// $Id$ #if !defined (ACE_TIMER_WHEEL_T_C) #define ACE_TIMER_WHEEL_T_C #define ACE_BUILD_DLL #include "ace/Timer_Wheel_T.h" #include "ace/High_Res_Timer.h" // Constructor that takes in a , a reference to the timer queue template ACE_Timer_Wheel_Iterator_T::ACE_Timer_Wheel_Iterator_T (ACE_Timer_Wheel_T &wheel) : timer_wheel_ (wheel) { this->first(); // Nothing } // Positions the iterator at the first node in the timing wheel template void ACE_Timer_Wheel_Iterator_T::first (void) { for (this->pos_ = 0; this->pos_ < this->timer_wheel_.wheel_size_; this->pos_++) { // Skip over empty entries if (this->timer_wheel_.wheel_[this->pos_]->get_next () != this->timer_wheel_.wheel_[this->pos_]) { this->list_item_ = this->timer_wheel_.wheel_[this->pos_]->get_next (); return; } } // The queue is empty if we are here this->list_item_ = NULL; } // Positions the iterator at the next node in list or goes to the next // list template void ACE_Timer_Wheel_Iterator_T::next (void) { if (this->isdone ()) return; this->list_item_ = this->list_item_->get_next (); // If there is no more in the current list, go to the next if (this->list_item_ == this->timer_wheel_.wheel_[this->pos_]) { for (this->pos_++; this->pos_ < this->timer_wheel_.wheel_size_; this->pos_++) { // Check for an empty entry if (this->timer_wheel_.wheel_[this->pos_]->get_next () != this->timer_wheel_.wheel_[this->pos_]) { this->list_item_ = this->timer_wheel_.wheel_[this->pos_]->get_next (); return; } } this->list_item_ = NULL; } } // Returns true when we are at the end (when list_item_ == 0) template int ACE_Timer_Wheel_Iterator_T::isdone (void) { return this->list_item_ == NULL; } // Returns the node at the current position in the sequence template ACE_Timer_Node_T * ACE_Timer_Wheel_Iterator_T::item (void) { if (this->isdone ()) return NULL; return this->list_item_; } // Constructor that sets up the timing wheel and also may preallocate some // nodes on the free list template ACE_Timer_Wheel_T::ACE_Timer_Wheel_T (size_t wheelsize, size_t resolution, size_t prealloc, FUNCTOR *upcall_functor, ACE_Free_List > *freelist) : INHERITED (upcall_functor, freelist), wheel_size_ (wheelsize), resolution_ (resolution), earliest_pos_ (0) { ACE_TRACE ("ACE_Timer_Wheel_T::ACE_Timer_Wheel_T"); size_t i; this->gettimeofday (ACE_OS::gettimeofday); // Create the timing wheel ACE_NEW (this->wheel_, (ACE_Timer_Node_T *[wheelsize])); // Create the dummy nodes for (i = 0; i < wheelsize; i++) { ACE_Timer_Node_T *tempnode = this->alloc_node (); tempnode->set_next (tempnode); tempnode->set_prev (tempnode); this->wheel_[i] = tempnode; } // Do the preallocation this->free_list_->resize (prealloc); iterator_ = new WHEEL_ITERATOR(*this); } template ACE_Timer_Wheel_T::ACE_Timer_Wheel_T (FUNCTOR *upcall_functor, ACE_Free_List > *freelist) : INHERITED (upcall_functor, freelist), wheel_size_ (ACE_DEFAULT_TIMER_WHEEL_SIZE), resolution_ (ACE_DEFAULT_TIMER_WHEEL_RESOLUTION), earliest_pos_ (0) { ACE_TRACE ("ACE_Timer_Wheel_T::ACE_Timer_Wheel_T"); size_t i; this->gettimeofday (ACE_OS::gettimeofday); // Create the timing wheel ACE_NEW (this->wheel_, (ACE_Timer_Node_T *[this->wheel_size_])); // Create the dummy nodes for (i = 0; i < this->wheel_size_; i++) { ACE_Timer_Node_T *tempnode = this->alloc_node (); tempnode->set_next (tempnode); tempnode->set_prev (tempnode); this->wheel_[i] = tempnode; } iterator_ = new WHEEL_ITERATOR(*this); } // Destructor just cleans up its memory template