CHAPTER 32

CIAO and CCM

32.1 Introduction

The OMG CORBA Component Model (CCM) (OMG Document
formal/06-04-01) defines a specification for implementing component
middleware. The Component-Integrated ACE ORB (CIAO) isTAO's
implementation of the CCM specification.

The CORBA Component Model is a step in the longtime evolution of
software engineering best practices towards higher levels of abstraction. CCM
isarealization of the concept of composing software from reusable, pluggable
components, assembled into an application at run time. When properly
applied, component-based software devel opment promotesimproved software
reuse, deployment flexibility, and programmer productivity.

32.1.1 Prerequisites
To better understand this chapter, the reader should be familiar with the
content of the following chapters from this guide:

» Chapter 2, “Building ACE and TAO"

|
@ I ociweb.com 1213

OBJECT COMPUTING, INC.

CIAO and CCM

32.1.2

» Chapter 4, “The Makefile, Project, and Workspace Creator (MPC)”
e Chapter 5, “TAO IDL Compiler”

« Chapter 11, “Value Types’

e Chapter 13, “Locad Interfaces”

What is a Component?

A component is a pluggable, self-contained software entity consisting of its
own encapsulated business logic and data with clearly defined interfaces for
collaboration. A component defines both the capabilitiesit provides and the
servicesit requires aswell as eventsit publishes and consumes, asillustrated
by the diagram.

Event
<<component>> Publisher

< > Facet ; >/
Implementation
\<) Facet
Implementation

Event
Consumer

Receptacle

Facets

Figure 32-1 A CCM Component

The CORBA 2.x object model lacks the expressiveness required to create
pluggable components. A CORBA 2.x IDL interface specifies a contract
between aclient and a server. That contract specifies what the server provides
and what the client can expect. However, agreat dea of information is
missing from that IDL contract. A client or server has no formal mechanism to
specify what it requires—namely, which IDL interfaces it depends upon to
accomplish its tasks. These dependencies are hidden in the implementation
code. Without knowledge of what each client or server requires, it is
impossible to connect the clients and servers at run time in a generic way.

1214

[
ociweb.com I

OBJECT COMPUTING, INC.

32.1 Introduction

The CORBA Component Model includes new IDL constructs for expressing
both the client and the server sides of component collaboration. This new
edition of IDL iscalled IDL3. IDL3isasuperset of traditional CORBA IDL,
or IDL2. The TAO IDL compiler accepts both IDL3 and IDL 2 interface
specifications.

A component defines its collaborations in terms of provided and required
interfaces. An IDL3 component specification consists of ports that indicate
how the component interacts with other components as both a client and a
server. There are several types of ports providing various capabilities:

» A facet defines an IDL interface provided by a component. Thisisthe
server-side of the traditional IDL contract.

* A receptacle defines an IDL interface that is used by a component. The
component may interact with that interface either through synchronous
calls or through AMI. Facets and receptacles are connected via assembly
descriptors that are processed at run-time.

* Anevent source or publisher defines an event type that is published by a
component. CCM events are strongly typed, as our example will illustrate.

* Anevent sink or consumer defines an event type that is consumed by a
component. Event sources and sinks are connected via assembly
descriptors that are processed at run-time.

» Anattribute provides a mechanism for configuring component properties
at application start-up.

An application consists of several components packaged together and
deployed at run time. A CCM-based application may consist of numerous
binary component implementations implemented in several different
programming languages communicating through CORBA.

The CCM specification defines a Component |mplementation Framework
(CIF) consisting of tools to simplify the implementation of components. The
CIF uses the Component I mplementation Definition Language (CIDL),
through which a component developer defines a composition to describe a
component’ simplementation details. A CIDL compiler generates a skeletal
version of the component’s C++ implementation, or executor. The developer
isleft to concentrate on application logic.

|
@ I ociweb.com 1215

OBJECT COMPUTING, INC.

CIAO and CCM

32.1.3

32.1.4

Component Deployment
A developer configures an application’ s component connections—facet to
receptacle, event source to event sink—via descriptor files that a component
server process loads at run time. The component server creates a component
container to instantiate a component and connect it to any collaborating
components through the appropriate ports. The component itself is deployed
inalibrary that is dynamically loaded into the component server at run time.

CORBA isthe underlying middleware infrastructure for the component
containers. The container programming model is built on the Portable Object
Adapter (POA). Components communicate through CORBA, assuring
interoperability. The diagram illustrates the component container’s
relationship to the CORBA infrastructure.

Container

Container

<<component>>

Q\

<<component>>

./
POA

.

POA

ORB

Figure 32-2 The Component Container and the CORBA Infrastructure

Summary of the CCM Programming Model
The CCM model of component programming extends the CORBA 2.x
programming model! in the following ways:

» A component specifies not only what it provides, but also what it requires.

» A component can provide multiple interfaces that are not related through

inheritance.

1216

[
ociweb.com I

OBJECT COMPUTING, INC.

32.1 Introduction

i

OBJECT COMPUTING, INC.

* A component specifies events it publishes and consumes directly in its
interface. Events are strongly typed value objects.

» Anapplication devel oper assembles and deploys a component-based
application by writing standard XML-based assembly and deployment
descriptors. The component server reads the descriptors at run-time to
load libraries and connect components, promoting loose coupling of
component implementations.

* A component developer can add capabilities to an existing component
without affecting existing clients by providing a new facet.

» A component developer does not need to have any direct interaction with
the Portable Object Adapter. The component container interacts with the
POA.

