/* -*- C++ -*- */ //============================================================================= /** * @file POSIX_Proactor.h * * $Id$ * * @author Irfan Pyarali * @author Tim Harrison * @author Alexander Babu Arulanthu * @author Roger Tragin * @author Alexander Libman */ //============================================================================= #ifndef ACE_POSIX_PROACTOR_H #define ACE_POSIX_PROACTOR_H #include "ace/Proactor_Impl.h" #if defined (ACE_HAS_AIO_CALLS) // POSIX implementation of Proactor depends on the family of // system calls. #include "ace/Free_List.h" #include "ace/Pipe.h" #include "ace/POSIX_Asynch_IO.h" #include "ace/Unbounded_Queue.h" #define ACE_AIO_MAX_SIZE 2048 #define ACE_AIO_DEFAULT_SIZE 1024 /** * @class ACE_POSIX_Proactor * * @brief POSIX implementation of the Proactor. * * There are two different strategies by which Proactor can get * to know the completion of operations. One is based on * Asynchronous I/O Control Blocks (AIOCB) where a list of * AIOCBs are stored and completion status of the corresponding * operations are queried on them. The other one is based on * POSIX Real Time signals. This class abstracts out the common * code needed for both the strategies. and * specialize this class for each strategy. */ class ACE_Export ACE_POSIX_Proactor : public ACE_Proactor_Impl { /** * For operation, this handler class does * the actual work, has to register the real-time signal with the * Proactor. */ friend class ACE_POSIX_SIG_Asynch_Accept_Handler; public: enum Proactor_Type { PROACTOR_POSIX = 0, // base class type PROACTOR_AIOCB = 1, PROACTOR_SIG = 2, PROACTOR_SUN = 3 }; enum SystemType // open for future extention { OS_UNDEFINED= 0x0000, OS_WIN = 0x0100, // for future OS_WIN_NT = OS_WIN | 0x0001, OS_WIN_2000 = OS_WIN | 0x0002, OS_SUN = 0x0200, // Sun Solaris family OS_SUN_55 = OS_SUN | 0x0001, OS_SUN_56 = OS_SUN | 0x0002, OS_SUN_57 = OS_SUN | 0x0004, OS_SUN_58 = OS_SUN | 0x0008, OS_HPUX = 0x0400, // HPUX family OS_HPUX_11 = OS_HPUX | 0x0001, OS_LINUX = 0x0800, // Linux family OS_FREEBSD = 0x1000 // FreeBSD family }; virtual Proactor_Type get_impl_type (void); /// Virtual destructor. virtual ~ACE_POSIX_Proactor (void); /// Close down the Proactor. virtual int close (void); /// This function is a no-op function for Unix systems. Returns 0. virtual int register_handle (ACE_HANDLE handle, const void *completion_key); /** * Post a result to the completion port of the Proactor. If errors * occur, the result will be deleted by this method. If successful, * the result will be deleted by the Proactor when the result is * removed from the completion port. Therefore, the result should * have been dynamically allocated and should be orphaned by the * user once this method is called. */ virtual int post_completion (ACE_POSIX_Asynch_Result *result) = 0; /// @@ This is a no-op on POSIX platforms. Returns 0. int wake_up_dispatch_threads (void); /// @@ This is a no-op on POSIX platforms. Returns 0. int close_dispatch_threads (int wait); /// @@ This is a no-op on POSIX platforms. Returns 0. size_t number_of_threads (void) const; void number_of_threads (size_t threads); /// This is a no-op in POSIX. Returns ACE_INVALID_HANDLE. virtual ACE_HANDLE get_handle (void) const; // Methods used to create Asynch_IO_Result objects. We create the right // objects here in these methods. virtual ACE_Asynch_Read_Stream_Result_Impl *create_asynch_read_stream_result (ACE_Handler &handler, ACE_HANDLE handle, ACE_Message_Block &message_block, u_long bytes_to_read, const void *act, ACE_HANDLE event = ACE_INVALID_HANDLE, int priority = 0, int signal_number = ACE_SIGRTMIN); virtual ACE_Asynch_Write_Stream_Result_Impl *create_asynch_write_stream_result (ACE_Handler &handler, ACE_HANDLE handle, ACE_Message_Block &message_block, u_long bytes_to_write, const void *act, ACE_HANDLE event = ACE_INVALID_HANDLE, int priority = 0, int signal_number = ACE_SIGRTMIN); virtual ACE_Asynch_Read_File_Result_Impl *create_asynch_read_file_result (ACE_Handler &handler, ACE_HANDLE handle, ACE_Message_Block &message_block, u_long bytes_to_read, const void *act, u_long offset, u_long offset_high, ACE_HANDLE event = ACE_INVALID_HANDLE, int priority = 0, int signal_number = ACE_SIGRTMIN); virtual ACE_Asynch_Write_File_Result_Impl *create_asynch_write_file_result (ACE_Handler &handler, ACE_HANDLE