ACE_Timer_Wheel_T::~ACE_Timer_Wheel_T (void) { ACE_TRACE ("ACE_Timer_Wheel_T::~ACE_Timer_Wheel_T"); delete iterator_; for (size_t i = 0; i < this->wheel_size_; i++) { // delete nodes until only the dummy node is left while (this->wheel_[i]->get_next () != this->wheel_[i]) { ACE_Timer_Node_T *next = this->wheel_[i]->get_next (); this->wheel_[i]->set_next (next->get_next ()); next->get_next ()->set_prev (this->wheel_[i]); this->upcall_functor ().deletion (*this, next->get_type (), next->get_act ()); this->free_node (next); } // and now delete the dummy node delete this->wheel_[i]; } // finally delete the wheel delete [] this->wheel_; } // Checks to see if points to a empty list (then it is empty) template int ACE_Timer_Wheel_T::is_empty (void) const { ACE_TRACE ("ACE_Timer_Wheel_T::is_empty"); return this->wheel_[this->earliest_pos_]->get_next () == this->wheel_[this->earliest_pos_]; } // Returns the first (earliest) node in the 's list template const ACE_Time_Value & ACE_Timer_Wheel_T::earliest_time (void) const { ACE_TRACE ("ACE_Timer_Wheel_T::earliest_time"); if (this->is_empty ()) return ACE_Time_Value::zero; else return this->wheel_[this->earliest_pos_]->get_next ()->get_timer_value (); } // Create the node and pass it to reschedule. Also check to see if the // should be changed. template long ACE_Timer_Wheel_T::schedule (const TYPE &type, const void *act, const ACE_Time_Value &delay, const ACE_Time_Value &interval) { ACE_TRACE ("ACE_Timer_Wheel_T::schedule"); ACE_MT (ACE_GUARD_RETURN (LOCK, ace_mon, this->mutex_, -1)); ACE_Timer_Node_T *tempnode = this->alloc_node (); if (tempnode) { // Note that the timer_id is actually the pointer to the node // Set the details of the node tempnode->set (type, act, delay, interval, NULL, NULL, (long) tempnode); // Reschedule will insert it into the correct position this->reschedule (tempnode); return tempnode->get_timer_id (); } // Failure return errno = ENOMEM; return -1; } // Goes through every list in the wheel and if it finds a node with // then it removes the node and continues on looking for other nodes template int ACE_Timer_Wheel_T::cancel (const TYPE &type, int dont_call_handle_close) { ACE_TRACE ("ACE_Timer_Wheel_T::cancel"); ACE_MT (ACE_GUARD_RETURN (LOCK, ace_mon, this->mutex_, -1)); int number_of_cancellations = 0; size_t i; // Walk through the wheel for (i = 0; i < this->wheel_size_; i++) { ACE_Timer_Node_T *curr = this->wheel_[i]->get_next (); // Walk through the list while (curr != this->wheel_[i]) { if (curr->get_type () == type) { // Cancel it and remove it. number_of_cancellations++; // Detach it from the list ACE_Timer_Node_T *tempnode = curr; curr->get_prev ()->set_next (curr->get_next ()); curr->get_next ()->set_prev (curr->get_prev ()); // Go on to the next and delete the detached node curr = curr->get_next (); this->free_node (tempnode); } else { curr = curr->get_next (); } } } // Look for a new earliest time ACE_Time_Value earliest_time; // defaults to zero // Check every entry in the table for (i = 0; i < this->wheel_size_; i++) { // Skip empty entries if (this->wheel_[i]->get_next () != this->wheel_[i]) { // if initialization or if the time is earlier if (earliest_time == ACE_Time_Value::zero || this->wheel_[i]->get_timer_value () < earliest_time) { earliest_time = this->wheel_[i]->get_next ()->get_timer_value (); this->earliest_pos_ = i; } } } if (dont_call_handle_close == 0) this->upcall_functor ().cancellation (*this, type); return