* A component developer does not writeamain () function.
* The component container instantiates and destroys the component.

e The component server provides standard services such as event
publication, transactions, persistent state, and security and enforces usage
policies consistently.

A CCM client does not have to be component-aware. A CORBA 2.x client can
bind to a component facet and interact with it without any knowledgethat it is
part of a CCM component.

ociweb.com 1217

CIAO and CCM

32.1.5

32.2

Road Map

The following sectionsillustrate the CCM programming model with an
example. The exampleillustrates the steps involved in developing a CIAO
application by tracing the road map outlined in the diagram.

< Define an IDL interface for each component and its facets
« Implement each component and its facets
< Define each component’s composition
< Implement a C++ executor for each component and facet
« Describe the application’s deployment
< Describe each component’s libraries and ports
« Connect component instances through their ports
< Deploy each component into a component container
¢ Build the application
< Run the application

Figure 32-3 Road Map

Asyou can see, component development and deployment primarily consists
of five phases: defining interfaces, implementing interfaces, describing the
deployment, building, and running. Defining and implementing interfaces
should be familiar to any CORBA developer. We will find that some of the
stepsinimplementing an IDL 3 interface are a bit different as we take
advantage of the CCM programming model. Describing the deployment,
involves defining XML descriptors to define how each component is
composed from itslibraries and how the components are connected together to
form an application. In the fourth step, building, we create a set of dynamic
libraries for each component. Finally, we run the application by executing
component serversto load the dynamic libraries and connect the components
together.

Example - The Messenger Application

Our CIAO example builds on the Messenger example used throughout this
guide. The exampl€e' s source code, build files, and XML descriptor files ares

1218

[
ociweb.com I

OBJECT COMPUTING, INC.

32.2 Example - The Messenger Application

inthe $CIAO ROOT/examples/DevGuideExamples/Messenger
directory.

The CIAO Messenger example consists of three components: a Messenger, a
Receiver, and an Administrator. The Messenger publishes message events and
provides a history of all published messages. The Receiver subscribes to
message events and retrieves the Messenger’ s message history. The
Administrator controls the Messenger, starting and stopping publication and
changing the attributes of what the Messenger publishes. The relationship
between the three component types is demonstrated by the following
component diagram:

Runnable b
runnables
@),
<<component>> <<component>>
Messenger Publication Administrator
Q content
Historyé @ Message
message_consumer
) <<component>>
message_history Receiver

facet

40
J)— receptacle
—> > publisher

>>— consumer

Figure 32-4 Messenger Component Diagram

The diagram illustrates that the M essenger component provides three facets,
Runnable, Publication, and History. Each facet isan IDL interface. The
Messenger component also publishes Message events. Each Message event
isavalue-based event type. The Receiver component has a receptacle that
connectsto the Messenger’ sHistory facet. It also consumesMessage events
published by the Messenger. Finally, the Administrator component has two

|
@ I ociweb.com 1219

OBJECT COMPUTING, INC.

CIAO and CCM

receptacles connected to the Messenger’ sRunnable and Publication
facets, respectively.

The Messenger does not start publishing messages immediately at start-up.
The Administrator connects to the Messenger’s Runnable facet and invokes
thestart () operation on it to trigger message publication. Upon receiving a
start () request, the Messenger publishes messagesto all connected
Receivers until the Administrator tellsit to stop () . The “start publication”
collaboration isillustrated in the following interaction diagram:

sd StartPublishing)

::Administrator ‘ ‘ ::Messenger‘ receiverl receiver2
::Receiver :Receiver
Iaunch}

start r

loop) || publish > ﬁ
publish ’H

Figure 32-5 Start Message Publication

32.2.1 The Messenger Application’s IDL Interfaces
Thefirst task is to specify the Messenger application’sinterfaces using IDL.
Or, more accurately, using IDL 3. Next, we create a component type
specification for the Messenger, Receiver, and Administrator. After that, we
specify standard IDL interfaces for each of the facets provided by the

1220

[
ociweb.com I

OBJECT COMPUTING, INC.

32.2 Example - The Messenger Application

Messenger, namely the History, Runnable, and Publication. Finaly, we
create aMessage event type whose instances the Messenger publishes.

< Define an IDL interface for each component and its facets
< Implement each component and its facets

< Define each component’s composition

< Implement a C++ executor for each component and facet
< Describe the application’s deployment

< Describe each component’s libraries and ports

< Connect component instances through their ports

< Deploy each component into a component container
¢ Build the application
< Run the application

Figure 32-6 Road Map

32.2.1.1 The Messenger Component and Facets

The Messenger component provides facets that implement the Runnable,
Publication, and History interfaces. It also publishes aMessage. Each
Receiver component consumes the Mes sages published by the Messenger and
usesthe History facet provided by the Messenger. The Administrator
component uses the Runnable and Publication facets provided by the
Messenger.

First, we specify IDL interfaces for the Runnable and Publication facets.
Both of these are IDL 2 interfaces that would be recognized by any CORBA
client:

// file Runnable.idl
interface Runnable {
void start();

void stop();

}i

// file Publication.idl
interface Publication {
attribute string text;
attribute unsigned short period;

}i

|
@ I ociweb.com 1221

OBJECT COMPUTING, INC.

CIAO and CCM

We put each IDL interfacein its own file as a programming convention. The
Runnable interface provides control over starting and stopping of message
publication. The Publication interface provides control over the published
message text and the period, in seconds, between messages.

The Messenger component publishes Message events. We define the
Message type using the new IDL3 keyword eventtype. An eventtype is
an IDL value type that inherits from the abstract value type

Components: : EventBase. Our Message event type has three public string
members. subject, user, and text.

