLL_THREAD_ATTACH: case DLL_THREAD_DETACH: break; default: ACE_ERROR_RETURN ((LM_ERROR, "Sock.DLL DllMain called with unknown fdwReason = %u\n.", fdwReason), FALSE); /* NOTREACHED */ } return TRUE; } #endif /* WIN32 */ #if defined (ACE_WIN32) || defined (ACE_HAS_TSS_EMULATION) class ACE_TSS_Ref // = TITLE // "Reference count" for thread-specific storage keys. // // = DESCRIPTION // Since the doesn't allow duplicates, the // "reference count" is the identify of the thread_id. { public: ACE_TSS_Ref (ACE_thread_t id); // Constructor ACE_TSS_Ref (void); // Default constructor int operator== (const ACE_TSS_Ref &); // Check for equality. // private: ACE_thread_t tid_; // ID of thread using a specific key. }; ACE_TSS_Ref::ACE_TSS_Ref (ACE_thread_t id) : tid_(id) { // ACE_TRACE ("ACE_TSS_Ref::ACE_TSS_Ref"); } ACE_TSS_Ref::ACE_TSS_Ref (void) { // ACE_TRACE ("ACE_TSS_Ref::ACE_TSS_Ref"); } // Check for equality. int ACE_TSS_Ref::operator== (const ACE_TSS_Ref &info) { // ACE_TRACE ("ACE_TSS_Ref::operator=="); return this->tid_ == info.tid_; } typedef ACE_Unbounded_Stack ACE_TSS_REF_TABLE; typedef ACE_Unbounded_Stack_Iterator ACE_TSS_REF_TABLE_ITERATOR; class ACE_TSS_Info // = TITLE // Thread Specific Key management. // // = DESCRIPTION // This class maps a key to a "destructor." { public: ACE_TSS_Info (ACE_thread_key_t key, void (*dest)(void *) = 0, void *tss_inst = 0); // Constructor ACE_TSS_Info (void); // Default constructor int operator== (const ACE_TSS_Info &); // Check for equality. void dump (void); // Dump the state. // private: ACE_thread_key_t key_; // Key to the thread-specific storage item. void (*destructor_)(void *); // "Destructor" that gets called when the item is finally released. void *tss_obj_; // Pointer to ACE_TSS instance that has/will allocate the key. ACE_TSS_REF_TABLE ref_table_; // Table of thread IDs that are using this key. }; ACE_TSS_Info::ACE_TSS_Info (ACE_thread_key_t key, void (*dest)(void *), void *tss_inst) : key_ (key), destructor_ (dest), tss_obj_ (tss_inst) { // ACE_TRACE ("ACE_TSS_Info::ACE_TSS_Info"); } ACE_TSS_Info::ACE_TSS_Info (void) { // ACE_TRACE ("ACE_TSS_Info::ACE_TSS_Info"); } // Check for equality. int ACE_TSS_Info::operator== (const ACE_TSS_Info &info) { // ACE_TRACE ("ACE_TSS_Info::operator=="); return this->key_ == info.key_; } void ACE_TSS_Info::dump (void) { // ACE_TRACE ("ACE_TSS_Info::dump"); ACE_DEBUG ((LM_DEBUG, ACE_BEGIN_DUMP, this)); ACE_DEBUG ((LM_DEBUG, "key_ = %u", this->key_)); ACE_DEBUG ((LM_DEBUG, "\ndestructor_ = %u", this->destructor_)); ACE_DEBUG ((LM_DEBUG, "\ntss_obj_ = %u", this->tss_obj_)); ACE_DEBUG ((LM_DEBUG, "\nref_table_.size_ = %u", this->ref_table_.size ())); ACE_TSS_Ref *tid_info = 0; ACE_DEBUG ((LM_DEBUG, "\nThread_usage_list\n[\n")); for (ACE_TSS_REF_TABLE_ITERATOR iter (this->ref_table_); iter.next (tid_info) != 0; iter.advance ()) ACE_DEBUG ((LM_DEBUG, "\ntid_ = %d", tid_info->tid_)); ACE_DEBUG ((LM_DEBUG, "\n]\n")); ACE_DEBUG ((LM_DEBUG, ACE_END_DUMP)); } // Create a set of objects that will reside // within thread-specific storage. typedef ACE_Unbounded_Stack ACE_TSS_TABLE; typedef ACE_Unbounded_Stack_Iterator ACE_TSS_TABLE_ITERATOR; class ACE_TSS_Cleanup // = TITLE // Singleton that knows how to clean up all the thread-specific // resources for Win32. // // = DESCRIPTION // All this nonsense is required since Win32 doesn't // automatically cleanup thread-specific storage on thread exit, // unlike real operating systems... ;-) { public: static ACE_TSS_Cleanup *instance (void); ~ACE_TSS_Cleanup (void); void exit (void *status); // Cleanup the thread-specific objects. Does _NOT_ exit the thread. int insert (ACE_thread_key_t key, void (*destructor)(void *), void *inst); // Insert a tuple into the table. int remove (ACE_thread_key_t key); // Remove a tuple from the table. int detach (void *inst); // Detaches a tss_instance from its key. int detach (ACE_thread_key_t key, ACE_thread_t tid); // Detaches a thread from the key. int key_used (ACE_thread_key_t key); // Mark a key as being used by this thread. int free_all_key_left (void); // Free all key left in the table before destruct myself. static int lockable () { return instance_ != 0; } // Indication of whether the ACE_TSS_CLEANUP_LOCK is usable, and // therefore whether we are in static constructor/destructor phase // or not. protected: int mark_cleanup_i (void); // Mark a thread for actually performing cleanup. int check_cleanup_i (void); // Check if given thread is performing cleanup. int exit_cleanup_i (void); // Indicate that a thread has finished cleanup. void dump (void); ACE_TSS_Cleanup (void); // Ensure singleton. private: ACE_TSS_TABLE table_; // Table of 's. ACE_TSS_REF_TABLE ref_table_; // Table of thread IDs that are performing cleanup activities. // = Static data. static ACE_TSS_Cleanup *instance_; // Pointer to the singleton instance. }; // = Static object initialization. // Pointer to the singleton instance. ACE_TSS_Cleanup *ACE_TSS_Cleanup::instance_ = 0; ACE_TSS_Cleanup::~ACE_TSS_Cleanup (void) { // Zero out the instance pointer to support lockable () accessor. ACE_TSS_Cleanup::instance_ = 0; } int ACE_TSS_Cleanup::mark_cleanup_i (void) { return this->ref_table_.insert (ACE_TSS_Ref (ACE_OS::thr_self ())); } int ACE_TSS_Cleanup::check_cleanup_i (void) { return this->ref_table_.find (ACE_TSS_Ref (ACE_OS::thr_self ())); } int ACE_TSS_Cleanup::exit_cleanup_i (void) { return this->ref_table_.remove (ACE_TSS_Ref (ACE_OS::thr_self ())); } void ACE_TSS_Cleanup::exit (void * /* status */) { // ACE_TRACE ("ACE_TSS_Cleanup::exit"); // ACE_thread_key_t key_arr[ACE_DEFAULT_THREAD_KEYS]; #if 0 int index = 0; #endif /* 0 */ ACE_TSS_Info *key_info = 0; ACE_TSS_Info info_arr[ACE_DEFAULT_THREAD_KEYS]; int info_ix = 0; // While holding the lock, we only collect the ACE_TSS_Info objects // in an array without invoking the according destructors. { ACE_MT (ACE_Thread_Mutex *lock = ACE_Managed_Object::get_preallocated_object (ACE_Object_Manager::ACE_TSS_CLEANUP_LOCK); ACE_GUARD (ACE_Thread_Mutex, ace_mon, *lock)); // Prevent recursive deletions if (this->check_cleanup_i () == 0) // Are we already performing cleanup? return; // If we can't insert our thread_id into the list, we will not be // able to detect recursive invocations for this thread. Therefore // we better risk memory and key leakages, resulting also in // missing close() calls as to be invoked recursively. if (this->mark_cleanup_i () != 0) // Insert our thread_id in list return; // Iterate through all the thread-specific items and free them all // up. for (ACE_TSS_TABLE_ITERATOR iter (this->table_); iter.next (key_info) != 0; iter.advance ()) { void *tss_info = 0; key_info->ref_table_.remove (ACE_TSS_Ref (ACE_OS::thr_self ())); if (key_info->destructor_ && ACE_OS::thr_getspecific (key_info->key_, &tss_info) == 0 && tss_info) { info_arr[info_ix].key_ = key_info->key_; info_arr[info_ix].destructor_ = key_info->destructor_; info_arr[info_ix++].tss_obj_ = key_info->tss_obj_; } #if 0 // See below. if (key_info->ref_table_.size () == 0 && key_info->tss_obj_ == 0) key_arr[index++] = key_info->key_; #endif /* 0 */ } } // Now we have given up the ACE_TSS_Cleanup::lock_ and we start // invoking destructors. for (int i = 0; i < info_ix; i++) { void *tss_info = 0; ACE_OS::thr_getspecific (info_arr[i].key_, &tss_info); if (tss_info != 0) { // Only call the destructor if the value is non-zero for this // thread. (*info_arr[i].destructor_)(tss_info); } } // Acquiring ACE_TSS_Cleanup::lock_ to free TLS keys and remove // entries from ACE_TSS_Info table. { ACE_MT (ACE_Thread_Mutex *lock = ACE_Managed_Object::get_preallocated_object (ACE_Object_Manager::ACE_TSS_CLEANUP_LOCK); ACE_GUARD (ACE_Thread_Mutex, ace_mon, *lock)); #if 0 // We shouldn't free the key and remove it from the table here // because if we do and some thread ends before other threads // even get started (or their TSS object haven't been created yet,) // it's entry will be removed from the table and we are in big chaos. // For TSS object, these have been done in ACE_TSS_Cleanup::detach. // Two other use cases will be user managed TSS'es and system wide // TSS, ones are users responsibilities and the others should be // persistant system wide. for (int i = 0; i < index; i++) { #if defined (ACE_WIN32) ::TlsFree (key_arr[i]); #else // don't bother to free the key #endif /* ACE_WIN32 */ this->table_.remove (ACE_TSS_Info (key_arr[i])); } #endif /* 0 */ this->exit_cleanup_i (); // remove thread id from reference list. } } int ACE_TSS_Cleanup::free_all_key_left (void) // This is call from ACE_OS::cleanup_tss // When this gets called, all threads should // have exited except the main thread. { ACE_thread_key_t key_arr[ACE_DEFAULT_THREAD_KEYS]; ACE_TSS_Info *key_info = 0; int idx = 0; for (ACE_TSS_TABLE_ITERATOR iter (this->table_); iter.next (key_info) != 0; iter.advance ()) key_arr [idx++] = key_info->key_; for (int i = 0; i < idx; i++) ACE_OS::thr_keyfree (key_arr[i]); return 0; } ACE_TSS_Cleanup::ACE_TSS_Cleanup (void) { // ACE_TRACE ("ACE_TSS_Cleanup::ACE_TSS_Cleanup"); } ACE_TSS_Cleanup * ACE_TSS_Cleanup::instance (void) { // ACE_TRACE ("ACE_TSS_Cleanup::instance"); // Create and initialize thread-specific key. if (ACE_TSS_Cleanup::instance_ == 0) { // Insure that we are serialized! ACE_MT (ACE_Thread_Mutex *lock = ACE_Managed_Object::get_preallocated_object (ACE_Object_Manager::ACE_TSS_CLEANUP_LOCK); ACE_GUARD_RETURN (ACE_Thread_Mutex, ace_mon, *lock, 0)); // Now, use the Double-Checked Locking pattern to make sure we // only create the ACE_TSS_Cleanup instance once. if (instance_ == 0) ACE_NEW_RETURN (ACE_TSS_Cleanup::instance_, ACE_TSS_Cleanup, 0); } return ACE_TSS_Cleanup::instance_; } int ACE_TSS_Cleanup::insert (ACE_thread_key_t key, void (*destructor)(void *), void *inst) { // ACE_TRACE ("ACE_TSS_Cleanup::insert"); ACE_MT (ACE_Thread_Mutex *lock = ACE_Managed_Object::get_preallocated_object (ACE_Object_Manager::ACE_TSS_CLEANUP_LOCK); ACE_GUARD_RETURN (ACE_Thread_Mutex, ace_mon, *lock, -1)); return this->table_.insert (ACE_TSS_Info (key, destructor, inst)); } int ACE_TSS_Cleanup::remove (ACE_thread_key_t key) { // ACE_TRACE ("ACE_TSS_Cleanup::remove"); ACE_MT (ACE_Thread_Mutex *lock = ACE_Managed_Object::get_preallocated_object (ACE_Object_Manager::ACE_TSS_CLEANUP_LOCK); ACE_GUARD_RETURN (ACE_Thread_Mutex, ace_mon, *lock, -1)); return this->table_.remove (ACE_TSS_Info (key)); } int ACE_TSS_Cleanup::detach (void *inst) { ACE_MT (ACE_Thread_Mutex *lock = ACE_Managed_Object::get_preallocated_object (ACE_Object_Manager::ACE_TSS_CLEANUP_LOCK); ACE_GUARD_RETURN (ACE_Thread_Mutex, ace_mon, *lock, -1)); ACE_TSS_Info *key_info = 0; int success = 0; int ref_cnt = 0; for (ACE_TSS_TABLE_ITERATOR iter (this->table_); iter.next (key_info) != 0; iter.advance ()) { if (key_info->tss_obj_ == inst) { key_info->tss_obj_ = 0; ref_cnt = key_info->ref_table_.size (); success = 1; break; } } if (success == 0) return -1; else if (ref_cnt == 0) { #if defined (ACE_WIN32) ::TlsFree (key_info->key_); #else // don't bother to free the key #endif /* ACE_WIN32 */ return this->table_.remove (ACE_TSS_Info (key_info->key_)); } return 0; } int ACE_TSS_Cleanup::detach (ACE_thread_key_t key, ACE_thread_t tid) { ACE_UNUSED_ARG(key); ACE_UNUSED_ARG(tid); return -1; } int ACE_TSS_Cleanup::key_used (ACE_thread_key_t key) { ACE_MT (ACE_Thread_Mutex *lock = ACE_Managed_Object::get_preallocated_object (ACE_Object_Manager::ACE_TSS_CLEANUP_LOCK); ACE_GUARD_RETURN (ACE_Thread_Mutex, ace_mon, *lock, -1)); ACE_TSS_Info *key_info = 0; for (ACE_TSS_TABLE_ITERATOR iter (this->table_); iter.next (key_info) != 0; iter.advance ()) if (key_info->key_ == key) return key_info->ref_table_.insert (ACE_TSS_Ref (ACE_OS::thr_self ())); return -1; } void ACE_TSS_Cleanup::dump (void) { ACE_TSS_Info *key_info = 0; // Iterate through all the thread-specific items and dump them all. for (ACE_TSS_TABLE_ITERATOR iter (this->table_); iter.next (key_info) != 0; iter.advance ()) key_info->dump (); } # if defined (ACE_HAS_TSS_EMULATION) ACE_thread_key_t ACE_TSS_Emulation::total_keys_ = 0; ACE_TSS_Emulation::ACE_TSS_DESTRUCTOR ACE_TSS_Emulation::tss_destructor_ [ACE_TSS_THREAD_KEYS_MAX] = { 0 }; void * ACE_TSS_Emulation::tss_open (void *ts_storage[ACE_TSS_THREAD_KEYS_MAX]) { if (tss_base () == 0) { if (ts_storage == 0) { // Allocate an array off the heap for this thread's TSS. ACE_NEW_RETURN (tss_base (), void *[ACE_TSS_THREAD_KEYS_MAX], 0); } else { // Use the supplied array for this thread's TSS. tss_base () = ts_storage; } // Zero the entire TSS array. Do it manually instead of using // memset, for optimum speed. void **tss_base_p = tss_base (); for (u_int i = 0; i < ACE_TSS_THREAD_KEYS_MAX; ++i, ++tss_base_p) *tss_base_p = 0; return tss_base (); } else { return 0; } } void ACE_TSS_Emulation::tss_close (void *ts_storage[ACE_TSS_THREAD_KEYS_MAX]) { if (ts_storage == 0) { // ts_storage had been dynamically allocated, so delete it. delete [] tss_base (); tss_base () = 0; } } #if !defined (VXWORKS) // FOR TESTING ONLY! void ** ACE_TSS_Emulation::tss_collection_ [ACE_TSS_THREADS_MAX] = { 0 }; #endif /* VXWORKS */ #endif /* ACE_HAS_TSS_EMULATION */ #if defined (ACE_HAS_EXPLICIT_TEMPLATE_INSTANTIATION) template class ACE_Node; template class ACE_Node; template class ACE_Unbounded_Stack; template class ACE_Unbounded_Stack; template class ACE_Unbounded_Stack_Iterator; template class ACE_Unbounded_Stack_Iterator; #elif defined (ACE_HAS_TEMPLATE_INSTANTIATION_PRAGMA) #pragma instantiate ACE_Node #pragma instantiate ACE_Node #pragma instantiate ACE_Unbounded_Stack #pragma instantiate ACE_Unbounded_Stack #pragma instantiate ACE_Unbounded_Stack_Iterator #pragma instantiate ACE_Unbounded_Stack_Iterator #endif /* ACE_HAS_EXPLICIT_TEMPLATE_INSTANTIATION */ #endif /* WIN32 || ACE_HAS_TSS_EMULATION */ void ACE_OS::cleanup_tss () { #if defined (ACE_HAS_TSS_EMULATION) // Call destructors for thread-specific storage. ACE_TSS_Cleanup::instance ()->exit (0); #else // Just close the ACE_Log_Msg for the current (which should be main) thread. ACE_Log_Msg::close (); #endif /* ACE_HAS_TSS_EMULATION */ #if defined (ACE_WIN32) || defined (ACE_HAS_TSS_EMULATION) // Removed all TSS_Info table entries. ACE_TSS_Cleanup::instance ()->free_all_key_left (); // Finally, free up the ACE_TSS_Cleanup instance. This method gets // call by the ACE_Object_Manager. delete ACE_TSS_Cleanup::instance (); #endif /* WIN32 || ACE_HAS_TSS_EMULATION */ } void ACE_Thread_Adapter::inherit_log_msg (void) { #if !defined (ACE_THREADS_DONT_INHERIT_LOG_MSG) // Inherit the logging features if the parent thread has an // . Note that all of the following operations occur // within thread-specific storage. ACE_Log_Msg *new_log = ACE_LOG_MSG; if (this->ostream_) { new_log->msg_ostream (this->ostream_); new_log->priority_mask (this->priority_mask_); if (this->tracing_enabled_) new_log->start_tracing (); new_log->restart (this->restart_); new_log->trace_depth (this->trace_depth_); } #endif /* ACE_THREADS_DONT_INHERIT_LOG_MSG */ } void * ACE_Thread_Adapter::invoke (void) { // Inherit the logging features if the parent thread has an // ACE_Log_Msg instance in thread-specific storage. this->inherit_log_msg (); // Extract the arguments. ACE_THR_FUNC func = this->user_func_; void *arg = this->arg_; // Delete ourselves since we don't need anymore. delete (void *) this; #if defined (ACE_WIN32) || defined (ACE_HAS_TSS_EMULATION) void *status = 0; ACE_SEH_TRY { status = (void*) (*func) (arg); // Call thread entry point. } ACE_SEH_EXCEPT (EXCEPTION_EXECUTE_HANDLER) { ACE_DEBUG ((LM_DEBUG, "(%t) Win32 structured exception exiting thread\n")); // Here's where we might want to provide a hook to report this... // As it stands now, we just catch all Win32 structured exceptions // so that we can make sure to clean up correctly when the thread // exits. } // If dropped off end, call destructors for thread-specific storage. ACE_TSS_Cleanup::instance ()->exit (status); # if defined (ACE_WIN32) && defined (ACE_HAS_MFC) && (ACE_HAS_MFC != 0) // Exit the thread. // Allow CWinThread-destructor to be invoked from AfxEndThread. // _endthreadex will be called from AfxEndThread so don't exit the // thread now if we are running an MFC thread. CWinThread *pThread = ::AfxGetThread (); if (!pThread || pThread->m_nThreadID != ACE_OS::thr_self ()) { ::_endthreadex ((DWORD) status); } # endif /* ACE_WIN32 && ACE_HAS_MFC && ACE_HAS_MFS != 0*/ return status; #else return (void *) (*func) (arg); // Call thread entry point. #endif /* ACE_WIN32 || ACE_HAS_TSS_EMULATION */ } ACE_Cleanup::~ACE_Cleanup () { } void ACE_Cleanup::cleanup (void *) { delete this; } extern "C" void ace_cleanup_destroyer (ACE_Cleanup *object, void *param) { object->cleanup (param); } // Run the thread entry point for the . This must // be an extern "C" to make certain compilers happy... extern "C" void * ace_thread_adapter (void *args) { // ACE_TRACE ("ace_thread_adapter"); #if defined (ACE_HAS_TSS_EMULATION) // As early as we can in the execution of the new thread, allocate // its local TS storage. Allocate it on the stack, to save dynamic // allocation/dealloction. void *ts_storage[ACE_TSS_Emulation::ACE_TSS_THREAD_KEYS_MAX]; ACE_TSS_Emulation::tss_open (ts_storage); #endif /* ACE_HAS_TSS_EMULATION */ ACE_Thread_Adapter *thread_args = (ACE_Thread_Adapter *) args; // Invoke the user-supplied function with the args. void *status = thread_args->invoke (); #if defined (ACE_HAS_TSS_EMULATION) // Close the thread's local TS storage. ACE_TSS_Emulation::tss_close (ts_storage); #endif /* ACE_HAS_TSS_EMULATION */ return status; } ACE_Thread_Adapter::ACE_Thread_Adapter (ACE_THR_FUNC user_func, void *arg, ACE_THR_C_FUNC entry_point, ACE_Thread_Manager *tm) : user_func_ (user_func), arg_ (arg), entry_point_ (entry_point), thr_mgr_ (tm) #if !defined (ACE_THREADS_DONT_INHERIT_LOG_MSG) , ostream_ (NULL), priority_mask_ (0), tracing_enabled_ (0), restart_ (1), trace_depth_ (0) #endif /* ACE_THREADS_DONT_INHERIT_LOG_MSG */ { // ACE_TRACE ("Ace_Thread_Adapter::Ace_Thread_Adapter"); #if !defined (ACE_THREADS_DONT_INHERIT_LOG_MSG) if ( ACE_Log_Msg::exists() ) { ACE_Log_Msg *inherit_log_ = ACE_LOG_MSG; this->ostream_ = inherit_log_->msg_ostream (); this->priority_mask_ = inherit_log_->priority_mask (); this->tracing_enabled_ = inherit_log_->tracing_enabled (); this->restart_ = inherit_log_->restart (); this->trace_depth_ = inherit_log_->trace_depth (); } #endif /* ACE_THREADS_DONT_INHERIT_LOG_MSG */ } int ACE_OS::thr_create (ACE_THR_FUNC func, void *args, long flags, ACE_thread_t *thr_id, ACE_hthread_t *thr_handle, long priority, void *stack, size_t stacksize, ACE_Thread_Adapter *thread_adapter) { // ACE_TRACE ("ACE_OS::thr_create"); #if defined (ACE_NO_THREAD_ADAPTER) #define ACE_THREAD_FUNCTION func #define ACE_THREAD_ARGUMENT args #else #define ACE_THREAD_FUNCTION thread_args->entry_point () #define ACE_THREAD_ARGUMENT thread_args ACE_Thread_Adapter *thread_args; if (thread_adapter == 0) ACE_NEW_RETURN (thread_args, ACE_Thread_Adapter (func, args, (ACE_THR_C_FUNC) ace_thread_adapter), -1); else thread_args = thread_adapter; #endif /* ACE_NO_THREAD_ADAPTER */ #if defined (ACE_HAS_THREADS) ACE_thread_t tmp_thr; ACE_hthread_t tmp_handle; if (thr_id == 0) thr_id = &tmp_thr; if (thr_handle == 0) thr_handle = &tmp_handle; # if defined (ACE_HAS_DCETHREADS) || defined (ACE_HAS_PTHREADS) int result; pthread_attr_t attr; # if defined (ACE_HAS_DCETHREADS) if (::pthread_attr_create (&attr) != 0) # else /* ACE_HAS_DCETHREADS */ if (::pthread_attr_init (&attr) != 0) # endif /* ACE_HAS_DCETHREADS */ return -1; # if !defined (ACE_LACKS_SETSCHED) // The PRIORITY stuff used to be here...