// $Id$ // RB_Tree.cpp #ifndef ACE_RB_TREE_C #define ACE_RB_TREE_C #include "ace/RB_Tree.h" #include "ace/SString.h" #if !defined (ACE_LACKS_PRAGMA_ONCE) # pragma once #endif /* ACE_LACKS_PRAGMA_ONCE */ #if !defined (__ACE_INLINE__) #include "ace/RB_Tree.i" #endif /* __ACE_INLINE__ */ #include "ace/Log_Msg.h" ACE_RCSID (ace, RB_Tree, "$Id$") // Constructor. template ACE_RB_Tree_Node::ACE_RB_Tree_Node (const EXT_ID &k, const INT_ID &t) : k_ (k), t_ (t), color_ (RED), parent_ (0), left_ (0), right_ (0) { ACE_TRACE ("ACE_RB_Tree_Node::ACE_RB_Tree_Node (const EXT_ID &k, const INT_ID &t)"); } // Destructor. template ACE_RB_Tree_Node::~ACE_RB_Tree_Node (void) { ACE_TRACE ("ACE_RB_Tree_Node::~ACE_RB_Tree_Node"); // Delete left sub-tree. delete left_; // Delete right sub_tree. delete right_; } // Constructor. template ACE_RB_Tree::ACE_RB_Tree (ACE_Allocator *alloc) : allocator_ (alloc), root_ (0), current_size_ (0) { ACE_TRACE ("ACE_RB_Tree::" "ACE_RB_Tree (ACE_Allocator *alloc)"); if (this->open (alloc) == -1) ACE_ERROR ((LM_ERROR, ACE_LIB_TEXT ("ACE_RB_Tree::ACE_RB_Tree\n"))); } // Copy constructor. template ACE_RB_Tree::ACE_RB_Tree (const ACE_RB_Tree &rbt) : allocator_ (rbt.allocator_), root_ (0), current_size_ (0) { ACE_TRACE ("ACE_RB_Tree::" "ACE_RB_Tree (const ACE_RB_Tree &rbt)"); ACE_WRITE_GUARD (ACE_LOCK, ace_mon, this->lock_); // Make a deep copy of the passed tree. ACE_RB_Tree_Iterator iter(rbt); for (iter.first (); iter.is_done () == 0; iter.next ()) insert_i (*(iter.key ()), *(iter.item ())); } // Destructor. template ACE_RB_Tree::~ACE_RB_Tree () { ACE_TRACE ("ACE_RB_Tree::~ACE_RB_Tree"); // Use the locked public method, to be totally safe, as the class // can be used with an allocator and placement new. this->close (); } // Assignment operator. template void ACE_RB_Tree::operator = (const ACE_RB_Tree &rbt) { ACE_TRACE ("ACE_RB_Tree::operator ="); ACE_WRITE_GUARD (ACE_LOCK, ace_mon, this->lock_); if (this != &rbt) { // Clear out the existing tree. close_i (); // Make a deep copy of the passed tree. ACE_RB_Tree_Iterator iter(rbt); for (iter.first (); iter.is_done () == 0; iter.next ()) insert_i (*(iter.key ()), *(iter.item ())); // Use the same allocator as the rhs. allocator_ = rbt.allocator_; } } // Less than comparison function for keys, default functor // implementation returns 1 if k1 < k2, 0 otherwise. template int ACE_RB_Tree::lessthan (const EXT_ID &k1, const EXT_ID &k2) { ACE_TRACE ("ACE_RB_Tree::lessthan"); return this->compare_keys_ (k1, k2); } // Method for right rotation of the tree about a given node. template void ACE_RB_Tree::RB_rotate_right (ACE_RB_Tree_Node *x) { ACE_TRACE ("ACE_RB_Tree::RB_rotate_right"); if (!x) ACE_ERROR ((LM_ERROR, ACE_LIB_TEXT ("%p\n"), ACE_LIB_TEXT ("\nerror: x is a null pointer in ") ACE_LIB_TEXT ("ACE_RB_Tree::RB_rotate_right\n"))); else if (! (x->left())) ACE_ERROR ((LM_ERROR, ACE_LIB_TEXT ("%p\n"), ACE_LIB_TEXT ("\nerror: x->left () is a null pointer in ") ACE_LIB_TEXT ("ACE_RB_Tree::RB_rotate_right\n"))); else { ACE_RB_Tree_Node * y; y = x->left (); x->left (y->right ()); if (y->right ()) y->right ()->parent (x); y->parent (x->parent ()); if (x->parent ()) { if (x == x->parent ()->right ()) x->parent ()->right (y); else x->parent ()->left (y); } else root_ = y; y->right (x); x->parent (y); } } // Method