// $Id$ // RB_Tree.cpp #if !defined (ACE_RB_TREE_C) #define ACE_RB_TREE_C #include "ace/RB_Tree.h" #if !defined (__ACE_INLINE__) #include "ace/RB_Tree.i" #endif /* __ACE_INLINE__ */ ///////////////////////////////////////// // template class RB_Tree_Node // ///////////////////////////////////////// template RB_Tree_Node::RB_Tree_Node (const KEY &k, const T &t) : k_ (k) , t_ (t) , color_ (RED) , parent_ (0) , left_ (0) , right_ (0) { } // constructor template RB_Tree_Node::~RB_Tree_Node () { // delete left sub-tree delete left_; // delete right sub_tree delete right_; } // destructor //////////////////////////////////// // template class RB_Tree // //////////////////////////////////// template RB_Tree::RB_Tree () : root_ (0) { } // constructor template RB_Tree::RB_Tree (const RB_Tree &rbt) : root_ (0) { // make a deep copy of the passed tree RB_Tree_Iterator iter(rbt); for (iter.first (); iter.is_done () == 0; iter.next ()) { insert (*(iter.key ()), *(iter.item ())); } } // copy constructor template RB_Tree::~RB_Tree () { // clear away all nodes in the tree clear (); } // destructor template void RB_Tree::operator = (const RB_Tree &rbt) { // clear out the existing tree clear (); // make a deep copy of the passed tree RB_Tree_Iterator iter(rbt); for (iter.first (); iter.is_done () == 0; iter.next ()) { insert (*(iter.key ()), *(iter.item ())); } } // assignment operator template T* RB_Tree::find (const KEY &k) { // find the closest matching node, if there is one RB_Tree_Node *current = find_node (k); if (current) { // if a nearest matching node was returned if ((current->key () < k) || (k < current->key ())) { // if the keys differ, there is no match: return 0 return 0; } else { // else, the keys match: return a pointer to the node's item return &(current->item ()); } } else { // else, the tree is empty: return 0 return 0; } } // Returns a pointer to the item corresponding to the // given key, or 0 if it cannot find the key in the tree. template T* RB_Tree::insert (const KEY &k, const T &t) { // find the closest matching node, if there is one RB_Tree_Node *current = find_node (k); if (current) { if (current->key () < k) { // if a nearest matching node has a key less than the insertion key if (current->right ()) { // if there is already a right subtree, complain ACE_ERROR_RETURN ((LM_ERROR, ASYS_TEXT ("%p\n"), ASYS_TEXT ("\nright subtree already present in " "RB_Tree::insert\n")), 0); } else { // else, the right subtree is empty: insert new node there current->right (new RB_Tree_Node (k, t)); if (current->right ()) { // if the node was successfully inserted, set its parent, rebalance the // tree, color the root black, and return a pointer to the inserted item T *item = &(current->right ()->item ()); current->right ()->parent (current); RB_rebalance (current->right ()); root_->color (BLACK); return item; } else { // else, memory allocation failed ACE_ERROR_RETURN ((LM_ERROR, ASYS_TEXT ("%p\n"), ASYS_TEXT ("\nmemory allocation to current->right_ failed " "in RB_Tree::insert\n")), 0); } } } else if (k < current->key ()) { // if a nearest matching node has a key greater than the insertion key if (current->left ()) { // if there is already a left subtree, complain ACE_ERROR_RETURN ((LM_ERROR, ASYS_TEXT ("%p\n"), ASYS_TEXT ("\nleft subtree already present in " "RB_Tree::insert\n")), 0); } else { // else, the right subtree is empty: insert new node there current->left (new RB_Tree_Node (k, t)); if (current->left ()) { // if the node was successfully inserted, set its parent, rebalance the // tree, color the root black, and return a pointer to the inserted item T *item = &(current->left ()->item ()); current->left ()->parent (current); RB_rebalance (current->left ()); root_->color (BLACK); return item; } else { // else, memory allocation failed ACE_ERROR_RETURN ((LM_ERROR, ASYS_TEXT ("%p\n"), ASYS_TEXT ("\nmemory allocation to current->left_ failed in " "RB_Tree::insert\n")), 0); } } } else { // else, the keys match: return a pointer to the node's item return &(current->item ()); } } else { // else, the tree is empty: insert at the root and color the root black root_ = new RB_Tree_Node (k, t); if (root_) { root_->color (BLACK); return &(root_->item ()); } else { ACE_ERROR_RETURN ((LM_ERROR, ASYS_TEXT ("%p\n"), ASYS_TEXT ("\nmemory