-cjc # endif /* ACE_LACKS_SETSCHED */ // *** Set Stack Size # if defined (ACE_NEEDS_HUGE_THREAD_STACKSIZE) if (stacksize < ACE_NEEDS_HUGE_THREAD_STACKSIZE) stacksize = ACE_NEEDS_HUGE_THREAD_STACKSIZE; # endif /* ACE_NEEDS_HUGE_THREAD_STACKSIZE */ # if defined (CHORUS) // if it is a super actor, we can't set stacksize. // But for the time bing we are all non-super actors // To be fixed later if (stacksize == 0) stacksize = 0x100000; # endif /*CHORUS */ if (stacksize != 0) { size_t size = stacksize; # if defined (PTHREAD_STACK_MIN) if (size < PTHREAD_STACK_MIN) size = PTHREAD_STACK_MIN; # endif /* PTHREAD_STACK_MIN */ # if !defined (ACE_LACKS_THREAD_STACK_SIZE) // JCEJ 12/17/96 if (::pthread_attr_setstacksize (&attr, size) != 0) { # if defined (ACE_HAS_DCETHREADS) ::pthread_attr_delete (&attr); # else /* ACE_HAS_DCETHREADS */ ::pthread_attr_destroy (&attr); # endif /* ACE_HAS_DCETHREADS */ return -1; } # else ACE_UNUSED_ARG (size); # endif /* !ACE_LACKS_THREAD_STACK_SIZE */ } // *** Set Stack Address # if !defined (ACE_LACKS_THREAD_STACK_ADDR) if (stack != 0) { if (::pthread_attr_setstackaddr (&attr, stack) != 0) { # if defined (ACE_HAS_DCETHREADS) ::pthread_attr_delete (&attr); # else /* ACE_HAS_DCETHREADS */ ::pthread_attr_destroy (&attr); # endif /* ACE_HAS_DCETHREADS */ return -1; } } # else ACE_UNUSED_ARG (stack); # endif /* !ACE_LACKS_THREAD_STACK_ADDR */ // *** Deal with various attributes if (flags != 0) { // *** Set Detach state # if !defined (ACE_LACKS_SETDETACH) if (ACE_BIT_ENABLED (flags, THR_DETACHED) || ACE_BIT_ENABLED (flags, THR_JOINABLE)) { int dstate = PTHREAD_CREATE_JOINABLE; if (ACE_BIT_ENABLED (flags, THR_DETACHED)) dstate = PTHREAD_CREATE_DETACHED; # if defined (ACE_HAS_DCETHREADS) if (::pthread_attr_setdetach_np (&attr, dstate) != 0) # else /* ACE_HAS_DCETHREADS */ # if defined (ACE_HAS_PTHREAD_DSTATE_PTR) if (::pthread_attr_setdetachstate (&attr, &dstate) != 0) # else if (::pthread_attr_setdetachstate (&attr, dstate) != 0) # endif /* ACE_HAS_PTHREAD_DSTATE_PTR */ # endif /* ACE_HAS_DCETHREADS */ { # if defined (ACE_HAS_DCETHREADS) ::pthread_attr_delete (&attr); # else /* ACE_HAS_DCETHREADS */ ::pthread_attr_destroy (&attr); # endif /* ACE_HAS_DCETHREADS */ return -1; } } # endif /* ACE_LACKS_SETDETACH */ // *** Set Policy # if !defined (ACE_LACKS_SETSCHED) // If we wish to set the priority explicitly, we have to enable // explicit scheduling, and a policy, too. if (priority != ACE_DEFAULT_THREAD_PRIORITY) { ACE_SET_BITS (flags, THR_EXPLICIT_SCHED); if (ACE_BIT_DISABLED (flags, THR_SCHED_FIFO) && ACE_BIT_DISABLED (flags, THR_SCHED_RR) && ACE_BIT_DISABLED (flags, THR_SCHED_DEFAULT)) ACE_SET_BITS (flags, THR_SCHED_DEFAULT); } if (ACE_BIT_ENABLED (flags, THR_SCHED_FIFO) || ACE_BIT_ENABLED (flags, THR_SCHED_RR) || ACE_BIT_ENABLED (flags, THR_SCHED_DEFAULT)) { int spolicy; # if defined (ACE_HAS_ONLY_SCHED_OTHER) // Solaris, thru version 2.5.1, only supports SCHED_OTHER. spolicy = SCHED_OTHER; # else if (ACE_BIT_ENABLED (flags, THR_SCHED_DEFAULT)) spolicy = SCHED_OTHER; else if (ACE_BIT_ENABLED (flags, THR_SCHED_FIFO)) spolicy = SCHED_FIFO; #if defined (SCHED_IO) else if (ACE_BIT_ENABLED (flags, THR_SCHED_IO)) spolicy = SCHED_IO; #else else if (ACE_BIT_ENABLED (flags, THR_SCHED_IO)) { errno = ENOSYS; return -1; } #endif /* SCHED_IO */ else spolicy = SCHED_RR; # endif /* ACE_HAS_ONLY_SCHED_OTHER */ # if !defined (ACE_HAS_FSU_PTHREADS) # if defined (ACE_HAS_DCETHREADS) result = ::pthread_attr_setsched (&attr, spolicy); # else /* ACE_HAS_DCETHREADS */ result = ::pthread_attr_setschedpolicy (&attr, spolicy); # endif /* ACE_HAS_DCETHREADS */ if (result != 0) { // Preserve the errno value. errno = result; # if defined (ACE_HAS_DCETHREADS) ::pthread_attr_delete (&attr); # else /* ACE_HAS_DCETHREADS */ ::pthread_attr_destroy (&attr); # endif /* ACE_HAS_DCETHREADS */ return -1; } # else int ret; switch (spolicy) { case SCHED_FIFO: case SCHED_RR: ret = 0; break; default: ret = 22; break; } if (ret != 0) { # if defined (ACE_HAS_DCETHREADS) ::pthread_attr_delete (&attr); # else /* ACE_HAS_DCETHREADS */ ::pthread_attr_destroy (&attr); # endif /* ACE_HAS_DCETHREADS */ return -1; } # endif /* ACE_HAS_FSU_PTHREADS */ } // *** Set Priority (use reasonable default priorities) # if defined(ACE_HAS_PTHREADS_1003_DOT_1C) // If we wish to explicitly set a scheduling policy, we also // have to specify a priority. We choose a "middle" priority as // default. Maybe this is also necessary on other POSIX'ish // implementations? if ((ACE_BIT_ENABLED (flags, THR_SCHED_FIFO) || ACE_BIT_ENABLED (flags, THR_SCHED_RR) || ACE_BIT_ENABLED (flags, THR_SCHED_DEFAULT)) && priority == ACE_DEFAULT_THREAD_PRIORITY) { if (ACE_BIT_ENABLED (flags, THR_SCHED_FIFO)) priority = ACE_THR_PRI_FIFO_DEF; else if (ACE_BIT_ENABLED (flags, THR_SCHED_RR)) priority = ACE_THR_PRI_RR_DEF; else // THR_SCHED_DEFAULT priority = ACE_THR_PRI_OTHER_DEF; } # endif //ACE_HAS_PTHREADS_1003_DOT_1C if (priority != ACE_DEFAULT_THREAD_PRIORITY) { struct sched_param sparam; ACE_OS::memset ((void *) &sparam, 0, sizeof sparam); # if defined (ACE_HAS_DCETHREADS) && !defined (ACE_HAS_DCE_DRAFT4_THREADS) sparam.sched_priority = ACE_MIN (priority, PRIORITY_MAX); # elif defined(ACE_HAS_IRIX62_THREADS) sparam.sched_priority = ACE_MIN (priority, PTHREAD_MAX_PRIORITY); # elif defined (PTHREAD_MAX_PRIORITY) && !defined(ACE_HAS_PTHREADS_1003_DOT_1C) /* For MIT pthreads... */ sparam.prio = ACE_MIN (priority, PTHREAD_MAX_PRIORITY); # elif defined(ACE_HAS_PTHREADS_1003_DOT_1C) // The following code forces priority into range. if (ACE_BIT_ENABLED (flags, THR_SCHED_FIFO)) sparam.sched_priority = ACE_MIN (ACE_THR_PRI_FIFO_MAX, ACE_MAX (ACE_THR_PRI_FIFO_MIN, priority)); else if (ACE_BIT_ENABLED(flags, THR_SCHED_RR)) sparam.sched_priority = ACE_MIN (ACE_THR_PRI_RR_MAX, ACE_MAX (ACE_THR_PRI_RR_MIN, priority)); else // Default policy, whether set or not sparam.sched_priority = ACE_MIN (ACE_THR_PRI_OTHER_MAX, ACE_MAX (ACE_THR_PRI_OTHER_MIN, priority)); # else sparam.sched_priority = priority; # endif # if defined (ACE_HAS_FSU_PTHREADS) if (sparam.sched_priority >= PTHREAD_MIN_PRIORITY && sparam.sched_priority <= PTHREAD_MAX_PRIORITY) attr.prio = sparam.sched_priority; else { pthread_attr_destroy (&attr); errno = EINVAL; return -1; } # else { # if defined (ACE_HAS_STHREADS) // Solaris POSIX only allows priorities > 0 to // ::pthread_attr_setschedparam. If a priority of 0 was // requested, set the thread priority after creating it, below. if (priority > 0) # endif /* STHREADS */ { # if defined (ACE_HAS_DCETHREADS) result = ::pthread_attr_setsched (&attr, SCHED_OTHER); # else /* ACE_HAS_DCETHREADS */ result = ::pthread_attr_setschedparam (&attr, &sparam); # endif /* ACE_HAS_DCETHREADS */ if (result != 0) { # if defined (ACE_HAS_DCETHREADS) ::pthread_attr_delete (&attr); # else /* ACE_HAS_DCETHREADS */ ::pthread_attr_destroy (&attr); # endif /* ACE_HAS_DCETHREADS */ errno = result; return -1; } } } # endif /* ACE_HAS_FSU_PTHREADS */ } // *** Set scheduling explicit or inherited if (ACE_BIT_ENABLED (flags, THR_INHERIT_SCHED) || ACE_BIT_ENABLED (flags, THR_EXPLICIT_SCHED)) { # if defined (ACE_HAS_DCETHREADS) int sched = PTHREAD_DEFAULT_SCHED; # else /* ACE_HAS_DCETHREADS */ int sched = PTHREAD_EXPLICIT_SCHED; # endif /* ACE_HAS_DCETHREADS */ if (ACE_BIT_ENABLED (flags, THR_INHERIT_SCHED)) sched = PTHREAD_INHERIT_SCHED; if (::pthread_attr_setinheritsched (&attr, sched) != 0) { # if defined (ACE_HAS_DCETHREADS) ::pthread_attr_delete (&attr); # else /* ACE_HAS_DCETHREADS */ ::pthread_attr_destroy (&attr); # endif /* ACE_HAS_DCETHREADS */ return -1; } } # endif /* ACE_LACKS_SETSCHED */ // *** Set Scope # if !defined (ACE_LACKS_THREAD_PROCESS_SCOPING) if (ACE_BIT_ENABLED (flags, THR_SCOPE_SYSTEM) || ACE_BIT_ENABLED (flags, THR_SCOPE_PROCESS)) { int scope = PTHREAD_SCOPE_PROCESS; if (ACE_BIT_ENABLED (flags, THR_SCOPE_SYSTEM)) scope = PTHREAD_SCOPE_SYSTEM; if (::pthread_attr_setscope (&attr, scope) != 0) { # if defined (ACE_HAS_DCETHREADS) ::pthread_attr_delete (&attr); # else /* ACE_HAS_DCETHREADS */ ::pthread_attr_destroy (&attr); # endif /* ACE_HAS_DCETHREADS */ return -1; } } # endif /* !ACE_LACKS_THREAD_PROCESS_SCOPING */ if (ACE_BIT_ENABLED (flags, THR_NEW_LWP)) { // Increment the number of LWPs by one to emulate the // Solaris semantics. int lwps = ACE_OS::thr_getconcurrency (); ACE_OS::thr_setconcurrency (lwps + 1); } } # if defined (ACE_HAS_DCETHREADS) # if defined (ACE_HAS_DCE_DRAFT4_THREADS) ACE_OSCALL (::pthread_create (thr_id, attr, ACE_THREAD_FUNCTION, ACE_THREAD_ARGUMENT), int, -1, result); # else ACE_OSCALL (ACE_ADAPT_RETVAL (::pthread_create (thr_id, attr, ACE_THREAD_FUNCTION, ACE_THREAD_ARGUMENT), result), int, -1, result); # endif /* ACE_HAS_DCE_DRAFT4_THREADS */ ::pthread_attr_delete (&attr); # else /* !ACE_HAS_DCETHREADS */ # if defined (ACE_HAS_THR_C_FUNC) ACE_OSCALL (ACE_ADAPT_RETVAL (::pthread_create (thr_id, &attr, ACE_THR_C_FUNC (&ACE_THREAD_FUNCTION), ACE_THREAD_ARGUMENT), result), int, -1, result); # else ACE_OSCALL (ACE_ADAPT_RETVAL (::pthread_create (thr_id, &attr, ACE_THREAD_FUNCTION, ACE_THREAD_ARGUMENT), result), int, -1, result); # endif /* ACE_HAS_THR_C_FUNC */ ::pthread_attr_destroy (&attr); # endif /* ACE_HAS_DCETHREADS */ // This is a Solaris, POSIX, or DCE implementation of pthreads, // where we assume that ACE_thread_t and ACE_hthread_t are the same. // If this *isn't* correct on some platform, please let us know. if (result != -1) *thr_handle = *thr_id; # if defined (ACE_HAS_STHREADS) // If the priority is 0, then we might have to set it now because we // couldn't set it with ::pthread_attr_setschedparam, as noted // above. This doesn't provide strictly correct behavior, because // the thread was created (above) with the priority of its parent. // (That applies regardless of the inherit_sched attribute: if it // was PTHREAD_INHERIT_SCHED, then it certainly inherited its // parent's priority. If it was PTHREAD_EXPLICIT_SCHED, then "attr" // was initialized by the Solaris ::pthread_attr_init () to contain // NULL for the priority, which indicated to Solaris // ::pthread_create () to inherit the parent priority.) if (priority == 0) { // Check the priority of this thread, which is the parent of the // newly created thread. If it is 0, then the newly created // thread will have inherited the priority of 0, so there's no // need to explicitly set it. struct sched_param sparam; int policy = 0; ACE_OSCALL (ACE_ADAPT_RETVAL (::pthread_getschedparam (thr_self (), &policy, &sparam), result), int, -1, result); if (sparam.sched_priority != 0) { ACE_OS::memset ((void *) &sparam, 0, sizeof sparam); // The memset to 0 sets the priority to 0, so we don't need // to explicitly set sparam.sched_priority. // The only policy currently (version 2.5.1) supported by by Solaris // is SCHED_OTHER, so that's hard-coded below. ACE_OSCALL_RETURN (ACE_ADAPT_RETVAL (::pthread_setschedparam ( *thr_id, SCHED_OTHER, &sparam), result), int, -1); } } # endif /* ACE_HAS_STHREADS */ return result; # elif defined (ACE_HAS_STHREADS) int result; int start_suspended = ACE_BIT_ENABLED (flags, THR_SUSPENDED); if (priority != ACE_DEFAULT_THREAD_PRIORITY) // If we need to set the priority, then we need to start the // thread in a suspended mode. ACE_SET_BITS (flags, THR_SUSPENDED); ACE_OSCALL (ACE_ADAPT_RETVAL (::thr_create (stack, stacksize, ACE_THREAD_FUNCTION, ACE_THREAD_ARGUMENT, flags, thr_id), result), int, -1, result); if (result != -1) { // With Solaris threads, ACE_thread_t and ACE_hthread_t are the same. *thr_handle = *thr_id; if (priority != ACE_DEFAULT_THREAD_PRIORITY) { // Set the priority of the new thread and then let it // continue, but only if the user didn't start it suspended // in the first place! if ((result = ACE_OS::thr_setprio (*thr_id, priority)) != 0) { errno = result; return -1; } if (start_suspended == 0) { if ((result = ACE_OS::thr_continue (*thr_id)) != 0) { errno = result; return -1; } } } } return result; # elif defined (ACE_HAS_WTHREADS) ACE_UNUSED_ARG (stack); # if defined (ACE_HAS_MFC) && (ACE_HAS_MFC != 0) if (ACE_BIT_ENABLED (flags, THR_USE_AFX)) { CWinThread *cwin_thread = ::AfxBeginThread ((AFX_THREADPROC) &ACE_THREAD_FUNCTION, ACE_THREAD_ARGUMENT, priority, 0, flags | THR_SUSPENDED); // Have to duplicate the handle because // CWinThread::~CWinThread() closes the original handle. (void) ::DuplicateHandle (::GetCurrentProcess (), cwin_thread->m_hThread, ::GetCurrentProcess (), thr_handle, 0, TRUE, DUPLICATE_SAME_ACCESS); *thr_id = cwin_thread->m_nThreadID; if (ACE_BIT_ENABLED (flags, THR_SUSPENDED) == 0) cwin_thread->ResumeThread (); // cwin_thread will be deleted in AfxThreadExit() // Warning: If AfxThreadExit() is called from within the // thread, ACE_TSS_Cleanup->exit() never gets called ! } else # endif /* ACE_HAS_MFC */ { int start_suspended = ACE_BIT_ENABLED (flags, THR_SUSPENDED); if (priority != ACE_DEFAULT_THREAD_PRIORITY) // If we need to set the priority, then we need to start the // thread in a suspended mode. ACE_SET_BITS (flags, THR_SUSPENDED); *thr_handle = (void *) ::_beginthreadex (NULL, stacksize, (unsigned (__stdcall *) (void *)) ACE_THREAD_FUNCTION, ACE_THREAD_ARGUMENT, flags, (unsigned int *) thr_id); if (priority != ACE_DEFAULT_THREAD_PRIORITY && *thr_handle != 0) { // Set the priority of the new thread and then let it // continue, but only if the user didn't start it suspended // in the first place! ACE_OS::thr_setprio (*thr_handle, priority); if (start_suspended == 0) ACE_OS::thr_continue (*thr_handle); } } # if 0 *thr_handle = ::CreateThread (NULL, stacksize, LPTHREAD_START_ROUTINE (ACE_THREAD_FUNCTION), ACE_THREAD_ARGUMENT, flags, thr_id); # endif /* 0 */ // Close down the handle if no one wants to use it. if (thr_handle == &tmp_handle) ::CloseHandle (tmp_handle); if (*thr_handle != 0) return 0; else ACE_FAIL_RETURN (-1); /* NOTREACHED */ # elif defined (VXWORKS) // The call below to ::taskSpawn () causes VxWorks to assign a // unique task name of