for left rotation of the tree about a given node. template void ACE_RB_Tree::RB_rotate_left (ACE_RB_Tree_Node * x) { ACE_TRACE ("ACE_RB_Tree::RB_rotate_left"); if (! x) ACE_ERROR ((LM_ERROR, ACE_LIB_TEXT ("%p\n"), ACE_LIB_TEXT ("\nerror: x is a null pointer in ") ACE_LIB_TEXT ("ACE_RB_Tree::RB_rotate_left\n"))); else if (! (x->right())) ACE_ERROR ((LM_ERROR, ACE_LIB_TEXT ("%p\n"), ACE_LIB_TEXT ("\nerror: x->right () is a null pointer ") ACE_LIB_TEXT ("in ACE_RB_Tree::RB_rotate_left\n"))); else { ACE_RB_Tree_Node * y; y = x->right (); x->right (y->left ()); if (y->left ()) y->left ()->parent (x); y->parent (x->parent ()); if (x->parent ()) { if (x == x->parent ()->left ()) x->parent ()->left (y); else x->parent ()->right (y); } else root_ = y; y->left (x); x->parent (y); } } // Method for restoring Red-Black properties after a specific deletion case. template void ACE_RB_Tree:: RB_delete_fixup (ACE_RB_Tree_Node *x, ACE_RB_Tree_Node *parent) { ACE_TRACE ("ACE_RB_Tree::RB_delete_fixup"); while (x != this->root_ && (!x || x->color () == ACE_RB_Tree_Node_Base::BLACK)) { if (x == parent->left ()) { ACE_RB_Tree_Node *w = parent->right (); if (w && w->color () == ACE_RB_Tree_Node_Base::RED) { w->color (ACE_RB_Tree_Node_Base::BLACK); parent->color (ACE_RB_Tree_Node_Base::RED); RB_rotate_left (parent); w = parent->right (); } // CLR pp. 263 says that nil nodes are implicitly colored BLACK if (w && (!w->left () || w->left ()->color () == ACE_RB_Tree_Node_Base::BLACK) && (!w->right () || w->right ()->color () == ACE_RB_Tree_Node_Base::BLACK)) { w->color (ACE_RB_Tree_Node_Base::RED); x = parent; parent = x->parent (); } else { // CLR pp. 263 says that nil nodes are implicitly colored BLACK if (w && (!w->right () || w->right ()->color () == ACE_RB_Tree_Node_Base::BLACK)) { if (w->left ()) w->left ()->color (ACE_RB_Tree_Node_Base::BLACK); w->color (ACE_RB_Tree_Node_Base::RED); RB_rotate_right (w); w = parent->right (); } if (w) { w->color (parent->color ()); if (w->right ()) w->right ()->color (ACE_RB_Tree_Node_Base::BLACK); } parent->color (ACE_RB_Tree_Node_Base::BLACK); RB_rotate_left (parent); x = root_; } } else { ACE_RB_Tree_Node *w = parent->left (); if (w && w->color () == ACE_RB_Tree_Node_Base::RED) { w->color (ACE_RB_Tree_Node_Base::BLACK); parent->color (ACE_RB_Tree_Node_Base::RED); RB_rotate_right (parent); w = parent->left (); } // CLR pp. 263 says that nil nodes are implicitly colored BLACK if (w && (!w->left () || w->left ()->color () == ACE_RB_Tree_Node_Base::BLACK) && (!w->right () || w->right ()->color () == ACE_RB_Tree_Node_Base::BLACK)) { w->color (ACE_RB_Tree_Node_Base::RED); x = parent; parent = x->parent (); } else { // CLR pp. 263 says that nil nodes are implicitly colored BLACK if (w && (!w->left () || w->left ()->color () == ACE_RB_Tree_Node_Base::BLACK)) { w->color (ACE_RB_Tree_Node_Base::RED); if (w->right ()) w->right ()->color (ACE_RB_Tree_Node_Base::BLACK); RB_rotate_left (w); w = parent->left (); } if (w) { w->color (parent->color ()); if (w->left ()) w->left ()->color (ACE_RB_Tree_Node_Base::BLACK); } parent->color (ACE_RB_Tree_Node_Base::BLACK); RB_rotate_right (parent); x = root_; } } } if (x) x->color (ACE_RB_Tree_Node_Base::BLACK); } // Return a pointer to a matching node if there is one, a pointer to // the node under which