// file Message.idl
#include <Components.idls>

eventtype Message {
public string subject;
public string user;
public string text;

}i

typedef sequence<Message> Messages;

We must include the IDL file Components. idl to use IDL3 keywords such
aseventtype. Likeany IDL valuetype, The Message event type may
contain operations and a factory. For more information on value types, see
Chapter 11.

However, we can simplify our event type implementation by restricting the
contents of the event type to public data members. For such an event type, the
IDL compiler generates afull event type implementation and automatically
registers the event type factory for us. Therefore, we do not add operations or
afactory to the event type.

The History facet contains operations to retrieve published Message events.

// file History.idl
#include <Components.idl>
#include <Message.idl>

interface History {
Messages get_all();
Message get latest();

}i

1222

[
ociweb.com I

OBJECT COMPUTING, INC.

32.2 Example - The Messenger Application

i

OBJECT COMPUTING, INC.

The implementation of the History facet must keep track of each message
that it publishesfor later retrieval by clients.

Finally, we declare the Messenger component. The Messenger declaration
illustrates several of the new IDL 3 keywords introduced for component-based
programming.

// file Messenger.idl

#include <Components.idl>
#include <Runnable.idl>
#include <Publication.idl>
#include <Message.idl>
#include <History.idls

component Messenger {
attribute string subject;

provides Runnable control;
provides Publication content;

publishes Message message publisher;
provides History message history;

}i

home MessengerHome manages Messenger {};

The Messenger’ s component specification must include Components.idl to
make the IDL3 keywords available. It also includes IDL files for each of its
three facets and for the Message eventsit publishes.

The keyword component isanew IDL3 keyword that is used to define a
component.

component Messenger {

The component’ s definition can contain IDL attributes just like an IDL2
interface. However, the component’ s definition may not contain IDL
operations.

The Messenger component contains one attribute, the subject.

attribute string subject;

ociweb.com 1223

CIAO and CCM

Despite of the fact that the subject attribute iswritable it is not exposed to
the Messenger’s clients.

The Messenger component provides three facets.

provides Runnable control;
provides Publication content;
provides History message history;

Each facet isan IDL interface. A component uses the provides keyword to
indicate the servicesthat it offers. In the example, the Messenger’ sthree facets
are aRunnable facet called control for starting and stopping message
publication, aPublication facet called content for control over the
message content and publication period, and aHistory facet called
message history for access to all messages published by the component.
There is no limit to the number of clients that may access the Messenger’'s
facets.

The Messenger component publishes events:

publishes Message message publisher;

}i

Recall that aMessage is an event type. Published events are strongly typed.
There isno limit to the number of subscribers for a published event. The
Messenger component has neither direct knowledge of the event’ s subscribers
nor knowledge of the underlying messaging mechanism.

A publishes port may publish to an unlimited number of subscribers. A
second kind of publisher, called an emitter, islimited to one subscriber. An
emitter uses the emits keyword instead of the publishes keyword. The
CCM deployment framework enforces the emitter’ s limitation to one
subscriber at deployment time. Aside from the keyword, the emitter’s IDL
syntax is the same as the publisher’s. For example:

emits Message message publisher;
The home, called MessengerHome, manages the life cycle of the component.

home MessengerHome manages Messenger {};

1224

[
ociweb.com I

OBJECT COMPUTING, INC.

32.2 Example - The Messenger Application

32.2.1.2

i

OBJECT COMPUTING, INC.

Note

Each component has a corresponding home. The component server uses the
home to create and destroy component instances. Our Messenger’ shome isthe
simplest possible home, implicitly defining acreate () operation. The home
construct will be discussed in more detail later.

The Receiver Component

The Receiver component receives Message events from the Messenger and
retrieves the message History from the Messenger.

// file Receiver.idl
#include <Components.idl>
#include <Messsage.idl>
#include <History.idls>

component Receiver {
consumes Message message consumer;
uses History message history;

}i

home ReceiverHome manages Receiver {};

The Receiver does not expose any facets, but instead indicateswhat it requires
viaauses specification. The Receiver usesaHistory facet, and consumes
Message events. The specification of not only what a component offers but
also what it requiresis asignificant step forward, as it enables connection of
components at deployment time. Both of these Receiver receptacles are
connected to corresponding facets on the Messenger component at
deployment.

The Receiver dso hasahome, ReceiverHome, Which is responsible for
creating and destroying Receiver component instances. Again, thisisthe
simplest possible home declaration.

home ReceiverHome manages Receiver {};

The Receiver’s IDL file does not have a dependency on the Messenger. The
Receiver knows about Message and History, but it does not need to know
anything about the component that provides those services. A component may
depend on IDL interfaces and event types, but it need not depend on other
components.

ociweb.com 1225

CIAO and CCM

32.2.1.3

Note

The Administrator Component

Finally, the third component type, an Administrator, triggers the Messenger’s
event publication and controls the period of its publication and the text that it
publishes.

// file Administrator.idl
#include <Components.idls>
#include <Runnable.idl>
#include <Publication.idls>

component Administrator {
uses multiple Runnable runnables;
uses multiple Publication content;

}i

home AdministratorHome manages Administrator {};

The Administrator uses both the Runnable and Publication facets
provided by the Messenger. These two receptacles are later connected to
corresponding facets provided by the Messenger. The Administrator’ shomeis
responsible for creating and destroying the Administrator component instance
at run time.

Theuses multiple keyword onthe Administrator's runnables and
content receptacles indicates that the Administrator can connect to more
than one Runnable facet and more than one Publication facet. These
facets may be provided by the same component or by different components;
the Administrator does not need to know. In our sample deployment the
Administrator connects to one Runnable facet and one Publication facet,
both from the same Messenger component.