the form: "t" + an integer, because the // first argument is 0. // args must be an array of _exactly_ 10 ints. // The stack arg is ignored: if there's a need for it, we'd have to // use ::taskInit ()/::taskActivate () instead of ::taskSpawn (). ACE_UNUSED_ARG (stack); // The hard-coded arguments are what ::sp () would use. ::taskInit () // is used instead of ::sp () so that we can set the priority, flags, // and stacksize. (::sp () also hardcodes priority to 100, flags // to VX_FP_TASK, and stacksize to 20,000.) stacksize should be // an even integer. // If called with thr_create() defaults, use same default values as ::sp (): if (priority == ACE_DEFAULT_THREAD_PRIORITY) priority = 100; if (flags == 0) flags = VX_FP_TASK; // Assumes that there is a // floating point coprocessor. // As noted above, ::sp () hardcodes // this, so we should be safe with it. if (stacksize == 0) stacksize = 20000; ACE_hthread_t tid = ::taskSpawn (0, priority, (int) flags, (int) stacksize, ACE_THREAD_FUNCTION, (int) ACE_THREAD_ARGUMENT, 0, 0, 0, 0, 0, 0, 0, 0, 0); if (tid == ERROR) return -1; else { // ::taskTcb (int tid) returns the address of the WIND_TCB // (task control block). According to the ::taskSpawn() // documentation, the name of the new task is stored at // pStackBase, but is that of the current task? If so, it // might be a bit quicker than this extraction of the tcb . . . *thr_id = ::taskTcb (tid)->name; *thr_handle = tid; return 0; } # endif /* ACE_HAS_STHREADS */ #else ACE_UNUSED_ARG (func); ACE_UNUSED_ARG (args); ACE_UNUSED_ARG (flags); ACE_UNUSED_ARG (thr_id); ACE_UNUSED_ARG (thr_handle); ACE_UNUSED_ARG (priority); ACE_UNUSED_ARG (stack); ACE_UNUSED_ARG (stacksize); ACE_NOTSUP_RETURN (-1); #endif /* ACE_HAS_THREADS */ } void ACE_OS::thr_exit (void *status) { // ACE_TRACE ("ACE_OS::thr_exit"); #if defined (ACE_HAS_THREADS) # if defined (ACE_HAS_DCETHREADS) || defined (ACE_HAS_PTHREADS) ::pthread_exit (status); # elif defined (ACE_HAS_STHREADS) ::thr_exit (status); # elif defined (ACE_HAS_WTHREADS) // Can't call it here because on NT, thr_exit is actually // called from ACE_TSS_Cleanup::exit () // ACE_TSS_Cleanup::instance ()->exit (status); # elif defined (VXWORKS) ACE_hthread_t tid; ACE_OS::thr_self (tid); *((int *) status) = ::taskDelete (tid); # endif /* ACE_HAS_STHREADS */ #else ACE_UNUSED_ARG (status); #endif /* ACE_HAS_THREADS */ } int ACE_OS::thr_setspecific (ACE_thread_key_t key, void *data) { // ACE_TRACE ("ACE_OS::thr_setspecific"); #if defined (ACE_HAS_THREADS) # if defined (ACE_HAS_TSS_EMULATION) if (key - 1 >= ACE_TSS_Emulation::total_keys ()) { errno = EINVAL; data = 0; return -1; } else { ACE_TSS_Emulation::ts_object (key) = data; ACE_TSS_Cleanup::instance ()->key_used (key); return 0; } # elif defined (ACE_HAS_DCETHREADS) || defined (ACE_HAS_PTHREADS) # if defined (ACE_HAS_FSU_PTHREADS) // Call pthread_init() here to initialize threads package. FSU // threads need an initialization before the first thread constructor. // This seems to be the one; however, a segmentation fault may // indicate that another pthread_init() is necessary, perhaps in // Synch.cpp or Synch_T.cpp. FSU threads will not reinit if called // more than once, so another call to pthread_init will not adversely // affect existing threads. pthread_init (); # endif /* ACE_HAS_FSU_PTHREADS */ ACE_OSCALL_RETURN (ACE_ADAPT_RETVAL (::pthread_setspecific (key, data), ace_result_), int, -1); # elif defined (ACE_HAS_STHREADS) ACE_OSCALL_RETURN (ACE_ADAPT_RETVAL (::thr_setspecific (key, data), ace_result_), int, -1); # elif defined (ACE_HAS_WTHREADS) ::TlsSetValue (key, data); ACE_TSS_Cleanup::instance ()->key_used (key); return 0; # endif /* ACE_HAS_STHREADS */ #else ACE_UNUSED_ARG (key); ACE_UNUSED_ARG (data); ACE_NOTSUP_RETURN (-1); #endif /* ACE_HAS_THREADS */ } int ACE_OS::thr_keyfree (ACE_thread_key_t key) { // ACE_TRACE ("ACE_OS::thr_keyfree"); #if defined (ACE_HAS_THREADS) # if defined (ACE_HAS_TSS_EMULATION) return ACE_TSS_Cleanup::instance ()->remove (key); # elif defined (ACE_LACKS_KEYDELETE) ACE_UNUSED_ARG (key); ACE_NOTSUP_RETURN (-1); # elif defined (ACE_HAS_PTHREADS) && !defined (ACE_HAS_FSU_PTHREADS) return ::pthread_key_delete (key); # elif defined (ACE_HAS_DCETHREADS) ACE_UNUSED_ARG (key); ACE_NOTSUP_RETURN (-1); # elif defined (ACE_HAS_THR_KEYDELETE) return ::thr_keydelete (key); # elif defined (ACE_HAS_STHREADS) ACE_UNUSED_ARG (key); ACE_NOTSUP_RETURN (-1); # elif defined (ACE_HAS_WTHREADS) // Extract out the thread-specific table instance and free up // the key and destructor. ACE_TSS_Cleanup::instance ()->remove (key); ACE_OSCALL_RETURN (ACE_ADAPT_RETVAL (::TlsFree (key), ace_result_), int, -1); # endif /* ACE_HAS_STHREADS */ #else ACE_UNUSED_ARG (key); ACE_NOTSUP_RETURN (-1); #endif /* ACE_HAS_THREADS */ } int ACE_OS::thr_keycreate (ACE_thread_key_t *key, #if defined (ACE_HAS_THR_C_DEST) ACE_THR_C_DEST dest, #else ACE_THR_DEST dest, #endif /* ACE_HAS_THR_C_DEST */ void *inst) { // ACE_TRACE ("ACE_OS::thr_keycreate"); #if defined (ACE_HAS_THREADS) # if defined (ACE_HAS_TSS_EMULATION) *key = ACE_TSS_Emulation::next_key (); if (*key == ACE_OS::NULL_key) { errno = EAGAIN; return -1; } else { ACE_TSS_Emulation::tss_destructor (*key, dest); // Extract out the thread-specific table instance and stash away // the key and destructor so that we can free it up later on... return ACE_TSS_Cleanup::instance ()->insert (*key, dest, inst); } # elif defined (ACE_HAS_DCETHREADS) ACE_UNUSED_ARG (inst); ACE_OSCALL_RETURN (::pthread_keycreate (key, dest), int, -1); # elif defined (ACE_HAS_PTHREADS) ACE_UNUSED_ARG (inst); ACE_OSCALL_RETURN (ACE_ADAPT_RETVAL (::pthread_key_create (key, dest), ace_result_), int, -1); # elif defined (ACE_HAS_STHREADS) ACE_UNUSED_ARG (inst); ACE_OSCALL_RETURN (ACE_ADAPT_RETVAL (::thr_keycreate (key, dest), ace_result_), int, -1); # elif defined (ACE_HAS_WTHREADS) *key = ::TlsAlloc (); if (*key != ACE_SYSCALL_FAILED) { // Extract out the thread-specific table instance and stash away // the key and destructor so that we can free it up later on... return ACE_TSS_Cleanup::instance ()->insert (*key, dest, inst); } else ACE_FAIL_RETURN (-1); /* NOTREACHED */ # endif /* ACE_HAS_STHREADS */ #else ACE_UNUSED_ARG (key); ACE_UNUSED_ARG (dest); ACE_UNUSED_ARG (inst); ACE_NOTSUP_RETURN (-1); #endif /* ACE_HAS_THREADS */ } int ACE_OS::thr_key_used (ACE_thread_key_t key) { #if defined (ACE_WIN32) || defined (ACE_HAS_TSS_EMULATION) return ACE_TSS_Cleanup::instance ()->key_used (key); #else ACE_UNUSED_ARG (key); ACE_NOTSUP_RETURN (-1); #endif /* ACE_WIN32 || ACE_HAS_TSS_EMULATION */ } int ACE_OS::thr_key_detach (void *inst) { #if defined (ACE_WIN32) || defined (ACE_HAS_TSS_EMULATION) if (ACE_TSS_Cleanup::lockable ()) return ACE_TSS_Cleanup::instance()->detach (inst); else // We're in static constructor/destructor phase. Don't // try to use the ACE_TSS_Cleanup instance because its lock // might not have been constructed yet, or might have been // destroyed already. Just leak the key . . . return -1; #else ACE_UNUSED_ARG (inst); ACE_NOTSUP_RETURN (-1); #endif /* ACE_WIN32 || ACE_HAS_TSS_EMULATION */ } // Create a contiguous command-line argument buffer with each arg // separated by spaces. pid_t ACE_OS::fork_exec (char *argv[]) { #if defined (ACE_WIN32) ACE_ARGV argv_buf (argv); if (argv_buf.buf () != 0) { PROCESS_INFORMATION process_info; STARTUPINFO startup_info; ACE_OS::memset ((void *) &startup_info, 0, sizeof startup_info); startup_info.cb = sizeof startup_info; if (::CreateProcess (NULL, (LPTSTR) ACE_WIDE_STRING (argv_buf.buf ()), NULL, // No process attributes. NULL, // No thread attributes. TRUE, // Allow handle inheritance. 