to insert the item if the tree is not empty // and there is no such match, or 0 if the tree is empty. template ACE_RB_Tree_Node * ACE_RB_Tree::find_node (const EXT_ID &k, ACE_RB_Tree_Base::RB_SearchResult &result) { ACE_TRACE ("ACE_RB_Tree::find_node"); // Start at the root. ACE_RB_Tree_Node *current = root_; while (current) { // While there are more nodes to examine. if (this->lessthan (current->key (), k)) { // If the search key is greater than the current node's key. if (current->right ()) // If the right subtree is not empty, search to the right. current = current->right (); else { // If the right subtree is empty, we're done searching, // and are positioned to the left of the insertion point. result = LEFT; break; } } else if (this->lessthan (k, current->key ())) { // Else if the search key is less than the current node's key. if (current->left ()) // If the left subtree is not empty, search to the left. current = current->left (); else { // If the left subtree is empty, we're done searching, // and are positioned to the right of the insertion point. result = RIGHT; break; } } else { // If the keys match exactly, we're done as well. result = EXACT; break; } } return current; } // Rebalance the tree after insertion of a node. template void ACE_RB_Tree::RB_rebalance (ACE_RB_Tree_Node * x) { ACE_TRACE ("ACE_RB_Tree::RB_rebalance"); ACE_RB_Tree_Node *y = 0; while (x && x->parent () && x->parent ()->color () == ACE_RB_Tree_Node_Base::RED) { if (! x->parent ()->parent ()) { // If we got here, something is drastically wrong! ACE_ERROR ((LM_ERROR, ACE_LIB_TEXT ("%p\n"), ACE_LIB_TEXT ("\nerror: parent's parent is null in ") ACE_LIB_TEXT ("ACE_RB_Tree::RB_rebalance\n"))); return; } if (x->parent () == x->parent ()->parent ()->left ()) { y = x->parent ()->parent ()->right (); if (y && y->color () == ACE_RB_Tree_Node_Base::RED) { // Handle case 1 (see CLR book, pp. 269). x->parent ()->color (ACE_RB_Tree_Node_Base::BLACK); y->color (ACE_RB_Tree_Node_Base::BLACK); x->parent ()->parent ()->color (ACE_RB_Tree_Node_Base::RED); x = x->parent ()->parent (); } else { if (x == x->parent ()->right ()) { // Transform case 2 into case 3 (see CLR book, pp. 269). x = x->parent (); RB_rotate_left (x); } // Handle case 3 (see CLR book, pp. 269). x->parent ()->color (ACE_RB_Tree_Node_Base::BLACK); x->parent ()->parent ()->color (ACE_RB_Tree_Node_Base::RED); RB_rotate_right (x->parent ()->parent ()); } } else { y = x->parent ()->parent ()->left (); if (y && y->color () == ACE_RB_Tree_Node_Base::RED) { // Handle case 1 (see CLR book, pp. 269). x->parent ()->color (ACE_RB_Tree_Node_Base::BLACK); y->color (ACE_RB_Tree_Node_Base::BLACK); x->parent ()->parent ()->color (ACE_RB_Tree_Node_Base::RED); x = x->parent ()->parent (); } else { if (x == x->parent ()->left ()) { // Transform case 2 into case 3 (see CLR book, pp. 269). x = x->parent (); RB_rotate_right (x); } // Handle case 3 (see CLR book, pp. 269). x->parent ()->color (ACE_RB_Tree_Node_Base::BLACK); x->parent ()->parent ()->color (ACE_RB_Tree_Node_Base::RED); RB_rotate_left (x->parent ()->parent ()); } } } } // Method to find the successor node of the given node in the tree. template ACE_RB_Tree_Node * ACE_RB_Tree::RB_tree_successor (ACE_RB_Tree_Node *x) const { ACE_TRACE ("ACE_RB_Tree::RB_tree_successor"); if (x == 