// $Id$ #define ACE_BUILD_DLL #include "ace/Stats.h" #if !defined (__ACE_INLINE__) # include "ace/Stats.i" #endif /* __ACE_INLINE__ */ ACE_RCSID(ace, Stats, "$Id$") ACE_UINT32 ACE_Stats_Value::fractional_field (void) const { if (precision () == 0) { return 1; } else { ACE_UINT32 field = 10; for (u_int i = 0; i < precision () - 1; ++i) { field *= 10; } return field; } } int ACE_Stats::sample (const ACE_INT32 value) { if (samples_.enqueue_tail (value) == 0) { ++number_of_samples_; if (number_of_samples_ == 0) { // That's a lot of samples :-) overflow_ = EFAULT; return -1; } if (value < min_) min_ = value; if (value > max_) max_ = value; return 0; } else { // Probably failed due to running out of memory when trying to // enqueue the new value. overflow_ = errno; return -1; } } void ACE_Stats::mean (ACE_Stats_Value &m, const ACE_UINT32 scale_factor) { if (number_of_samples_ > 0) { #if defined ACE_LACKS_LONGLONG_T // If ACE_LACKS_LONGLONG_T, then ACE_UINT64 is a user-defined class. // To prevent having to construct a static of that class, declare it // on the stack, and construct it, in each function that needs it. const ACE_U_LongLong ACE_STATS_INTERNAL_OFFSET (0, 8); #else /* ! ACE_LACKS_LONGLONG_T */ const ACE_UINT64 ACE_STATS_INTERNAL_OFFSET = ACE_UINT64_LITERAL (0x100000000); #endif /* ! ACE_LACKS_LONGLONG_T */ ACE_UINT64 sum = ACE_STATS_INTERNAL_OFFSET; ACE_Unbounded_Queue_Iterator i (samples_); while (! i.done ()) { ACE_INT32 *sample; if (i.next (sample)) { sum += *sample; i.advance (); } } // sum_ was initialized with ACE_STATS_INTERNAL_OFFSET, so // subtract that off here. quotient (sum - ACE_STATS_INTERNAL_OFFSET, number_of_samples_ * scale_factor, m); } else { m.whole (0); m.fractional (0); } } int ACE_Stats::std_dev (ACE_Stats_Value &std_dev, const ACE_UINT32 scale_factor) { if (number_of_samples_ <= 1) { std_dev.whole (0); std_dev.fractional (0); } else { const ACE_UINT32 field = std_dev.fractional_field (); // The sample standard deviation is: // // sqrt (sum (sample_i - mean)^2 / (number_of_samples_ - 1)) ACE_UINT64 mean_scaled; // Calculate the mean, scaled, so that we don't lose its // precision. ACE_Stats_Value avg (std_dev.precision ()); mean (avg, 1u); avg.scaled_value (mean_scaled); // Calculate the summation term, of squared differences from the // mean. ACE_UINT64 sum_of_squares = 0; ACE_Unbounded_Queue_Iterator i (samples_); while (! i.done ()) { ACE_INT32 *sample; if (i.next (sample)) { const ACE_UINT64 original_sum_of_squares = sum_of_squares; // Scale up by field width so that we don't lose the // precision of the mean. Carefully . . . const ACE_UINT64 product (*sample * field); ACE_UINT64 difference; // NOTE: please do not reformat this code! It // // works with the Diab compiler the way it is! // if (product >= mean_scaled) // { // difference = product - mean_scaled; // } // else // { // difference = mean_scaled - product; // } // // NOTE: please do not reformat this code! It // // works with the Diab compiler the way it is! // // Square using 64-bit arithmetic. sum_of_squares += difference * ACE_U64_TO_U32 (difference); i.advance (); if (sum_of_squares < original_sum_of_squares) { overflow_ = ENOSPC; return -1; } } } // Divide the summation by (number_of_samples_ - 1), to get the // variance. In addition, scale the variance down to undo the // mean scaling above. Otherwise, it can get too big. ACE_Stats_Value variance (std_dev.precision ()); quotient (sum_of_squares, (number_of_samples_ - 1) * field * field, variance); // Take the square root of the variance to get the standard // deviation. First, scale up . . . ACE_UINT64 scaled_variance; variance.scaled_value (scaled_variance); // And scale up, once more, because we'll be taking the square // root. scaled_variance *= field; ACE_Stats_Value unscaled_standard_deviation (std_dev.precision ()); square_root (scaled_variance, unscaled_standard_deviation); // Unscale. quotient (unscaled_standard_deviation, scale_factor * field, std_dev); } return 0; } void ACE_Stats::reset (void) { overflow_ = 0u; number_of_samples_ = 0u; min_ = 0x7FFFFFFF; max_ = -0x8000 * 0x10000; samples_.reset (); } int ACE_Stats::print_summary (const u_int precision, const ACE_UINT32 scale_factor, FILE *file) const { ASYS_TCHAR mean_string [128]; ASYS_TCHAR std_dev_string [128]; ASYS_TCHAR min_string [128]; ASYS_TCHAR max_string [128]; int success = 0; for (int tmp_precision = precision; ! overflow_ && ! success && tmp_precision >= 0; --tmp_precision) { // Build a format string, in case the C library doesn't support %*u. ASYS_TCHAR format[32]; if (tmp_precision == 0) ACE_OS::sprintf (format, ASYS_TEXT ("%%d"), tmp_precision); else ACE_OS::sprintf (format, ASYS_TEXT ("%%d.