allocation to root_ failed in " "RB_Tree::insert\n")), 0); } } } // Inserts a *copy* of the key and the item into the tree: // both the key type KEY and the item type T must have well // defined semantics for copy construction and < comparison. // This method returns a pointer to the inserted item copy, // or 0 if an error occurred. NOTE: if an identical key // already exists in the tree, no new item is created, and // the returned pointer addresses the existing item // associated with the existing key. template int RB_Tree::remove (const KEY &k) { // find a matching node, if there is one RB_Tree_Node *z = find_node (k); if ((z) && (! (z->key () < k)) && (! (k < z->key ()))) { // there is a matching node: remove and destroy it RB_Tree_Node *y if ((z->left ()) && (z->right ())) { y = RB_tree_successor (z); } else { y = z; } if (y->left ()) { x = y->left (); } else { x = y->right (); } x->parent (y->parent ()); if (y->parent ()) { if (y == y->parent ()->left ()) { y->parent ()->left (x); } else { y->parent ()->right (x); } } else { root_ = x; } if (y != z) { // copy the elements of y into z z->key () = y->key (); z->item () = y->item (); } if (y->color () == RB_Tree_Node::BLACK) { RB_delete_fixup (x); } y->parent (0); y->right (0); y->left (0); delete y; return 1; } else { // else, no matching node was found: return 0 return 0; } } // removes the item associated with the given key from the // tree and destroys it. Returns 1 if it found the item // and successfully destroyed it, 0 if it did not find the // item, or -1 if an error occurred. template void RB_Tree::RB_rotate_right (RB_Tree_Node * x) { if (! x) { ACE_ERROR ((LM_ERROR, ASYS_TEXT ("%p\n"), ASYS_TEXT ("\nerror: x is a null pointer in " "RB_Tree::RB_rotate_right\n"))); } else if (! (x->left())) { ACE_ERROR ((LM_ERROR, ASYS_TEXT ("%p\n"), ASYS_TEXT ("\nerror: x->left () is a null pointer in " "RB_Tree::RB_rotate_right\n"))); } else { RB_Tree_Node * y; y = x->left (); x->left (y->right ()); if (y->right ()) { y->right ()->parent (x); } y->parent (x->parent ()); if (x->parent ()) { if (x == x->parent ()->right ()) { x->parent ()->right (y); } else { x->parent ()->left (y); } } else { root_ = y; } y->right (x); x->parent (y); } } // method for right rotation of the tree about a given node template void RB_Tree::RB_rotate_left (RB_Tree_Node * x) { if (! x) { ACE_ERROR ((LM_ERROR, ASYS_TEXT ("%p\n"), ASYS_TEXT ("\nerror: x is a null pointer in " "RB_Tree::RB_rotate_left\n"))); } else if (! (x->right())) { ACE_ERROR ((LM_ERROR, ASYS_TEXT ("%p\n"), ASYS_TEXT ("\nerror: x->right () is a null pointer " "in RB_Tree::RB_rotate_left\n"))); } else { RB_Tree_Node * y; y = x->right (); x->right (y->left ()); if (y->left ()) { y->left ()->parent (x); } y->parent (x->parent ()); if (x->parent ()) { if (x == x->parent ()->left ()) { x->parent ()->left (y); } else { x->parent ()->right (y); } } else { root_ = y; } y->left (x); x->parent (y); } } // method for left rotation of the tree about a given node template void RB_Tree::RB_delete_fixup (RB_Tree_Node * x) { while ((x) && (x->parent ()) && (x->color () == RB_Tree_Node::BLACK)) { if (x == x->parent ()->left ()) { RB_Tree_Node *w = x->parent ()->right (); if (w->color () == RB_Tree_Node::RED) { w->color (RB_Tree_Node::BLACK); x->parent ()->color (RB_Tree_Node::RED); RB_rotate_left (x->parent ()); w = x->parent ()->right (); } if ((w->left ()->color () == RB_Tree_Node::BLACK) && (w->right ()->color () == RB_Tree_Node::BLACK)) { w->color (RB_Tree_Node::RED); x = x->parent (); } else { if (w->right ()->color () == RB_Tree_Node::BLACK) { w->left ()->color (RB_Tree_Node::BLACK); w->color (RB_Tree_Node::RED); RB_rotate_right (w); w = x->parent->right (); } w->color (x->parent->color ()); x->parent->color (RB_Tree_Node::BLACK); w->right->color (RB_Tree_Node::BLACK); RB_rotate_left (x->parent ()); x = root_; } } else { RB_Tree_Node *w = x->parent ()->left (); if (w->color () == RB_Tree_Node::RED) { w->color (RB_Tree_Node::BLACK); x->parent ()->color (RB_Tree_Node::RED); RB_rotate_right (x->parent ()); w = x->parent ()->left (); } if ((w->left ()->color () == RB_Tree_Node::BLACK) && (w->right ()->color () == RB_Tree_Node::BLACK)) { w->color (RB_Tree_Node::RED); x = x->parent (); } else { if (w->left ()->color () == RB_Tree_Node::BLACK) { w->right ()->color (RB_Tree_Node::BLACK); w->color (RB_Tree_Node::RED); RB_rotate_left (w); w = x->parent->left (); } w->color (x->parent->color ()); x->parent->color (RB_Tree_Node::BLACK); w->left->color (RB_Tree_Node::BLACK); RB_rotate_right (x->parent ()); x = root_; } } } if (x) { x->color (RB_Tree_Node::BLACK); } } // method for restoring Red-Black properties after deletion template RB_Tree_Node * RB_Tree::find_node (const KEY &k) { RB_Tree_Node *current = root_; while (current) { // while there are more nodes to examine if (current->key () < k) { // if the search key is greater than the current node's key if (current->right ()) { // if the right subtree is not empty, search to the right current = current->right (); } else { // if the right subtree is empty, we're done break; } } else if (k < current->key ()) { // else if the search key is less than the current node's key if (current->left ()) { // if the left subtree is not empty, search to the left current = current->left (); } else { // if the left subtree is empty, we're done break; } } else { // if the keys match, we're done break; } } return current; } // returns a pointer to a matching node if there is one, // a pointer to the node under which to insert the item // if the tree is not empty and there is no such match, // or 0 if the tree is empty. template void RB_Tree::RB_rebalance (RB_Tree_Node * x) { RB_Tree_Node *y = 0; while ((x) && (x->parent ()) && (x->parent ()->color () == RED)) { if (! x->parent ()->parent ()) { // if we got here, something is drastically wrong! ACE_ERROR ((LM_ERROR, ASYS_TEXT ("%p\n"), ASYS_TEXT ("\nerror: parent's parent is null in " "RB_Tree::RB_rebalance\n"))); return; } if (x->parent () == x->parent ()->parent ()->left ()) { y = x->parent ()->parent ()->right (); if (y && (y->color () == RED)) { // handle case 1 (see CLR book, pp. 269) x->parent ()->color (BLACK); y->color (BLACK); x->parent ()->parent ()->color (RED); x = x->parent ()->parent (); } else { if (x == x->parent ()->right ()) { // transform case 2 into case 3 (see CLR book, pp. 269) x = x->parent (); RB_rotate_left (x); } // handle case 3 (see CLR book, pp. 269) x->parent ()->color (BLACK); x->parent ()->parent ()->color (RED); RB_rotate_right (x->parent ()->parent ()); } } else { y = x->parent ()->parent ()->left (); if (y && (y->color () == RED)) { // handle case 1 (see CLR book, pp. 269) x->parent ()->color (BLACK); y->color (BLACK); x->parent ()->parent ()->color (RED); x = x->parent ()->parent (); } else { if (x == x->parent ()->left ()) { // transform case 2 into case 3 (see CLR book, pp. 269) x = x->parent (); RB_rotate_right (x); } // handle case 3 (see CLR book, pp. 269) x->parent ()->color (BLACK); x->parent ()->parent ()->color (RED); RB_rotate_left (x->parent ()->parent ()); } } } } // rebalance the tree after insertion of a node template RB_Tree_Node * RB_Tree::RB_tree_successor (RB_Tree_Node *x) const { if (x->right ()) { return RB_tree_minimum (x->right ()); } RB_Tree_Node *y = x->parent (); while ((y) && (x == y->right ())) { x = y; y = y->parent (); } return y; } // method to find the successor node of the given node in the tree template RB_Tree_Node * RB_Tree::RB_tree_predecessor (RB_Tree_Node *x) const { if (x->left ()) { return RB_tree_maximum (x->left ()); } RB_Tree_Node *y = x->parent (); while ((y) && (x == y->left ())) { x = y; y = y->parent (); } return y; } // method to find the predecessor node of the given node in the tree template RB_Tree_Node * RB_Tree::RB_tree_minimum (RB_Tree_Node *x) const { while ((x) && (x->left ())) { x = x->left (); } return x; } // method to find the minimum node of the subtree rooted at the given node template RB_Tree_Node * RB_Tree::RB_tree_maximum (RB_Tree_Node *x) const { while ((x) && (x->right ())) { x = x->right (); } return x; } // method to find the maximum node of the subtree rooted at the given node ///////////////////////////////////////////// // template class RB_Tree_Iterator // ///////////////////////////////////////////// template RB_Tree_Iterator::RB_Tree_Iterator (const RB_Tree &tree) : tree_ (tree), node_ (0) { // position the iterator at the first node in the tree first (); } // constructor template RB_Tree_Iterator::~RB_Tree_Iterator () { } // destructor #endif /* !defined (ACE_RB_TREE_C) */