0) return 0; if (x->right ()) return RB_tree_minimum (x->right ()); ACE_RB_Tree_Node *y = x->parent (); while ((y) && (x == y->right ())) { x = y; y = y->parent (); } return y; } // Method to find the predecessor node of the given node in the tree. template ACE_RB_Tree_Node * ACE_RB_Tree::RB_tree_predecessor (ACE_RB_Tree_Node *x) const { ACE_TRACE ("ACE_RB_Tree::RB_tree_predecessor"); if (x == 0) return 0; if (x->left ()) return RB_tree_maximum (x->left ()); ACE_RB_Tree_Node *y = x->parent (); while ((y) && (x == y->left ())) { x = y; y = y->parent (); } return y; } // Method to find the minimum node of the subtree rooted at the given node. template ACE_RB_Tree_Node * ACE_RB_Tree::RB_tree_minimum (ACE_RB_Tree_Node *x) const { ACE_TRACE ("ACE_RB_Tree::RB_tree_minimum"); while ((x) && (x->left ())) x = x->left (); return x; } // Method to find the maximum node of the subtree rooted at the given node. template ACE_RB_Tree_Node * ACE_RB_Tree::RB_tree_maximum (ACE_RB_Tree_Node *x) const { ACE_TRACE ("ACE_RB_Tree::RB_tree_maximum"); while ((x) && (x->right ())) x = x->right (); return x; } // Close down an RB_Tree. this method should only be called with // locks already held. template int ACE_RB_Tree::close_i () { ACE_TRACE ("ACE_RB_Tree::close_i"); delete root_; current_size_ = 0; root_ = 0; return 0; } // Returns a pointer to the item corresponding to the given key, or 0 // if it cannot find the key in the tree. This method should only be // called with locks already held. template int ACE_RB_Tree::find_i (const EXT_ID &k, ACE_RB_Tree_Node* &entry, int find_exact) { ACE_TRACE ("ACE_RB_Tree::find_i"); // Try to find a match. RB_SearchResult result = LEFT; ACE_RB_Tree_Node *current = find_node (k, result); if (current) { // Found a match if (!find_exact || result == EXACT) entry = current; // Assign the entry for any match. return (result == EXACT ? 0 : -1); } else // The node is not there. return -1; } // Inserts a *copy* of the key and the item into the tree: both the // key type EXT_ID and the item type INT_ID must have well defined // semantics for copy construction and < comparison. This method // returns a pointer to the inserted item copy, or 0 if an error // occurred. NOTE: if an identical key already exists in the tree, no // new item is created, and the returned pointer addresses the // existing item associated with the existing key. This method should // only be called with locks already held. template INT_ID * ACE_RB_Tree::insert_i (const EXT_ID &k, const INT_ID &t) { ACE_TRACE ("ACE_RB_Tree::insert_i (const EXT_ID &k, const INT_ID &t)"); // Find the closest matching node, if there is one. RB_SearchResult result = LEFT; ACE_RB_Tree_Node *current = find_node (k, result); if (current) { // If the keys match, just return a pointer to the node's item. if (result == EXACT) return ¤t->item (); // Otherwise if we're to the left of the insertion point, insert // into the right subtree. else if (result == LEFT) { if (current->right ()) { // If there is already a right subtree, complain. ACE_ERROR_RETURN ((LM_ERROR, ACE_LIB_TEXT ("%p\n"), ACE_LIB_TEXT ("\nright subtree already present in ") ACE_LIB_TEXT ("ACE_RB_Tree::insert_i\n")), 0); } else { // The right subtree is empty: insert new node there. ACE_RB_Tree_Node *tmp = 0; ACE_NEW_RETURN (tmp, (ACE_RB_Tree_Node) (k, t), 0); current->right (tmp); // If the node was successfully inserted, set its // parent, rebalance the tree, color the root black, and // return a pointer to the inserted item. INT_ID *item = &(current->right ()->item ()); current->right ()->parent (current); RB_rebalance (current->right ()); root_->color (ACE_RB_Tree_Node_Base::BLACK); ++current_size_; return item; } } // Otherwise, we're to the right of the insertion point, so // insert into the left subtree. else // (result == RIGHT) { if (current->left ()) // If there is already a left subtree, complain. ACE_ERROR_RETURN ((LM_ERROR, ACE_LIB_TEXT ("%p\n"), ACE_LIB_TEXT ("\nleft subtree already present in ") ACE_LIB_TEXT ("ACE_RB_Tree::insert_i\n")), 0); else { // The left subtree is empty: insert new node there. ACE_RB_Tree_Node *tmp = 0; ACE_NEW_RETURN (tmp, (ACE_RB_Tree_Node) (k, t), 0); current->left (tmp); // If the node was successfully inserted, set its // parent, rebalance the tree, color the root black, and // return a pointer to the inserted item. INT_ID *item = ¤t->left ()->item (); current->left ()->parent (current); RB_rebalance (current->left ()); root_->color (ACE_RB_Tree_Node_Base::BLACK); ++current_size_; return item; } } } else { // The tree is empty: insert at the root and color the root // black. ACE_NEW_RETURN (root_, (ACE_RB_Tree_Node) (k, t), 0); if (root_) { root_->color (ACE_RB_Tree_Node_Base::BLACK); ++current_size_; return &root_->item (); } } return 0; } // Inserts a *copy* of the key and the item into the tree: both the // key type EXT_ID and the item type INT_ID must have well defined // semantics for copy construction. The default implementation also // requires that the key type support well defined < semantics. This // method passes back a pointer to the inserted (or existing) node, // and the search status. If the node already exists, the method // returns 1. If the node does not exist, and a new one is // successfully created, and the method returns 0. If there was an // error, the method returns -1. template int ACE_RB_Tree::insert_i (const EXT_ID &k, const INT_ID &t, ACE_RB_Tree_Node *&entry) { ACE_TRACE ("ACE_RB_Tree::insert_i (const EXT_ID &k, const INT_ID &t, " "ACE_RB_Tree_Node *&entry)"); // Find the closest matching node, if there is one. RB_SearchResult result = LEFT; ACE_RB_Tree_Node *current = find_node (k, result); if (current) { // If the keys match, just return a pointer to the node's item. if (result == EXACT) { entry = current; return 1; } // Otherwise if we're to the left of the insertion // point, insert into the right subtree. else if (result == LEFT) { if (current->right ()) { // If there is already a right subtree, complain. ACE_ERROR_RETURN ((LM_ERROR, ACE_LIB_TEXT ("%p\n"), ACE_LIB_TEXT ("\nright subtree already present in ") ACE_LIB_TEXT ("ACE_RB_Tree::insert_i\n")), -1); } else { // The right subtree is empty: insert new node there. ACE_RB_Tree_Node *tmp = 0; ACE_NEW_RETURN (tmp, (ACE_RB_Tree_Node) (k, t), -1); current->right (tmp); // If the node was successfully inserted, set its parent, rebalance // the tree, color the root black, and return a pointer to the // inserted item. entry = current->right (); current->right ()->parent (current); RB_rebalance (current->right ()); root_->color (ACE_RB_Tree_Node_Base::BLACK); ++current_size_; return 