handle, ACE_Message_Block &message_block, u_long bytes_to_write, const void *act, u_long offset, u_long offset_high, ACE_HANDLE event = ACE_INVALID_HANDLE, int priority = 0, int signal_number = ACE_SIGRTMIN); virtual ACE_Asynch_Read_Dgram_Result_Impl *create_asynch_read_dgram_result (ACE_Handler &handler, ACE_HANDLE handle, ACE_Message_Block *message_block, size_t bytes_to_read, int flags, int protocol_family, const void* act, ACE_HANDLE event = ACE_INVALID_HANDLE, int priority = 0, int signal_number = ACE_SIGRTMIN); virtual ACE_Asynch_Write_Dgram_Result_Impl *create_asynch_write_dgram_result (ACE_Handler &handler, ACE_HANDLE handle, ACE_Message_Block *message_block, size_t bytes_to_write, int flags, const void* act, ACE_HANDLE event = ACE_INVALID_HANDLE, int priority = 0, int signal_number = ACE_SIGRTMIN); virtual ACE_Asynch_Accept_Result_Impl *create_asynch_accept_result (ACE_Handler &handler, ACE_HANDLE listen_handle, ACE_HANDLE accept_handle, ACE_Message_Block &message_block, u_long bytes_to_read, const void *act, ACE_HANDLE event = ACE_INVALID_HANDLE, int priority = 0, int signal_number = ACE_SIGRTMIN); virtual ACE_Asynch_Transmit_File_Result_Impl *create_asynch_transmit_file_result (ACE_Handler &handler, ACE_HANDLE socket, ACE_HANDLE file, ACE_Asynch_Transmit_File::Header_And_Trailer *header_and_trailer, u_long bytes_to_write, u_long offset, u_long offset_high, u_long bytes_per_send, u_long flags, const void *act, ACE_HANDLE event = ACE_INVALID_HANDLE, int priority = 0, int signal_number = ACE_SIGRTMIN); /// Create a timer result object which can be used with the Timer /// mechanism of the Proactor. virtual ACE_Asynch_Result_Impl *create_asynch_timer (ACE_Handler &handler, const void *act, const ACE_Time_Value &tv, ACE_HANDLE event = ACE_INVALID_HANDLE, int priority = 0, int signal_number = ACE_SIGRTMIN); protected: /// Constructor. ACE_POSIX_Proactor (void); /** * Protect against structured exceptions caused by user code when * dispatching handles. The is not very useful * compared to that can be associated each asynchronous * operation. is implemented right now for the * POSIX Proators. */ void application_specific_code (ACE_POSIX_Asynch_Result *asynch_result, u_long bytes_transferred, int success, const void *completion_key, u_long error); /** * Post completions to the completion port so that all * threads can wake up. This is used in conjunction with the * . */ virtual int post_wakeup_completions (int how_many); protected: /// Handler to handle the wakeups. This works in conjunction with the /// . ACE_Handler wakeup_handler_; int os_id_ ; }; // Forward declarations. class ACE_AIOCB_Notify_Pipe_Manager; /** * @class ACE_POSIX_AIOCB_Proactor * * @brief This Proactor makes use of Asynchronous I/O Control Blocks * (AIOCB) to notify/get the completion status of the * operations issued. */ class ACE_Export ACE_POSIX_AIOCB_Proactor : public ACE_POSIX_Proactor { /// Handler needs to call application specific code. friend class ACE_AIOCB_Notify_Pipe_Manager; /// This class does the registering of Asynch Operations with the /// Proactor which is necessary in the AIOCB strategy. friend class ACE_POSIX_AIOCB_Asynch_Operation; // friend class ACE_POSIX_AIOCB_Asynch_Accept_Handler; For // operation class, this helper class takes care of // doing the . public: /// Constructor defines max number asynchronous operations /// which can be started at the same time ACE_POSIX_AIOCB_Proactor (size_t nmaxop = ACE_AIO_DEFAULT_SIZE); virtual Proactor_Type get_impl_type (void); /// Destructor. virtual ~ACE_POSIX_AIOCB_Proactor (void); /** * Dispatch a single set of events. If elapses before * any events occur, return 0. Return 1 on success i.e., when a * completion is dispatched, non-zero (-1) on errors and errno is * set accordingly. */ virtual int handle_events (ACE_Time_Value &wait_time); /** * Block indefinitely until at least one event is dispatched. * Dispatch a single set of events. If elapses before * any events occur, return 0. Return 1 on success i.e., when a * completion is dispatched, non-zero (-1) on errors and errno is * set accordingly. */ virtual int handle_events (void); /// Post a result to the completion port of the Proactor. virtual int post_completion (ACE_POSIX_Asynch_Result *result); // = Methods used to create Asynch_IO objects. We create