number_of_cancellations; } // Takes the and casts it to a pointer. Then it removes it // from its neighbors template int ACE_Timer_Wheel_T::cancel (long timer_id, const void **act, int dont_call_handle_close) { ACE_TRACE ("ACE_Timer_Wheel_T::cancel"); ACE_MT (ACE_GUARD_RETURN (LOCK, ace_mon, this->mutex_, -1)); // Make sure we are getting a valid , not an error // returned by schedule () if (timer_id == -1) return 0; ACE_Timer_Node_T *node = (ACE_Timer_Node_T *) timer_id; // Check to see if the node looks like a true ACE_Timer_Node_T if (timer_id == node->get_timer_id ()) { node->get_next ()->set_prev (node->get_prev ()); node->get_prev ()->set_next (node->get_next ()); if (act != 0) *act = node->get_act (); if (dont_call_handle_close == 0) this->upcall_functor ().cancellation (*this, node->get_type ()); // Find out what position it is in size_t pos = (node->get_timer_value ().usec () / this->resolution_) % this->wheel_size_; this->free_node (node); // Get the new earliest time if we have to if (pos == this->earliest_pos_) { ACE_Time_Value earliest_time; // defaults to zero // Check every entry in the table for (size_t i = 0; i < this->wheel_size_; i++) { // Skip empty entries if (this->wheel_[i]->get_next () != this->wheel_[i]) { // if initialization or if the time is earlier if (earliest_time == ACE_Time_Value::zero || this->wheel_[i]->get_timer_value () < earliest_time) { earliest_time = this->wheel_[i]->get_next ()->get_timer_value (); this->earliest_pos_ = i; } } } } return 1; } // Didn't find it if we are here return 0; } // Dumps out some properties of this object template void ACE_Timer_Wheel_T::dump (void) const { ACE_TRACE ("ACE_Timer_Wheel_T::dump"); ACE_DEBUG ((LM_DEBUG, ACE_BEGIN_DUMP, this)); ACE_DEBUG ((LM_DEBUG, "\nwheel_size_ = %d", this->wheel_size_)); ACE_DEBUG ((LM_DEBUG, "\nresolution_ = %d", this->resolution_)); ACE_DEBUG ((LM_DEBUG, "\nwheel_ = \n")); for (size_t i = 0; i < this->wheel_size_; i++) { ACE_DEBUG ((LM_DEBUG, "%d\n", i)); ACE_Timer_Node_T *temp = this->wheel_[i]->get_next (); while (temp != this->wheel_[i]) { temp->dump (); temp = temp->get_next (); } } ACE_DEBUG ((LM_DEBUG, ACE_END_DUMP)); } // Removes the earliest node and then find the new template ACE_Timer_Node_T * ACE_Timer_Wheel_T::remove_first (void) { ACE_TRACE ("ACE_Timer_Wheel_T::remove_first"); // Remove the item ACE_Timer_Node_T *temp = this->wheel_[this->earliest_pos_]->get_next (); temp->get_prev ()->set_next (temp->get_next ()); temp->get_next ()->set_prev (temp->get_prev ()); ACE_Time_Value earliest_time; // Check every entry in the table for the new earliest item for (size_t i = 0; i < this->wheel_size_; i++) { // Check for an empty entry if (this->wheel_[i]->get_next () != this->wheel_[i]) { // if initialization or if the time is earlier if (earliest_time == ACE_Time_Value::zero || this->wheel_[i]->get_timer_value () < earliest_time) { earliest_time = this->wheel_[i]->get_next ()->get_timer_value (); this->earliest_pos_ = i; } } } return temp; } // Takes an ACE_Timer_Node and inserts it into the correct position in the correct // list template void ACE_Timer_Wheel_T::reschedule (ACE_Timer_Node_T *expired) { ACE_TRACE ("ACE_Timer_Wheel_T::reschedule"); size_t pos = (expired->get_timer_value ().usec () / this->resolution_) % this->wheel_size_; // See if we need to update the earliest time if (this->earliest_time () == ACE_Time_Value::zero || this->earliest_time () < expired->get_timer_value ()) this->earliest_pos_ = pos; // Insert time into dummy node this->wheel_[pos]->set_timer_value (expired->get_timer_value ()); ACE_Timer_Node_T *cursor = this->wheel_[pos]->get_next (); // Find position to insert while (cursor->get_timer_value () < expired->get_timer_value ()) cursor = cursor->get_next (); // Insert expired->set_prev (cursor->get_prev ()); expired->set_next (cursor); cursor->set_prev (expired); expired->get_prev ()->set_next (expired); } // Just return the iterator template ACE_Timer_Queue_Iterator_T & ACE_Timer_Wheel_T::iter (void) { this->iterator_->first (); return *this->iterator_; } // Dummy version of expire to get rid of warnings in Sun CC 4.2 template int ACE_Timer_Wheel_T::expire () { return INHERITED::expire (); } // Specialized expire which expires in total order. It is optimized by keeping // track of the list with the earliest element and the next earliest list. It // then goes through the earliest list until it can switch to the second list. // it keeps going until it finishes with everything before the template int ACE_Timer_Wheel_T::expire (const ACE_Time_Value &cur_time) { ACE_TRACE ("ACE_Timer_Wheel_T::expire"); ACE_MT (ACE_GUARD_RETURN (LOCK, ace_mon, this->mutex_, -1)); int number_of_timers_expired = 0; size_t i; size_t earliest = this->wheel_size_; ACE_Time_Value earliest_time = cur_time; size_t next_earliest = this->wheel_size_; ACE_Time_Value next_earliest_time; // Find the earliest time for (i = 0; i < this->wheel_size_; i++) { if (this->wheel_[i]->get_next () != this->wheel_[i] && this->wheel_[i]->get_next ()->get_timer_value () <= earliest_time) { earliest = i; earliest_time = this->wheel_[i]->get_next ()->get_timer_value (); } } // Check to see if there is nothing to expire if (earliest == this->wheel_size_) return 0; do { next_earliest_time = cur_time; next_earliest = this->wheel_size_; // Find 2nd earliest position for (i = 0; i < this->wheel_size_; i++) { if (i != earliest && this->wheel_[i]->get_next () != this->wheel_[i] && this->wheel_[i]->get_next ()->get_timer_value () <= next_earliest_time) { next_earliest = i; next_earliest_time = this->wheel_[i]->get_next ()->get_timer_value (); } } while (this->wheel_[earliest]->get_next ()->get_timer_value () <= next_earliest_time) { // Remove the first node in the earliest position ACE_Timer_Node_T *expired = this->wheel_[earliest]->get_next (); this->wheel_[earliest]->set_next (expired->get_next ()); expired->get_next ()->set_prev (this->wheel_[earliest]); TYPE &type = expired->get_type (); const void *act = expired->get_act (); int reclaim = 1; // Check if this is an interval timer. if (expired->get_interval () > ACE_Time_Value::zero) { // Make sure that we skip past values that have already // "expired". do expired->set_timer_value (expired->get_timer_value () + expired->get_interval ()); while (expired->get_timer_value () <= cur_time); // Since this is an interval timer, we need to reschedule // it. this->reschedule (expired); reclaim = 0; } // call the functor this->upcall (type, act, cur_time); if (reclaim) // Free up the node and the token this->free_node (expired); ++number_of_timers_expired; // Check to see if we are empty if (this->wheel_[earliest]->get_next () == this->wheel_[earliest]) break; } if (next_earliest_time == this->wheel_size_) break; earliest = next_earliest; } while (next_earliest != this->wheel_size_); return number_of_timers_expired; } #endif /* ACE_TIMER_WHEEL_T_C */