0; } } // Otherwise, we're to the right of the insertion point, so // insert into the left subtree. else // (result == RIGHT) { if (current->left ()) // If there is already a left subtree, complain. ACE_ERROR_RETURN ((LM_ERROR, ACE_LIB_TEXT ("%p\n"), ACE_LIB_TEXT ("\nleft subtree already present in ") ACE_LIB_TEXT ("ACE_RB_Tree::insert_i\n")), -1); else { // The left subtree is empty: insert new node there. ACE_RB_Tree_Node *tmp = 0; ACE_NEW_RETURN (tmp, (ACE_RB_Tree_Node) (k, t), -1); current->left (tmp); // If the node was successfully inserted, set its // parent, rebalance the tree, color the root black, and // return a pointer to the inserted item. entry = current->left (); current->left ()->parent (current); RB_rebalance (current->left ()); root_->color (ACE_RB_Tree_Node_Base::BLACK); ++current_size_; return 0; } } } else { // The tree is empty: insert at the root and color the root black. ACE_NEW_RETURN (root_, (ACE_RB_Tree_Node) (k, t), -1); root_->color (ACE_RB_Tree_Node_Base::BLACK); ++current_size_; entry = root_; return 0; } } // Removes the item associated with the given key from the tree and // destroys it. Returns 1 if it found the item and successfully // destroyed it, 0 if it did not find the item, or -1 if an error // occurred. This method should only be called with locks already // held. template int ACE_RB_Tree::remove_i (const EXT_ID &k, INT_ID &i) { ACE_TRACE ("ACE_RB_Tree::remove_i (const EXT_ID &k, INT_ID &i)"); // Find a matching node, if there is one. ACE_RB_Tree_Node *z; RB_SearchResult result = LEFT; z = find_node (k, result); // If there is a matching node: remove and destroy it. if (z && result == EXACT) { // Return the internal id stored in the deleted node. i = z->item (); return -1 == this->remove_i (z) ? -1 : 1; } else { // No matching node was found: return 0. return 0; } } /// Recursive function to dump the state of an object. template void ACE_RB_Tree:: dump_i (ACE_RB_Tree_Node *node) const { #if defined (ACE_HAS_DUMP) if (node) { dump_node_i (*node); ACE_DEBUG ((LM_DEBUG, ACE_LIB_TEXT ("\ndown left\n"))); this->dump_i (node->left ()); ACE_DEBUG ((LM_DEBUG, ACE_LIB_TEXT ("\nup left\n"))); ACE_DEBUG ((LM_DEBUG, ACE_LIB_TEXT ("\ndown right\n"))); this->dump_i (node->right ()); ACE_DEBUG ((LM_DEBUG, ACE_LIB_TEXT ("\nup right\n"))); } else { ACE_DEBUG ((LM_DEBUG, ACE_LIB_TEXT ("\nNULL POINTER (BLACK)\n"))); } #else /* !ACE_HAS_DUMP */ ACE_UNUSED_ARG (node); #endif /* ACE_HAS_DUMP */ } /// Function to dump node itself. Does not show parameterized node contents /// in its basic form, but template specialization can be used to /// provide definitions for various EXT_ID and INT_ID types. template void ACE_RB_Tree:: dump_node_i (ACE_RB_Tree_Node &node) const { #if defined (ACE_HAS_DUMP) const char * color_str = (node.color () == ACE_RB_Tree_Node_Base::RED) ? "RED" : "BLACK"; ACE_DEBUG ((LM_DEBUG, ACE_LIB_TEXT (" color=[%s]\n"), color_str)); #else /* !ACE_HAS_DUMP */ ACE_UNUSED_ARG (node); #endif /* ACE_HAS_DUMP */ } /// Tests the red-black invariant(s) throughout the whole tree. template int ACE_RB_Tree::test_invariant (void) { ACE_TRACE ("ACE_RB_Tree::test_invariant"); ACE_READ_GUARD_RETURN (ACE_LOCK, ace_mon, this->lock_, -1); // Recurse from the root, starting with the measured black height at // 