The Administrator’s IDL file does not have a dependency on the Messenger.
The Administrator knows about Runnable and Publication, but it does not
need to know anything about the component that provides those services.

The Administrator, like all components, has a home to manageitslife cycle:

home AdministratorHome manages Administrator {};

1226

[
ociweb.com I

OBJECT COMPUTING, INC.

32.2 Example - The Messenger Application

32.2.2

i

OBJECT COMPUTING, INC.

The homesin our example are the simplest possible. The default home
contains afactory that acts like a default constructor. It is possible to override
that factory and provide parameters to be passed into it.

To summarize, we' ve been exposed to several new IDL3 keywords:
Table 32-1 IDL3 Keywords

IDL3 Keyword

Description

component

Declares a component that can provide and use facets,
publish and consume events

provides

Declares an IDL interface that the component offers; the
interface defines a service offered

uses

Declares an IDL interface that the component requires

uses multiple

Declares that the component can connect to one or more
instances of the required interface

eventtype

Declares an event type that the component publishes; the
eventtype isan DL valuetype

publishes

Declares that the component publishes instances of an event
type to a potentially unlimited number of consumers

emits

Declares that the component publishes instances of an event
type to exactly one consumer

consumes

Declares that the component expects the event type to be
published to it by one or more publishers

home

Declares an interface used by the component container to
manage the component’slife cycle

manages

Declares which component is managed by the home

Implementing the Components

The CORBA Component Model specification defines a Component
Implementation Framework (CIF) consisting of toolsto simplify and automate
the implementation of components. A significant part of the CIF isthe
Component Implementation Definition Language (CIDL), through which a
component developer provides implementation details for each component
type. The CIDL compiler compilesthe CIDL files and generates a significant
portion of the C++ implementation code. The developer is |eft to concentrate

on application logic.

ociweb.com

1227

CIAO and CCM

We write CIDL filesfor the Messenger, Receiver, and Administrator
component types. Each CIDL file contains a component composition.

< Define an IDL interface for each component and its facets
< Implement each component and its facets

Q Define each component’s compositio@
¢ Implement a C++ executor for each component and facet
< Describe the application’s deployment
< Describe each component’s libraries and ports
< Connect component instances through their ports
< Deploy each component into a component container
¢ Build the application

< Run the application

Figure 32-7 Road Map

32.2.2.1 The Messenger Compaosition

The primary entity of aCIDL fileisacomposition. A composition
describes how a component is connected to itshome. A component can be
instantiated by more than one home; the composition designates the home
responsible for the component.
The declaration of the Messenger’ s composition follows:
// file Messenger.cidl
#include <Messenger.idl>
composition session Messenger Impl
{

home executor MessengerHome Exec

{

implements MessengerHome;
manages Messenger Exec;

}i
}i
The session isthe component’ slife cycle category. A session composition
provides transient object references and maintains its transient state for the
lifetime of the session. Once the component is destroyed, its object references

1228

[
ociweb.com I

OBJECT COMPUTING, INC.

32.2 Example - The Messenger Application

i

OBJECT COMPUTING, INC.

areinvalidated and its state is lost. The other valid composition life cycle
categoriesareentity, service, and process. They are discussed later.

The name of the composition isMessenger Impl. The CIDL compiler
generates its implementation code into a C++ namespace called
Messenger Impl. The composition can have any name; it is customary to
end the namewith Impl.

Animplementation of acomponent or ahomeis called an executor. A CCM
developer implements an executor rather than a servant. The CIDL compiler
generates two abstract C++ executor classes, one for the component and one
for itshome, using the namesMessenger Exec and MessengerHome Exec
specified in the CIDL composition. The Messenger executors may have any
name; it is customary to end the each with the suffix Exec.

home executor MessengerHome Exec

{

implements MessengerHome;
manages Messenger Exec;

}i

Thehome executor defines which home is used to manage the life cycle of
the Messenger component.

The implements declaration declares which of the component’s homes
manages the component’ s life cycle. The Messenger component only has one
home, the MessengerHome, SO that isthe home we'll use. Note that we don't
need to indicate that the MessengerHome manages the M essenger
component; that relationship is defined in the MessengerHome's declaration.

The component devel oper overrides pure virtual methods in the generated
executor classesto provide the component implementation. The CIDL
compiler can optionally generate a default implementation of each C++
executor class. By default, it appends i to the executor class name. The
default implementation of the Messenger executor iSMessenger exec i,
and the default implementation of the MessengerHome executor is
MessengerHome exec_i. The component developer fillsthe application
logic into the generated Messenger executor implementation. The CIDL
compiler generates afull implementation for the MessengerHome’ s executor,
S0 no developer intervention is required.

ociweb.com 1229

CIAO and CCM

32.2.2.2 The Receiver and Administrator Compositions
The Receiver and Administrator compositions are similar to the Messenger
composition.
// file Receiver.cidl
#include <Receiver.idls>
composition session Receiver Impl
{
home executor ReceiverHome Exec
{
implements ReceiverHome;
manages Receiver Exec;
Vi
}i
The Receiver’s composition is called Receiver Impl, and it's home
executor implements the ReceiverHome. CIDL compiler generates an
abstract executor class for the ReceiverHome called ReceiverHome Exec
and an abstract executor class for the Receiver component called
Receiver Exec. Optionally, the CIDL compiler can generate default
implementations of the two executors.
// file Administrator.cidl
#include <Administrator.idls>
composition session Administrator_Impl
{
home executor AdministratorHome Exec
{
implements AdministratorHome;
manages Administrator Exec;
}i
}i
The Administrator’s composition is called Administrator Impl, andits
home executor implements the AdministratorHome. The CIDL compiler
generates an abstract executor class for the AdministratorHome called
AdministratorHome Exec and an abstract executor classfor the
Administrator component called Administrator Exec.
1230

[
ociweb.com I

OBJECT COMPUTING, INC.