the right // objects here in these methods. virtual ACE_Asynch_Read_Stream_Impl *create_asynch_read_stream (void); virtual ACE_Asynch_Write_Stream_Impl *create_asynch_write_stream (void); virtual ACE_Asynch_Read_Dgram_Impl *create_asynch_read_dgram (void); virtual ACE_Asynch_Write_Dgram_Impl *create_asynch_write_dgram (void); virtual ACE_Asynch_Read_File_Impl *create_asynch_read_file (void); virtual ACE_Asynch_Write_File_Impl *create_asynch_write_file (void); virtual ACE_Asynch_Accept_Impl *create_asynch_accept (void); virtual ACE_Asynch_Transmit_File_Impl *create_asynch_transmit_file (void); /** * This method should be called from * ACE_POSIX_Asynch_Operation::cancel() * instead of usual ::aio_cancel. * For all deferred AIO requests with handle "h" * it removes its from the lists and notifies user. * For all running AIO requests with handle "h" * it calls ::aio_cancel. According to the POSIX standards * we will receive ECANCELED for all ::aio_canceled AIO requests * later on return from ::aio_suspend */ virtual int cancel_aio (ACE_HANDLE h); protected: /// Special constructor for ACE_SUN_Proactor /// and ACE_POSIX_SIG_Proactor ACE_POSIX_AIOCB_Proactor (size_t nmaxop, ACE_POSIX_Proactor::Proactor_Type ptype); /// Call these methods from derived class when virtual table is /// built. void create_notify_manager (void); void delete_notify_manager (void); /// Define the maximum number of asynchronous I/O requests /// for the current OS void check_max_aio_num (void) ; /// To identify requests from Notify_Pipe_Manager void set_notify_handle (ACE_HANDLE h); /** * Dispatch a single set of events. If elapses * before any events occur, return 0. Return 1 if a completion * dispatched. Return -1 on errors. */ virtual int handle_events (u_long milli_seconds); /// We will call the base class's application_specific_code from /// here. void application_specific_code (ACE_POSIX_Asynch_Result *asynch_result, u_long bytes_transferred, int success, const void *completion_key, u_long error); virtual int register_and_start_aio (ACE_POSIX_Asynch_Result *result, int op); /// Op code now is saved in ACE_POSIX_Asynch_Result virtual int start_aio (ACE_POSIX_Asynch_Result *result); /// Start deferred AIO if necessary int start_deferred_aio(); /// Cancel running or deferred AIO virtual int cancel_aiocb ( ACE_POSIX_Asynch_Result * result ); /// Extract the results of aio. ACE_POSIX_Asynch_Result *find_completed_aio (int &error_status, int &return_status, size_t &index, size_t &count); /// Find free slot to store result and aiocb pointer virtual int allocate_aio_slot (ACE_POSIX_Asynch_Result *result); /// Notify queue of "post_completed" ACE_POSIX_Asynch_Results /// called from post_completion method virtual int notify_completion ( int sig_num ); /// Put "post_completed" result into the internal queue int putq_result (ACE_POSIX_Asynch_Result *result); /// Get "post_completed" result from the internal queue ACE_POSIX_Asynch_Result * getq_result (void); /// Clear the internal results queue int clear_result_queue (void); /// Process the internal results queue int process_result_queue (void); /// This class takes care of doing when we use /// AIO_CONTROL_BLOCKS strategy. ACE_AIOCB_Notify_Pipe_Manager *aiocb_notify_pipe_manager_; /// Use a dynamically allocated array to keep track of all the aio's /// issued currently. aiocb **aiocb_list_; ACE_POSIX_Asynch_Result **result_list_; /// To maintain the maximum size of the array (list). size_t aiocb_list_max_size_; /// To maintain the current size of the array (list). size_t aiocb_list_cur_size_; /// Mutex to protect work with lists. ACE_SYNCH_MUTEX mutex_; /// The purpose of this member is only to identify asynchronous request /// from NotifyManager. We will reserve for it always slot 0 /// in the list of aiocb's to be sure that don't lose notifications. ACE_HANDLE notify_pipe_read_handle_ ; /// number of ACE_POSIX_Asynch_Result's waiting for start /// i.e. deferred AIOs size_t num_deferred_aiocb_ ; /// Number active,i.e. running requests size_t num_started_aio_ ; /// Queue which keeps "post_completed" ACE_POSIX_Asynch_Result's ACE_Unbounded_Queue result_queue_; }; /** * @class ACE_POSIX_SIG_Proactor * * @brief This Proactor implementation does compeltion querying using * POSIX Real Time signals. / call is * used to get the notify/get the