0, and the expected black height at -1, which will cause the // count from first measured path to a leaf to be used as the // expected one from that point onward (the key is to check // consistency). int expected_black_height = -1; if (this->test_invariant_recurse (this->root_, expected_black_height, 0) == 0) { ACE_DEBUG ((LM_DEBUG, ACE_LIB_TEXT ("invariant holds\n"))); return 0; } return -1; } /// Recursive function to test the red-black invariant(s) at all nodes in a subtree. template int ACE_RB_Tree::test_invariant_recurse (ACE_RB_Tree_Node *x, int & expected_black_height, int measured_black_height) { ACE_TRACE ("ACE_RB_Tree::test_invariant_recurse"); if (!x) { // Count each leaf (zero pointer) as a black node (per CLR algorithm description). ++measured_black_height; if (expected_black_height == -1) { expected_black_height = measured_black_height; } else if (expected_black_height != measured_black_height) { ACE_ERROR_RETURN ((LM_ERROR, ACE_LIB_TEXT ("\nexpected_black_height = %d but ") ACE_LIB_TEXT ("\nmeasured_black_height = %d in ") ACE_LIB_TEXT ("ACE_RB_Tree::test_invariant_recurse\n"), expected_black_height, measured_black_height), -1); } return 0; } // Check the invariant that a red node cannot have a red child. if (x->color () == ACE_RB_Tree_Node_Base::RED) { if (x->left () && x->left ()->color () == ACE_RB_Tree_Node_Base::RED) { ACE_ERROR_RETURN ((LM_ERROR, ACE_LIB_TEXT ("%p\n"), ACE_LIB_TEXT ("\nRED parent has RED left child in ") ACE_LIB_TEXT ("ACE_RB_Tree::test_invariant_recurse\n")), -1); } if (x->right () && x->right ()->color () == ACE_RB_Tree_Node_Base::RED) { ACE_ERROR_RETURN ((LM_ERROR, ACE_LIB_TEXT ("%p\n"), ACE_LIB_TEXT ("\nRED parent has RED right child in ") ACE_LIB_TEXT ("ACE_RB_Tree::test_invariant_recurse\n")), -1); } } else { // Count each black node traversed. ++measured_black_height; } return (test_invariant_recurse (x->left (), expected_black_height, measured_black_height) == 0) ? test_invariant_recurse (x->right (), expected_black_height, measured_black_height) : -1; } template int ACE_RB_Tree::remove_i (ACE_RB_Tree_Node *z) { ACE_TRACE ("ACE_RB_Tree::remove_i (ACE_RB_Tree_Node *z)"); // Delete the node and reorganize the tree to satisfy the Red-Black // properties. ACE_RB_Tree_Node *x; ACE_RB_Tree_Node *y; ACE_RB_Tree_Node *parent; if (z->left () && z->right ()) y = RB_tree_successor (z); else y = z; if (y->left ()) x = y->left (); else x = y->right (); parent = y->parent (); if (x) { x->parent (parent); } if (parent) { if (y == parent->left ()) parent->left (x); else parent->right (x); } else this->root_ = x; if (y != z) { // Copy the elements of y into z. z->key () = y->key (); z->item () = y->item (); } // CLR pp. 263 says that nil nodes are implicitly colored BLACK if (!y || y->color () == ACE_RB_Tree_Node_Base::BLACK) RB_delete_fixup (x, parent); y->parent (0); y->right (0); y->left (0); delete y; --current_size_; return 0; } ACE_ALLOC_HOOK_DEFINE(ACE_RB_Tree_Iterator_Base) // Constructor. template ACE_RB_Tree_Iterator_Base::ACE_RB_Tree_Iterator_Base (const ACE_RB_Tree &tree, int set_first) : tree_ (&tree), node_ (0) { ACE_TRACE ("ACE_RB_Tree_Iterator_Base::ACE_RB_Tree_Iterator_Base (ACE_RB_Tree, int)"); // Position the iterator at the first (or last) node in the tree. if (set_first) node_ = tree_->RB_tree_minimum (tree_->root_); else node_ = tree_->RB_tree_maximum (tree_->root_); } template ACE_RB_Tree_Iterator_Base::ACE_RB_Tree_Iterator_Base (const ACE_RB_Tree &tree, ACE_RB_Tree_Node* entry) : tree_ (&tree), node_ (0) { ACE_TRACE ("ACE_RB_Tree_Iterator_Base(const ACE_RB_Tree &tree, ACE_RB_Tree_Node* entry)"); node_ = entry; } template ACE_RB_Tree_Iterator_Base::ACE_RB_Tree_Iterator_Base (const EXT_ID& key,ACE_RB_Tree &tree) : tree_ (&tree), node_ (0) { ACE_TRACE("ACE_RB_Tree_Iterator_Base (ACE_RB_Tree &tree, const EXT_ID& key)"); ACE_RB_Tree_Node* entry; tree.find_i(key, entry); node_ = entry; } // Copy constructor. template ACE_RB_Tree_Iterator_Base::ACE_RB_Tree_Iterator_Base (const ACE_RB_Tree_Iterator_Base &iter) : tree_ (iter.tree_), node_ (iter.node_) { ACE_TRACE ("ACE_RB_Tree_Iterator_Base::ACE_RB_Tree_Iterator_Base (ACE_RB_Tree_Iterator_Base)"); } // Assignment operator. template void ACE_RB_Tree_Iterator_Base::operator= (const ACE_RB_Tree_Iterator_Base &iter) { ACE_TRACE ("ACE_RB_Tree_Iterator_Base::operator="); if (this != &iter) { tree_ = iter.tree_; node_ = iter.node_; } } // Destructor. template ACE_RB_Tree_Iterator_Base::~ACE_RB_Tree_Iterator_Base () { ACE_TRACE ("ACE_RB_Tree_Iterator_Base::~ACE_RB_Tree_Iterator_Base"); } // Dump the state of an object. template void ACE_RB_Tree_Iterator_Base::dump_i (void) const { ACE_TRACE ("ACE_RB_Tree_Iterator_Base::dump_i"); ACE_DEBUG ((LM_DEBUG, ACE_BEGIN_DUMP, this)); ACE_DEBUG ((LM_DEBUG, ACE_LIB_TEXT ("\nnode_ = %x\n"), this->node_)); ACE_DEBUG ((LM_DEBUG, ACE_END_DUMP)); } ACE_ALLOC_HOOK_DEFINE(ACE_RB_Tree_Iterator) // Constructor. template ACE_RB_Tree_Iterator::ACE_RB_Tree_Iterator (const ACE_RB_Tree &tree, int set_first) : ACE_RB_Tree_Iterator_Base (tree, set_first) { ACE_TRACE ("ACE_RB_Tree_Iterator::ACE_RB_Tree_Iterator"); } template ACE_RB_Tree_Iterator::ACE_RB_Tree_Iterator (const ACE_RB_Tree &tree, ACE_RB_Tree_Node* entry) : ACE_RB_Tree_Iterator_Base (tree,entry) { ACE_TRACE ("ACE_RB_Tree_Iterator::ACE_RB_Tree_Iterator"); } template ACE_RB_Tree_Iterator::ACE_RB_Tree_Iterator (const EXT_ID& key,ACE_RB_Tree &tree) : ACE_RB_Tree_Iterator_Base(key,tree) { ACE_TRACE ("ACE_RB_Tree_Iterator::ACE_RB_Tree_Iterator"); } // Destructor. template ACE_RB_Tree_Iterator::~ACE_RB_Tree_Iterator () { ACE_TRACE ("ACE_RB_Tree_Iterator::~ACE_RB_Tree_Iterator"); } ACE_ALLOC_HOOK_DEFINE(ACE_RB_Tree_Reverse_Iterator) // Constructor. template ACE_RB_Tree_Reverse_Iterator::ACE_RB_Tree_Reverse_Iterator (const ACE_RB_Tree &tree, int set_last) : ACE_RB_Tree_Iterator_Base (tree, set_last ? 0 : 1) { ACE_TRACE ("ACE_RB_Tree_Reverse_Iterator::ACE_RB_Tree_Reverse_Iterator"); } template ACE_RB_Tree_Reverse_Iterator::ACE_RB_Tree_Reverse_Iterator (const ACE_RB_Tree &tree, ACE_RB_Tree_Node* entry) : ACE_RB_Tree_Iterator_Base (tree,entry) { ACE_TRACE ("ACE_RB_Tree_Reverse_Iterator::ACE_RB_Tree_Reverse_Iterator"); } template ACE_RB_Tree_Reverse_Iterator::ACE_RB_Tree_Reverse_Iterator (const EXT_ID& key,ACE_RB_Tree &tree) : ACE_RB_Tree_Iterator_Base(key,tree) { ACE_TRACE ("ACE_RB_Tree_Reverse_Iterator::ACE_RB_Tree_Reverse_Iterator"); } // Destructor. template ACE_RB_Tree_Reverse_Iterator::~ACE_RB_Tree_Reverse_Iterator () { ACE_TRACE ("ACE_RB_Tree_Reverse_Iterator::~ACE_RB_Tree_Reverse_Iterator"); } #endif /* !defined (ACE_RB_TREE_C) */