32.2 Example - The Messenger Application

32.2.3

i

OBJECT COMPUTING, INC.

To summarize, we' ve been exposed to severa new CIDL keywords:
Table 32-2 CIDL Keywords

CIDL Keyword Description
Declares a set of entities that work together to manage the
composition component’ s life cycle and implement the component’s
behavior

A component category characterized by transient state and
transient object identity

A component category characterized by objects having no
duration beyond the lifetime of a single client interaction

A component category characterized by persistent state that
isvisible to the user and persistent object identity

session

service

entity

A component category characterized by persistent state that
isnot visible to the user and persistent object identity

Declares the name of the abstract component home executor
class

process

executor

implements Declares the home that manages the component
manages Declares the name of the abstract component executor class

Compiling the IDL and CIDL

We compilethe IDL fileswith TAO s IDL compiler. The TAO IDL compiler
recognizes | DL 3 constructs such as component and eventtype. Additional
information on compiling the Messenger’s IDL filesis contained in 32.2.6.

We compile the CIDL fileswith CIAO’s CIDL compiler. Additional
information on compiling the Messenger’s CIDL filesisalso contained in
32.2.6. The CIDL Compiler Reference in 32.5 contains more extensive
information on using the CIDL compiler.

This section concentrates on the output of the IDL and CIDL compilers rather
than the mechanics of executing the IDL and CIDL compilers.

The CIDL compiler can generate most of the code for home, component, and
facet executor implementations through its - -gen-exec-impl
command-line option. For each component, home, or facet it generates a C++
class that inherits from a generated abstract executor class, leaving the
component developer to fill in the application logic.

ociweb.com 1231

CIAO and CCM

The diagram shows the files that the CIDL compiler generates when it

compilesMessenger.cidl.

IDL File

Messenger.idl CIDL File

I Messenger.cidl l

Compile IDL

MessengerC.h MessengerS.h
MessengerC.cpp| | MessengerS.cpp

Messenger Messenger
Stub Skeleton

Messenger_exec.h,
Messenger_exec.cpp

(Optional)
Default Executor
Implementation(s)

Messenger_svnt.h,
Messenger_svnt.cpp

Servants

Exeoutor. | Messengerec.n, N EEERA
Stub MessengerEC.cpp Skeleton

Compile CIDL

\
MessengerE.idl

Compile IDL

IDL File,
Executor
Interfaces

MessengerEC.h,
MessengerEC.cpp

Figure 32-8 Running the CIDL Compiler

We show both Messenger.cidl and Messenger . 1d1 asinputsto the CIDL
compiler because the Messenger.cidl fileincludesMessenger.idl.

1232

[
ociweb.com I

OBJECT COMPUTING, INC.

32.2 Example - The Messenger Application

i

OBJECT COMPUTING, INC.

The CIDL compiler generatesan IDL file, MessengerE. 1d1, containing
local interfaces for the Messenger’ s component, home, and facet executors.
We compilethis IDL file with the IDL compiler to generate an abstract C++
executor class for each component and facet. Each component, home, and
facet executor implementation implements one of the local interfaces declared
inMessengerE. idl.

The CIDL compiler also generates complete C++ header and implementation
files for the servant classes. Thereis a servant class for each component,
home, and facet executor class. The CCM devel oper does not directly
instantiate servants; instead, the component container instantiates servants and
registers them with the Portable Object Adapter automatically.

The CIDL compiler optionally generates default component, home, and facet
executor implementation classesin files called Messenger exec.h and
Messenger exec.cpp. Those files contain definitions for five classes:
Messenger_ exec_i,MessengerHome exec i, Runnable exec i,
Publication exec i,andHistory exec_i. Thelatter three classes are
executors for the Messenger's Runnable, Publication, and History
facets. For safety, copy theMessenger exec.h andMessenger exec.cpp
filesto something like Messenger exec i.hand

Messenger exec_1i.cpp. Youmay alsowant to break the implementations
for History exec i, Runnable exec i, €tc., into different header and
implementation files as we' ve done in our sample code.

ociweb.com 1233

CIAO and CCM

The diagram illustrates the M essenger executor’s classes.

<<executor interface>>
CCM_Messenger

+get_content() =0
+get_control() =0
+get_message_history() = 0

T

<<session executor>>
Messenger_Exec

T

<<executor impl>>
Messenger_exec_i

+get_content():CCM_Publication
+get_control():CCM_Runnable
+get_message_history():CCM_History

Executor interface; in
MessengerEC.h and .cpp

Session executor; in
MessengerEC.h and .cpp

Executor implementation;
in Messenger_exec_i.h
and .cpp

[] Class generated by the CIDL compiler
[] Classimplemented by the component developer

Figure 32-9 The Messenger Executor’s Classes

The table summarizes the Messenger’ s executor implementation classes.

Table 32-3 Executor Implementation Classes

Executor

Implementation

Class Description

Messenger exec i Implements the Messenger component
MessengerHome exec_i | Implements the MessengerHome
Runnable exec_i Implements the Runnable facet
Publication exec i Implements the Publication facet
History exec i Implementsthe History facet

1234

[
ociweb.com I

OBJECT COMPUTING, INC.