0, /* CREATE_NEW_CONSOLE */ // Don't create a new console window. NULL, // No environment. NULL, // No current directory. &startup_info, &process_info)) { // Free resources allocated in kernel. ACE_OS::close (process_info.hThread); ACE_OS::close (process_info.hProcess); // Return new process id. return process_info.dwProcessId; } } // CreateProcess failed. return -1; #elif defined (CHORUS) return -1; // do it later!!! #else pid_t result = ACE_OS::fork (); switch (result) { case -1: // Error. return -1; case 0: // Child process. if (ACE_OS::execv (argv[0], argv) == -1) { ACE_ERROR ((LM_ERROR, "%p Exec failed\n")); // If the execv fails, this child needs to exit. ACE_OS::exit (errno); } default: // Server process. The fork succeeded. return result; } #endif /* ACE_WIN32 */ } #if defined (ACE_NEEDS_WRITEV) // "Fake" writev for sites without it. Note that this is thread-safe. extern "C" int writev (ACE_HANDLE handle, ACE_WRITEV_TYPE iov[], int n) { // ACE_TRACE ("::writev"); size_t length = 0; int i; // Determine the total length of all the buffers in . for (i = 0; i < n; i++) if (iov[i].iov_len < 0) return -1; else length += iov[i].iov_len; char *buf; #if defined (ACE_HAS_ALLOCA) buf = (char *) alloca (length); #else ACE_NEW_RETURN (buf, char[length], -1); #endif /* !defined (ACE_HAS_ALLOCA) */ char *ptr = buf; for (i = 0; i < n; i++) { ACE_OS::memcpy (ptr, iov[i].iov_base, iov[i].iov_len); ptr += iov[i].iov_len; } ssize_t result = ACE::send_n (handle, buf, length); #if !defined (ACE_HAS_ALLOCA) delete [] buf; #endif /* !defined (ACE_HAS_ALLOCA) */ return result; } #endif /* ACE_NEEDS_WRITEV */ #if defined (ACE_NEEDS_READV) // "Fake" readv for sites without it. Note that this is thread-safe. extern "C" int readv (ACE_HANDLE handle, ACE_READV_TYPE *iov, int n) { // ACE_TRACE ("readv"); ssize_t length = 0; int i; for (i = 0; i < n; i++) if (iov[i].iov_len < 0) return -1; else length += iov[i].iov_len; char *buf; #if defined (ACE_HAS_ALLOCA) buf = (char *) alloca (length); #else ACE_NEW_RETURN (buf, char[length], -1); #endif /* !defined (ACE_HAS_ALLOCA) */ length = ACE::recv_n (handle, buf, length); if (length != -1) { char *ptr = buf; int copyn = length; for (i = 0; i < n && copyn > 0; i++) { ACE_OS::memcpy (iov[i].iov_base, ptr, // iov_len is int on some platforms, size_t on others copyn > (int) iov[i].iov_len ? (size_t) iov[i].iov_len : (size_t) copyn); ptr += iov[i].iov_len; copyn -= iov[i].iov_len; } } #if !defined (ACE_HAS_ALLOCA) delete [] buf; #endif /* !defined (ACE_HAS_ALLOCA) */ return length; } #endif /* ACE_NEEDS_READV */ #if defined (ACE_NEEDS_FTRUNCATE) extern "C" int ftruncate (ACE_HANDLE handle, long len) { struct flock fl; fl.l_whence = 0; fl.l_len = 0; fl.l_start = len; fl.l_type = F_WRLCK; return ::fcntl (handle, F_FREESP, &fl); } #endif /* ACE_NEEDS_FTRUNCATE */ char * ACE_OS::mktemp (char *s) { // ACE_TRACE ("ACE_OS::mktemp"); #if defined (ACE_LACKS_MKTEMP) if (s == 0) // check for null template string failed! return 0; else { char *xxxxxx = ACE_OS::strstr (s, "XXXXXX"); if (xxxxxx == 0) // the template string doesn't contain "XXXXXX"! return s; else { char unique_letter = 'a'; struct stat sb; // Find an unused filename for this process. It is assumed // that the user will open the file immediately after // getting this filename back (so, yes, there is a race // condition if multiple threads in a process use the same // template). This appears to match the behavior of the // Solaris 2.5 mktemp(). ACE_OS::sprintf (xxxxxx, "%05d%c", getpid (), unique_letter); while (::stat (s, &sb) >= 0) { if (++unique_letter <= 'z') ACE_OS::sprintf (xxxxxx, "%05d%c", getpid (), unique_letter); else { // maximum of 26 unique files per template, per process ACE_OS::sprintf (xxxxxx, "%s", ""); return s; } } } return s; } #else return ::mktemp (s); #endif /* ACE_LACKS_MKTEMP */ } int ACE_OS::socket_init (int version_high, int version_low) { #if defined (ACE_WIN32) if (ACE_OS::socket_initialized_ == 0) { // cout << "WSAStartup" << endl; WORD version_requested = MAKEWORD (version_high, version_low); WSADATA wsa_data; int error = ::WSAStartup (version_requested, &wsa_data); if (error != 0) cerr << "WSAStartup failed, WSAGetLastError returned " << error << endl; ACE_OS::socket_initialized_ = 1; } #else version_high = version_high; version_low = version_low; #endif /* ACE_WIN32 */ return 0; } int ACE_OS::socket_fini (void) { #if defined (ACE_WIN32) if (ACE_OS::socket_initialized_ != 0) { // cout << "WSACleanup" << endl; if (::WSACleanup () != 0) { int error = ::WSAGetLastError (); cerr << "WSACleanup failed, WSAGetLastError returned " << error << endl; } ACE_OS::socket_initialized_ = 0; } #endif /* ACE_WIN32 */ return 0; } #if defined (ACE_LACKS_SYS_NERR) int sys_nerr = ERRMAX + 1; #endif /* ACE_LACKS_SYS_NERR */ #if defined (VXWORKS) #include /**/ /* for ::sp() */ // This global function can be used from the VxWorks shell to pass // arguments to a C main () function. // // usage: -> spa main, "arg1", "arg2" // // All arguments must be quoted, even numbers. int spa (FUNCPTR entry, ...) { static const unsigned int MAX_ARGS = 10; static char *argv[MAX_ARGS]; va_list pvar; unsigned int argc; // Hardcode a program name because the real one isn't available // through the VxWorks shell. argv[0] = "spa ():t"; // Peel off arguments to spa () and put into argv. va_arg () isn't // necessarily supposed to return 0 when done, though since the // VxWorks shell uses a fixed number (10) of arguments, it might 0 // the unused ones. This function could be used to increase that // limit, but then it couldn't depend on the trailing 0. So, the // number of arguments would have to be passed. va_start (pvar, entry); for (argc = 1; argc <= MAX_ARGS; ++argc) { argv[argc] = va_arg (pvar, char *); if (argv[argc] == 0) break; } if (argc > MAX_ARGS && argv[argc-1] != 0) { // try to read another arg, and warn user if the limit was exceeded if (va_arg (pvar, char *) != 0) ::fprintf (stderr, "spa(): number of arguments limited to %d\n", MAX_ARGS); } else { // fill unused argv slots with 0 to get rid of leftovers // from previous invocations for (unsigned int i = argc; i <= MAX_ARGS; ++i) argv[i] = 0; } int ret = ::sp (entry, argc, (int) argv, 0, 0, 0, 0, 0, 0, 0); va_end (pvar); // ::sp () returns the taskID on success: return 0 instead if // successful return ret > 0 ? 