%%0%du"), tmp_precision); ACE_Stats_Value u (tmp_precision); ((ACE_Stats *) this)->mean (u, scale_factor); ACE_OS::sprintf (mean_string, format, u.whole (), u.fractional ()); ACE_Stats_Value sd (tmp_precision); if (((ACE_Stats *) this)->std_dev (sd, scale_factor)) { success = 0; continue; } else { success = 1; } ACE_OS::sprintf (std_dev_string, format, sd.whole (), sd.fractional ()); ACE_Stats_Value minimum (tmp_precision), maximum (tmp_precision); if (min_ != 0) { const ACE_UINT64 m (min_); quotient (m, scale_factor, minimum); } if (max_ != 0) { const ACE_UINT64 m (max_); quotient (m, scale_factor, maximum); } ACE_OS::sprintf (min_string, format, minimum.whole (), minimum.fractional ()); ACE_OS::sprintf (max_string, format, maximum.whole (), maximum.fractional ()); } if (success == 1) { ACE_OS::fprintf (file, ASYS_TEXT ("samples: %u (%s - %s); mean: ") ASYS_TEXT ("%s; std dev: %s\n"), samples (), min_string, max_string, mean_string, std_dev_string); return 0; } else { #if !defined (ACE_HAS_WINCE) ACE_OS::fprintf (file, ASYS_TEXT ("ACE_Stats::print_summary: OVERFLOW: %s\n"), ASYS_TEXT (strerror (overflow_))); #else // WinCE doesn't have strerror ;( ACE_OS::fprintf (file, ASYS_TEXT ("ACE_Stats::print_summary: OVERFLOW\n")); #endif /* ACE_HAS_WINCE */ return -1; } } void ACE_Stats::quotient (const ACE_UINT64 dividend, const ACE_UINT32 divisor, ACE_Stats_Value "ient) { // The whole part of the division comes from simple integer division. quotient.whole (ACE_static_cast (ACE_UINT32, divisor == 0 ? 0 : dividend / divisor)); if (quotient.precision () > 0 || divisor == 0) { const ACE_UINT32 field = quotient.fractional_field (); // Fractional = (dividend % divisor) * 10^precision / divisor // It would be nice to add round-up term: // Fractional = (dividend % divisor) * 10^precision / divisor + // 10^precision/2 / 10^precision // = ((dividend % divisor) * 10^precision + divisor) / // divisor quotient.fractional (ACE_static_cast (ACE_UINT32, dividend % divisor * field / divisor)); } else { // No fractional portion is requested, so don't bother // calculating it. quotient.fractional (0); } } void ACE_Stats::quotient (const ACE_Stats_Value ÷nd, const ACE_UINT32 divisor, ACE_Stats_Value "ient) { // The whole part of the division comes from simple integer division. quotient.whole (divisor == 0 ? 0 : dividend.whole () / divisor); if (quotient.precision () > 0 || divisor == 0) { const ACE_UINT32 field = quotient.fractional_field (); // Fractional = (dividend % divisor) * 10^precision / divisor. quotient.fractional (dividend.whole () % divisor * field / divisor + dividend.fractional () / divisor); } else { // No fractional portion is requested, so don't bother // calculating it. quotient.fractional (0); } } void ACE_Stats::square_root (const ACE_UINT64 n, ACE_Stats_Value &square_root) { ACE_UINT32 floor = 0; ACE_UINT32 ceiling = 0xFFFFFFFFu; ACE_UINT32 mid = 0; u_int i; // The maximum number of iterations is log_2 (2^64) == 64. for (i = 0; i < 64; ++i) { mid = (ceiling - floor) / 2 + floor; if (floor == mid) // Can't divide the interval any further. break; else { // Multiply carefully to avoid overflow. ACE_UINT64 mid_squared = mid; mid_squared *= mid; if (mid_squared == n) break; else if (mid_squared < n) floor = mid; else ceiling = mid; } } square_root.whole (mid); ACE_UINT64 mid_squared = mid; mid_squared *= mid; if (square_root.precision () && mid_squared < n) { // (mid * 10^precision + fractional)^2 == // n^2 * 10^(precision * 2) const ACE_UINT32 field = square_root.fractional_field (); floor = 0; ceiling = field; mid = 0; // Do the 64-bit arithmetic carefully to avoid overflow. ACE_UINT64 target = n; target *= field; target *= field; ACE_UINT64 difference = 0; for (i = 0; i < square_root.precision (); ++i) { mid = (ceiling - floor) / 2 + floor; ACE_UINT64 current = square_root.whole () * field + mid; current *= square_root.whole () * field + mid; if (floor == mid) { difference = target - current; break; } else if (current <= target) floor = mid; else ceiling = mid; } // Check to see if the fractional part should be one greater. ACE_UINT64 next = square_root.whole () * field + mid + 1; next *= square_root.whole () * field + mid + 1; square_root.fractional (next - target < difference ? mid + 1 : mid); } else { // No fractional portion is requested, so don't bother // calculating it. square_root.fractional (0); } } #if defined (ACE_HAS_EXPLICIT_TEMPLATE_INSTANTIATION) template class ACE_Node ; template class ACE_Unbounded_Queue ; template class ACE_Unbounded_Queue_Iterator ; #elif defined (ACE_HAS_TEMPLATE_INSTANTIATION_PRAGMA) #pragma instantiate ACE_Node #pragma instantiate ACE_Unbounded_Queue #pragma instantiate ACE_Unbounded_Queue_Iterator #endif /* ACE_HAS_EXPLICIT_TEMPLATE_INSTANTIATION */