// Svc_Handler.cpp // $Id$ #if !defined (ACE_SVC_HANDLER_C) #define ACE_SVC_HANDLER_C #define ACE_BUILD_DLL #include "ace/Svc_Handler.h" #include "ace/Object_Manager.h" #include "ace/Strategies.h" #if !defined (__ACE_INLINE__) #include "ace/Svc_Handler.i" #endif /* __ACE_INLINE__ */ #define PR_ST_1 ACE_PEER_STREAM_1 #define PR_ST_2 ACE_PEER_STREAM_2 template void * ACE_Svc_Handler::operator new (size_t n) { ACE_TRACE ("ACE_Svc_Handler::operator new"); // Allocate the memory and store it (usually in thread-specific // storage, depending on config flags). DYNAMIC::instance ()->set (); return ::new char[n]; } template void ACE_Svc_Handler::destroy (void) { ACE_TRACE ("ACE_Svc_Handler::destroy"); // Only delete ourselves if we're not owned by a module and have // been allocated dynamically. if (this->mod_ == 0 && this->dynamic_ && this->closing_ == 0) // Will call the destructor, which automatically calls . // Note that if we are *not* allocated dynamically then the // destructor will call automatically when it gets run // during cleanup. delete this; } template void ACE_Svc_Handler::operator delete (void *obj) { ACE_TRACE ("ACE_Svc_Handler::delete"); // You cannot delete a 'void*' (X3J16/95-0087 5.3.5.3), but we know // the pointer was created using new char[] (see operator new code), // so we use a cast: char *tmp = (char *) obj; ::delete [] tmp; } // Default constructor. template ACE_Svc_Handler::ACE_Svc_Handler (ACE_Thread_Manager *tm, ACE_Message_Queue *mq, ACE_Reactor *reactor) : ACE_Task (tm, mq), closing_ (0), recycler_ (0), recycling_act_ (0) { ACE_TRACE ("ACE_Svc_Handler::ACE_Svc_Handler"); this->reactor (reactor); // This clever idiom transparently checks if we were allocated // dynamically. This information is used by the method to // decide if we need to delete ... The idiom is based on a // paper by Michael van Rooyen (mrooyen@cellnet.co.uk) that appeared // in the April '96 issue of the C++ Report. We've spruced it up to // work correctly in multi-threaded programs by using our ACE_TSS // class. this->dynamic_ = DYNAMIC::instance ()->is_dynamic (); if (this->dynamic_) // Make sure to reset the flag DYNAMIC::instance ()->reset (); } // Default behavior for a ACE_Svc_Handler object is to be registered with // the ACE_Reactor (thereby ensuring single threading). template int ACE_Svc_Handler::open (void *) { ACE_TRACE ("ACE_Svc_Handler::open"); #if defined (DEBUGGING) char buf[BUFSIZ]; ACE_PEER_STREAM_ADDR client_addr; if (this->peer_.get_remote_addr (client_addr) == -1) ACE_ERROR_RETURN ((LM_ERROR, ASYS_TEXT ("%p\n"), ASYS_TEXT ("get_remote_addr")), -1); if (client_addr.addr_to_string (buf, sizeof buf) == -1) ACE_ERROR_RETURN ((LM_ERROR, "%p\n", "can't obtain peer's address"), -1); ACE_DEBUG ((LM_DEBUG, ASYS_TEXT ("connected to %s on fd %d\n"), buf, this->peer_.get_handle ())); #endif /* DEBUGGING */ if (this->reactor () && this->reactor ()->register_handler (this, ACE_Event_Handler::READ_MASK) == -1) ACE_ERROR_RETURN ((LM_ERROR, "%p", "unable to register client handler"), -1); return 0; } // Perform termination activities. template void ACE_Svc_Handler::shutdown (void) { ACE_TRACE ("ACE_Svc_Handler::shutdown"); // Deregister this handler with the ACE_Reactor. if (this->reactor ()) { ACE_Reactor_Mask mask = ACE_Event_Handler::ALL_EVENTS_MASK | ACE_Event_Handler::DONT_CALL; // Make sure there are no timers. this->reactor ()->cancel_timer (this); // Remove self from reactor. this->reactor ()->remove_handler (this, mask); } // Remove self from the recycler. if (this->recycler ()) this->recycler ()->purge (this->recycling_act_); this->peer ().close (); } template void ACE_Svc_Handler::dump (void) const { ACE_TRACE ("ACE_Svc_Handler::dump"); } template ACE_PEER_STREAM & ACE_Svc_Handler::peer (void) const { ACE_TRACE ("ACE_Svc_Handler::peer"); return (ACE_PEER_STREAM &) this->peer_; } // Extract the underlying I/O descriptor. template ACE_HANDLE ACE_Svc_Handler::get_handle (void) const { ACE_TRACE ("ACE_Svc_Handler::get_handle"); return this->peer_.get_handle (); } // Set the underlying I/O descriptor. template void ACE_Svc_Handler::set_handle (ACE_HANDLE h) { ACE_TRACE ("ACE_Svc_Handler::set_handle"); this->peer_.set_handle (h); } template ACE_Svc_Handler::~ACE_Svc_Handler (void) { ACE_TRACE ("ACE_Svc_Handler::~ACE_Svc_Handler"); if (this->closing_ == 0) { // We're closing down now, so make sure not to call ourselves // recursively via other calls to handle_close() (e.g., from the // Timer_Queue). this->closing_ = 1; this->shutdown (); } } template int ACE_Svc_Handler::handle_close (ACE_HANDLE, ACE_Reactor_Mask) { ACE_TRACE ("ACE_Svc_Handler::handle_close"); this->destroy (); return 0; } template int ACE_Svc_Handler::handle_timeout (const ACE_Time_Value &, const void *) { ACE_TRACE ("ACE_Svc_Handler::handle_timeout"); return this->handle_close (); } template int ACE_Svc_Handler::close (unsigned long) { ACE_TRACE ("ACE_Svc_Handler::close"); return this->handle_close (); } template int ACE_Svc_Handler::init (int, char *[]) { ACE_TRACE ("ACE_Svc_Handler::init"); return -1; } template int ACE_Svc_Handler::fini (void) { ACE_TRACE ("ACE_Svc_Handler::fini"); return -1; } template int ACE_Svc_Handler::info (char **, size_t) const { ACE_TRACE ("ACE_Svc_Handler::info"); return -1; } template int ACE_Svc_Handler::idle (u_long flags) { if (this->recycler ()) return this->recycler ()->cache (this->recycling_act_); else return this->close (flags); } template void ACE_Svc_Handler::recycler (ACE_Connection_Recycling_Strategy *recycler, const void *recycling_act) { ACE_TRACE ("ACE_Svc_Handler::recycler"); this->recycler_ = recycler; this->recycling_act_ = recycling_act; } template ACE_Connection_Recycling_Strategy * ACE_Svc_Handler::recycler (void) const { ACE_TRACE ("ACE_Svc_Handler::recycler"); return this->recycler_; } template int ACE_Svc_Handler::recycle (void *) { ACE_TRACE ("ACE_Svc_Handler::recycle"); // By default, the object is ready and willing to be recycled. return 0; } #undef PR_ST_1 #undef PR_ST_2 #endif /* ACE_SVC_HANDLER_C */