0 : ret; } #endif /* VXWORKS */ #if !defined (ACE_HAS_SIGINFO_T) siginfo_t::siginfo_t (ACE_HANDLE handle) : si_handle_ (handle), si_handles_ (&handle) { } siginfo_t::siginfo_t (ACE_HANDLE *handles) : si_handle_ (handles[0]), si_handles_ (handles) { } #endif /* ACE_HAS_SIGINFO_T */ pid_t ACE_OS::fork (const char *program_name) { // ACE_TRACE ("ACE_OS::fork"); #if defined (ACE_LACKS_EXEC) ACE_UNUSED_ARG (program_name); ACE_NOTSUP_RETURN (pid_t (-1)); #else pid_t pid = ::fork (); if (pid == 0) ACE_LOG_MSG->sync (program_name); return pid; #endif /* ACE_WIN32 */ } // This is necessary to work around nasty problems with MVS C++. extern "C" void ace_mutex_lock_cleanup_adapter (void *args) { ACE_OS::mutex_lock_cleanup (args); } ACE_Thread_ID::ACE_Thread_ID (ACE_thread_t thread_id, ACE_hthread_t thread_handle) : thread_id_ (thread_id), thread_handle_ (thread_handle) { } ACE_thread_t ACE_Thread_ID::id (void) { return this->thread_id_; } void ACE_Thread_ID::id (ACE_thread_t thread_id) { this->thread_id_ = thread_id; } ACE_hthread_t ACE_Thread_ID::handle (void) { return this->thread_handle_; } void ACE_Thread_ID::handle (ACE_hthread_t thread_handle) { this->thread_handle_ = thread_handle; } int ACE_Thread_ID::operator == (const ACE_Thread_ID &rhs) { return ACE_OS::thr_cmp (this->thread_handle_, rhs.thread_handle_) == 0 && ACE_OS::thr_equal (this->thread_id_, rhs.thread_id_) == 0; } int ACE_Thread_ID::operator != (const ACE_Thread_ID &rhs) { return !(*this == rhs); } int ACE_OS::inet_aton (const char *host_name, struct in_addr *addr) { long ip_addr = ACE_OS::inet_addr (host_name); if (ip_addr == (long) htonl ((ACE_UINT32) ~0) // Broadcast addresses are weird... && ACE_OS::strcmp (host_name, "255.255.255.255") != 0) return 0; else if (addr != 0) { ACE_OS::memcpy ((void *) addr, (void *) &ip_addr, sizeof ip_addr); return 1; } else return 1; } ssize_t ACE_OS::pread (ACE_HANDLE handle, void *buf, size_t nbytes, off_t offset) { #if defined (ACE_HAS_P_READ_WRITE) #if defined (ACE_WIN32) // This will work irrespective of whether the is in // OVERLAPPED mode or not. OVERLAPPED overlapped; overlapped.Internal = 0; overlapped.InternalHigh = 0; overlapped.Offset = offset; overlapped.OffsetHigh = 0; overlapped.hEvent = 0; DWORD bytes_written; // This is set to 0 byte WriteFile. if (::ReadFile (handle, buf, nbytes, &bytes_written, &overlapped)) return (ssize_t) bytes_written; else if (::GetLastError () == ERROR_IO_PENDING) if (::GetOverlappedResult (handle, &overlapped, &bytes_written, TRUE) == TRUE) return (ssize_t) bytes_written; return -1; #else return ::pread (handle, buf, nbytes, offset); #endif /* ACE_WIN32 */ #elif defined (ACE_HAS_THREADS) ACE_GUARD_RETURN (ACE_Thread_Mutex, ace_mon, ace_os_monitor_lock, -1); if (ACE_OS::lseek (handle, offset, SEEK_SET) == -1) return -1; else return ACE_OS::read (handle, buf, nbytes); #else ACE_UNUSED_ARG (handle); ACE_UNUSED_ARG (buf); ACE_UNUSED_ARG (nbytes); ACE_UNUSED_ARG (offset); ACE_NOTSUP_RETURN (-1); #endif /* ACE_HAD_P_READ_WRITE */ } ssize_t ACE_OS::pwrite (ACE_HANDLE handle, const void *buf, size_t nbytes, off_t offset) { #if defined (ACE_HAS_P_READ_WRITE) #if defined (ACE_WIN32) // This will work irrespective of whether the is in // OVERLAPPED mode or not. OVERLAPPED overlapped; overlapped.Internal = 0; overlapped.InternalHigh = 0; overlapped.Offset = offset; overlapped.OffsetHigh = 0; overlapped.hEvent = 0; DWORD bytes_written; // This is set to 0 byte WriteFile. if (::WriteFile (handle, buf, nbytes, &bytes_written, &overlapped)) return (ssize_t) bytes_written; else if (::GetLastError () == ERROR_IO_PENDING) if (::GetOverlappedResult (handle, &overlapped, &bytes_written, TRUE) == TRUE) return (ssize_t) bytes_written; return -1; #else return ::pwrite (handle, buf, nbytes, offset); #endif /* ACE_WIN32 */ #elif defined (ACE_HAS_THREADS) ACE_GUARD_RETURN (ACE_Thread_Mutex, ace_mon, ace_os_monitor_lock, -1); if (ACE_OS::lseek (handle, offset, SEEK_SET) == -1) return -1; else return ACE_OS::write (handle, buf, nbytes); #else ACE_UNUSED_ARG (handle); ACE_UNUSED_ARG (buf); ACE_UNUSED_ARG (nbytes); ACE_UNUSED_ARG (offset); ACE_NOTSUP_RETURN (-1); #endif /* ACE_HAD_P_READ_WRITE */ } time_t ACE_OS::mktime (struct tm *t) { // ACE_TRACE ("ACE_OS::asctime"); #if defined (ACE_HAS_MT_SAFE_MKTIME) || !defined (ACE_HAS_THREADS) ACE_OSCALL_RETURN (::mktime (t), time_t, (time_t) -1); #else ACE_GUARD_RETURN (ACE_Thread_Mutex, ace_mon, ace_os_monitor_lock, (time_t) -1); ACE_OSCALL_RETURN (::mktime (t), time_t, (time_t) -1); #endif /* ACE_HAS_MT_SAFE_MKTIME */ } #if !defined (ACE_HAS_THREADS) || !defined (ACE_HAS_STHREADS) // The ACE_HAS_THREADS and ACE_HAS_STHREADS case is in OS.i int ACE_OS::rwlock_init (ACE_rwlock_t *rw, int type, LPCTSTR name, void *arg) { // ACE_TRACE ("ACE_OS::rwlock_init"); type = type; name = name; #if defined (ACE_HAS_THREADS) #if !defined (ACE_HAS_STHREADS) /* NT, POSIX, and VxWorks don't support this natively. */ ACE_UNUSED_ARG (name); int result = -1; // Since we cannot use the user specified name for all three // objects, we will create three complete new names TCHAR name1[ACE_UNIQUE_NAME_LEN]; TCHAR name2[ACE_UNIQUE_NAME_LEN]; TCHAR name3[ACE_UNIQUE_NAME_LEN]; ACE::unique_name ((const void *) &rw->lock_, name1, ACE_UNIQUE_NAME_LEN); ACE::unique_name ((const void *) &rw->waiting_readers_, name2, ACE_UNIQUE_NAME_LEN); ACE::unique_name ((const void *) &rw->waiting_writers_, name3, ACE_UNIQUE_NAME_LEN); if (ACE_OS::mutex_init (&rw->lock_, type, name1, arg) == 0 && ACE_OS::cond_init (&rw->waiting_readers_, type, name2, arg) == 0 && ACE_OS::cond_init (&rw->waiting_writers_, type, name3, arg) == 0) { // Success! rw->ref_count_ = 0; rw->num_waiting_writers_ = 0; rw->num_waiting_readers_ = 0; result = 0; } if (result == -1) { int error = errno; ACE_OS::mutex_destroy (&rw->lock_); ACE_OS::cond_destroy (&rw->waiting_readers_); ACE_OS::cond_destroy (&rw->waiting_writers_); errno = error; } return result; #endif /* ! ACE_HAS_STHREADS */ #else ACE_UNUSED_ARG (rw); ACE_UNUSED_ARG (type); ACE_UNUSED_ARG (name); ACE_UNUSED_ARG (arg); ACE_NOTSUP_RETURN (-1); #endif /* ACE_HAS_THREADS */ } #endif /* ! ACE_HAS_THREADS || ! ACE_HAS_STHREADS */