32.2 Example - The Messenger Application

32.2.4 Implementing the Executors
The CIAO CIDL compiler generates an empty implementation of each
component and facet executor. In the following sections, we implement the
facet executors for the Runnable, Publication, and History facets and
the component executors for the Messenger, Receiver, and Administrator

components.

¢+ Define an IDL interface for each component and its facets
¢ Implement each component and its facets
< Define each component’s composition
C Implement a C++ executor for each component and fac@
¢« Describe the application’s deployment
< Describe each component’s libraries and ports
< Connect component instances through their ports
< Deploy each component into a component container
¢ Build the application
¢« Run the application

Figure 32-10 Road Map

|
@ I ociweb.com 1235

OBJECT COMPUTING, INC.

CIAO and CCM

32.2.4.1 The Runnable Facet Executor
The Runnable facet is provided by the Messenger component and permits a

client to start and stop message publication. The component diagram

highlights the role of the Messenger’s Runnable facet.

Runnable

<<component>>
Messenger

O) runnables

Publication

O content

|
History 5 U Message

message_consumer

<<component>>
Administrator

message_history

facet
receptacle
publisher
consumer

AR

<<component>>
Receiver

Figure 32-11 The Messenger’s Runnable Facet

Recall that the Runnable IDL interfaceis asfollows:

// file Runnable.idl
interface Runnable {
void start();

void stop();

}i

1236

[
ociweb.com I

OBJECT COMPUTING, INC.

32.2 Example - The Messenger Application

The CIDL compiler generates a default Runnable executor with empty
implementations of start () and stop () . The class diagram illustrates the
Runnable executor’s class hierarchy.

<<stub>>
Runnable

+start() CORBA::LocalObject
+stop()

<<executor interface>>
CCM_Runnable TAO_Local_RefCounted_Object

+start() = 0
+stop() =0

T

<<executor impl>>
Runnable_exec_i

+start()
+stop()

Class in the TAO Library
Class generated by the IDL compiler
Class generated by the CIDL compiler

|

Class implemented by the component developer

Figure 32-12 Class Diagram for the Runnable Executor

The IDL compiler generates aRunnable stub. The CIDL compiler generates
an abstract executor base class, CCM_Runnable, and optionally generates an
empty executor implementation, Runnable exec i. The CIDL compiler
generates a default constructor, a destructor, and a virtual method for each of
Runnable’s|DL operations and attributes.

|
@ I ociweb.com 1237

OBJECT COMPUTING, INC.

CIAO and CCM

Note

For each IDL interface “ MylInterface” that is a facet of a component, the
CIDL compiler generates an abstract facet executor class called
“ CCM_Mylnterface.”

An executor isalocal CORBA object. Its generated implementation class also
inherits from ::CORBA: : LocalObject. Additional information on local
objects can be found in Chapter 13.

The Messenger component only publishes messages when it can acquire the
Runnable executor'srun_lock. If the Messenger cannot acquire the run
lock, it blocks waiting for it to be released. A client of the Runnable facet
controlsthe run lock viathe start () and stop () operations.

The Runnable executor implementation follows. Changes to the
CIDL-generated empty executor implementation arein bold:

// file Runnable exec i.h

#include "Messenger svnt.h"
#include "tao/LocalObject.h"
#include <ace/Thread Mutex.h>

namespace Messenger Impl

{

class MESSENGER EXEC_Export Runnable exec_i
: public virtual ::CCM_Runnable,
public virtual ::CORBA::LocalObject
{

public:
Runnable exec i (void);
virtual ~Runnable exec i (void);
// Operations from ::Runnable
virtual void start ();
virtual void stop ();

ACE_Thread Mutex& get run lock();

private:
ACE Thread Mutex run lock_;
}

1238

[
ociweb.com I

OBJECT COMPUTING, INC.

32.2 Example - The Messenger Application

i

OBJECT COMPUTING, INC.

Theincluded Messenger svnt.h header file contains the servant class
definitions for the Runnable, Publication, History, Messenger, and
MessengerHome. A component developer does not implement servant
classes; instead, the CIDL compiler generates servant classes and the
component container automatically instantiates them at runtime. A
component devel oper implements executor classes that have no relationship to
the server’s POA. The automatically-generated servant class delegates its
execution to the devel oper-written local executor object.

The executor implementation inherits from the generated abstract executor
base class, CCM_Runnable, and from : : CORBA: : LocalObject.
CCM_Runnable, inturn, inherits from the generated Runnable stub class that
the client uses. Thus, the executor implements the Runnable interface
generated by the IDL compiler. The start () and stop () operations are
declared as pure virtual methodsin the CCM_Runnable class, forcing the
executor to implement them.

Note the lack of inheritance from a POA Runnable class; instead, the CIDL
compiler generates aRunnable Servant classfor us.

Theinheritancefrom : : CORBA: : LocalObject enforcestwo behaviors: first,
the executor isa::CORBA: : LocalObject, meaning that it can only be used
from within the server process; second the executor has reference counting,
meaning that the inherited add ref () and remove ref () operations
must be used to manage the executor’s memory.

Our Runnable implementation contains aprivate ACE_Thread Mutex lock
and a public accessor method to retrieve it. The Messenger acquires this
run_lock before publishing each message and releases it after publishing
each message. If the Messenger cannot acquire the run_lock, it blocks until
thelock isreleased. A Runnable client can acquire and releasethe run_lock
throughthe start () and stop () operations. In thisway, a client can control
whether or not the Messenger publishes any messages.