completions. * The real-time signals that are going to be used with this * Proactor should be given apriori in the constructor, so that * those signals can be masked from asynchornous delivery. */ class ACE_Export ACE_POSIX_SIG_Proactor : public ACE_POSIX_AIOCB_Proactor { /** * This class does the registering of Asynch Operations with the * Proactor which is necessary in the SIG strategy, because we need * to store the signal number. */ friend class ACE_POSIX_SIG_Asynch_Operation; public: /** * This constructor masks only the * real-time signal. Only this signal should be used to issue * asynchronous operations using this Proctor. */ ACE_POSIX_SIG_Proactor (size_t nmaxop = ACE_AIO_DEFAULT_SIZE); virtual Proactor_Type get_impl_type (void); /** * This constructor should be used to tell the Proactor to mask and * wait for the real-time signals specified in this set. Only these * signals should be used by the asynchronous operations when they * use this Proactor. */ ACE_POSIX_SIG_Proactor (const sigset_t mask_set, size_t nmaxop = ACE_AIO_DEFAULT_SIZE); /// Destructor. virtual ~ACE_POSIX_SIG_Proactor (void); /** * Dispatch a single set of events. If elapses before * any events occur, return 0. Return 1 on success i.e., when a * completion is dispatched, non-zero (-1) on errors and errno is * set accordingly. */ virtual int handle_events (ACE_Time_Value &wait_time); /** * Block indefinitely until at least one event is dispatched. * Dispatch a single set of events. If elapses before * any events occur, return 0. Return 1 on success i.e., when a * completion is dispatched, non-zero (-1) on errors and errno is * set accordingly. */ virtual int handle_events (void); /// Post a result to the completion port of the Proactor. /// now it is implemented in base ACE_POSIX_AIOCB_Proactor class ///virtual int post_completion (ACE_POSIX_Asynch_Result *result); /** * If is -1, check with the Proactor and use one of * the signals that is present in the mask set (i.e. the signals for * which the Proactor will be waiting) of the Proactor. If there are * more than one signal, the higher numbered signal will be chosen. */ virtual ACE_Asynch_Result_Impl *create_asynch_timer (ACE_Handler &handler, const void *act, const ACE_Time_Value &tv, ACE_HANDLE event = ACE_INVALID_HANDLE, int priority = 0, int signal_number = ACE_SIGRTMIN); protected: /// To setup the handler for a real-time signbal. int setup_signal_handler (int signal_number) const; /// To mask all the specified signals in a thread. int mask_signals (const sigset_t *signals) const; /** * Dispatch a single set of events. If elapses * before any events occur, return 0. Return 1 if a completion is * dispatched. Return -1 on errors. */ virtual int handle_events (u_long milli_seconds); /** * These signals are used for completion notification by the * Proactor. The signals specified while issueing s are stored here in this set. These signals are masked * for a thread when it calls the Proactor::handle_events. */ /// Find free slot to store result and aiocb pointer virtual int allocate_aio_slot (ACE_POSIX_Asynch_Result *result); /// Notify queue of "post_completed" ACE_POSIX_Asynch_Results /// called from post_completion method virtual int notify_completion ( int sig_num ); sigset_t RT_completion_signals_; }; /** * @class ACE_POSIX_Asynch_Timer * * @brief This class is posted to the completion port when a timer * expires. When the of this object is * called, the 's method will be * called. */ class ACE_Export ACE_POSIX_Asynch_Timer : public ACE_POSIX_Asynch_Result { /// The factory method for this class is with the POSIX_Proactor /// class. friend class ACE_POSIX_Proactor; friend class ACE_POSIX_SIG_Proactor; protected: /// Constructor. ACE_POSIX_Asynch_Timer (ACE_Handler &handler, const void *act, const ACE_Time_Value &tv, ACE_HANDLE event = ACE_INVALID_HANDLE, int priority = 0, int signal_number = ACE_SIGRTMIN); /// Destructor. virtual ~ACE_POSIX_Asynch_Timer (void) {} /// This method calls the 's handle_timeout method. virtual void complete (u_long bytes_transferred, int success, const void *completion_key, u_long error = 0); /// Time value requested by caller ACE_Time_Value time_; }; #if defined (__ACE_INLINE__) #include "ace/POSIX_Proactor.i" #endif /* __ACE_INLINE__ */ #endif /* ACE_HAS_AIO_CALLS */ #endif /* ACE_POSIX_PROACTOR_H */