The CIDL compiler also generates an empty, default implementation of the
Runnable exec_i class. Weimplement a constructor, the start () and
stop () operations, and an accessor for the mutex lock. Changes to the
CIDL-generated default executor implementation code are in bold.

// file Runnable exec_i.cpp

#include "Messenger_exec_i.h"
#include "ciao/CIAO_common.h"

ociweb.com 1239

CIAO and CCM

namespace Messenger Impl

{

Runnable_exec_i::Runnable exec_i (void)

{

// initially, the Messenger does not publish
this->stop();

}

Runnable_exec_i::~Runnable _exec_ i (void)

{
}

// Operations from ::Runnable

void
Runnable exec i::start ()

{

// Your code here.

// allows the Messenger to acquire the lock and publish
this->run lock .release()

}

void
Runnable exec i::stop ()

{

// Your code here.

// prevents the Messenger from acquiring the lock; can’t publish
this->run lock .acquire()

}

ACE Thread Mutex&
Runnable exec i::get run lock()

{

return this->run lock ;

}
}

The Runnable executor creates an ACE_Thread Mutex lock for the
Messenger to acquirein its event loop before publishing messages. If the
Messenger can’t acquire the lock, then it does not publish messages. This
agreement between the Runnable executor and the Messenger executor

1240

[
ociweb.com I

OBJECT COMPUTING, INC.

32.2 Example - The Messenger Application

controls the suspension and resumption of message publication. Initially, the
Runnable executor holds the lock. The implementations of start () and
stop () release and acquire the lock, respectively. Theget run lock ()
accessor exposes the lock to the Messenger executor.

The CIDL compiler also generates executor implementations for the
Publication and History interfaces and the Messenger, Receiver, and
Administrator components.

32.2.4.2 The Publication Facet Executor
The publication facet is provided by the Messenger component and
permits a client to modify the text published and the period (in seconds)
between published messages.

Recall that the Publication IDL interfaceis asfollows:

interface Publication {
attribute string text;
attribute unsigned short period;

}i

The CIDL compiler generates an empty implementation of the Publication
executor. We add private class attributes to keep track of the message subject,
text, and period. Changes to the CIDL-generated code are in bold.

#include <string>
#include <ace/Thread Mutex.h>

namespace Messenger Impl

{
class MESSENGER _EXEC_Export Publication_exec i
: public virtual ::CCM Publication,
public virtual ::CORBA::LocalObject

{
public:
Publication exec_i (const char* text,
CORBA: :UShort period) ;
virtual ~Publication exec i (void);

// Operations from ::Publication
vrtual char* text ();

virtual void text (const char* text);

|
@ I ociweb.com 1241

OBJECT COMPUTING, INC.

CIAO and CCM

virtual CORBA::UShort period () ;
virtual void period (CORBA::UShort period) ;

private:
std::string text ;
CORBA: :UShort period ;

ACE_Thread Mutex lock ;
}i
}

The pattern is similar to the Runnable executor’'s. The

Publication exec i executor inherits from both the generated
CCM_Publication classand TAO'S : : CORBA: : LocalObject class. The
accessor and modifier for the text and period attributes are declared as pure
virtual methodsinthe CCM_Publication class, forcing usto implement
them in our executor.

Thetext andperiod class members hold information about the
publication. Because clients can modify the text and period, the executor uses
anACE Thread Mutex lock to protect them from simultaneous access. We
have to assume that a provided facet might be accessed by multiple threads at
the same time.

Theimplementation of the Publication executor follows. Again, changesto
the CIDL-generated default executor implementation code are in bold.

#include "Publication exec i.h"
#include "ciao/CIAO_ common.h"

namespace Messenger Impl

{

Publication exec i::Publication exec i (const char* text,
CORBA: :UShort period)
¢ text (text),
period (period)
{
}

Publication exec i::~Publication exec i (void)

1242

[
ociweb.com I

OBJECT COMPUTING, INC.

32.2 Example - The Messenger Application

i

OBJECT COMPUTING, INC.

// Operations from ::Publication

char*
Publication_exec_i::text ()

{

ACE_Guard<ACE Thread Mutex> guard(this->lock);
return CORBA::string dup(this->text .c_str());

}

void
Publication exec i::text (const char* text)

{

ACE_Guard<ACE_Thread Mutex> guard(this->lock);

this->text = text;
ACE DEBUG((LM_INFO, ACE TEXT("publication text changed to %C\n"), text));

}

CORBA: :UShort

Publication exec i::period ()

{
ACE_Guard<ACE Thread Mutex> guard(this->lock);
return this->period ;

}

void
Publication exec i::period (CORBA::UShort period)

{

ACE Guard<ACE Thread Mutex> guard(this->lock);

if (period > 0) {
this->period = period;
ACE DEBUG ((LM _INFO,
ACE_TEXT ("publication period changed to %d seconds\n"), period));
} else {
ACE DEBUG ((LM_INFO,
ACE_TEXT ("ignoring a negative period of %d\n"), period));

The Publication executor contains text and a publication period. Because
the client may change either the text or publication period, we protect both
with amutex lock. The constructor sets the text and period values. The
attribute accessors and modifiers are straightforward, protecting those values
with the mutex lock. The period modifier ensures that the new period isa
positive number.

ociweb.com 1243

CIAO and CCM

32.2.4.3

The History Facet Executor

The Messenger component stores the messagesthat it publishesinaHistory
executor. TheHistory executor containsan STL list of published Message
events. We protect access to the list with an ACE_Thread Mutex lock
because multiple threads might add to and query the History list
simultaneously. We must assume that simultaneous access will happen.

Recall that the History IDL interfaceis asfollows, where Message isan
event type:

#include <Message.idl>

interface History {
Messages get_all();
Message get latest();

}i

The CIDL-generated History executor implementation follows, with our
changesin bold.

#include "Messenger svnt.h"
#include "Messenger exec_export.h"
#include "tao/LocalObject.h"

#include <list>
#include <ace/Thread Mutex.h>

namespace Messenger Impl

{

class MESSENGER EXEC_Export History exec i
: public virtual ::CCM_History,
public virtual ::CORBA::LocalObject

{

public:
History exec_i (void);
virtual ~History exec i (void);
// Operations from ::History
virtual ::Messages* get_all ();
virtual ::Message* get latest ();

void add(::Message* message) ;

private:
ACE Thread Mutex lock ;

1244

[
ociweb.com I

OBJECT COMPUTING, INC.

32.2 Example - The Messenger Application

<

OBJECT COMPUTING, INC.

typedef std::list<::Message var> MessageList;
MessageList messages ;
}i

We add amutex lock and an STL 11ist of messages as private class attributes.
Thelock protects the message list from simultaneous access by multiple
threads. The STL list storesMessage varsto properly handle reference
counting and memory ownership. The Messenger component uses the public
add () method to add messages to the history asit publishes them.

The History executor implementation follows. As always, changes to the
CIDL-generated default executor implementation code arein bold. Comments
are interspersed with the code.

namespace Messenger Impl

{

History exec_i::History exec i (void)
}

History exec i::~History exec i (void)
{
}

// Operations from ::History

The implementation of the history’sget all () operation isthe most
challenging. It convertsthe STL list of Message varsinto an DL sequence
of Messages.

: :Messages*
History exec_i::get_all ()
{
// Your code here.
ACE_Guard<ACE Thread Mutex> guard(this->lock);

ACE DEBUG((LM_INFO, ACE TEXT("History i::get all\n")));

// create a Messages sequence, set its length

ociweb.com 1245

CIAO and CCM

}

: :Messages* retval = new ::Messages();
retval->length(this->messages .size());

// iterate through the MessagelList, copying messages into the return sequence
CORBA::ULong 1 = 0;
for (MessageList::iterator messageItr = this->messages .begin();

messageltr != this->messages .end();

++messageltr)
// because the MessageList contains Message vars, reference counting
// upon assignment into the sequence is handled properly for us.
(*retval) [i++] = *messageltr;

return retval;

Theget _all () operation creates anew Messages Sequence, setting its
length. It then iterates through the internal STL list of Message var, adding
each Message to the sequence. Because the STL list storesMessage vars
the assignment of each Message from the STL list to the sequence handles
memory management properly for us by incrementing the reference count on
each returned Message.

Theget latest () operation simply retrievesthelast Message added to the
list and returnsit.

:Message*

History exec_i::get latest ()

{

}

// Your code here.
ACE_Guard<ACE Thread Mutex> guard(this->lock);
ACE DEBUG ((LM INFO, ACE TEXT("History i::get latest\n")));

// just get the last message from the history. because the MessageList
// contains Message vars, _var to _var assigmnent handles the reference
// counting properly for us.

::Message var retval = this->messages_.back();

return retval. retn();

We extract the last Message into aMessage var and return it with the
_retn () operation to handle the reference counting of the Message properly.
We give up ownership of the Message when we return it, but we also want to

1246

[
ociweb.com I

OBJECT COMPUTING, INC.

32.2 Example - The Messenger Application

keep the Message in theinternal list. The reference counting handles that for
us.

TheMessenger calsthelocal add () method to store published Messages.

void History exec i::add (::Message* message)

{

ACE Guard<ACE Thread Mutex> guard(lock);

// bump up the reference count; we don't own the parameter.
// the var in the STL list takes ownership of the "copy"
message-> add ref();

this->messages .push back(message);

}
}

It increments the reference count of the Message and storesit intheclass's
STL list. If we do not increment the reference count, then the STL list would
attempt to take ownership of aMessage that it does not own.

Theget all() andget latest () operationsare exposed to clients
through the History interface. The add () method is not part of the IDL
interface and is visible only through the Messenger implementation.

|
@ I ociweb.com 1247

OBJECT COMPUTING, INC.

CIAO and CCM

32.2.4.4 The Messenger Component Executor
The Messenger component provides the Runnable, Publication, and
History facets and publishes Message events. It delegates much of its work
totheRunnable, Publication, and History executors.

Runnable
o) runnables
<<component>> <<component>>
Messenger Publication Administrator
Dﬂ

Historyé & Message

message_consumer

<<component>>
message_history Receiver
—() facet
>— receptacle
——> > publisher
>>— consumer

Figure 32-13 The Messenger Component
Recall that the Messenger’s IDL specification is as follows:

component Messenger {
attribute string subject;

provides Runnable control;
provides Publication content;

publishes Message message_publisher;
provides History message history;

}i

home MessengerHome manages Messenger {};

|
1248 ociweb.com @ I

OBJECT COMPUTING, INC.

32.2 Example - The Messenger Application

i

OBJECT COMPUTING, INC.

The Messenger’s component executor containsaget <facet names> ()
operation for each of its three provided facets to expose the facet to the
component container. As ageneral rule, for each IDL 3 statement of the form

provides <facet interface> <facet name>;

the CIDL compiler generates a operation of the form

::CCM_<facet_interface> ptr get_<facet name>();

Thus, the IDL statement

provides Publication content;

causes the CIDL compiler to generate an operation in the Messenger executor
with the signature

::CCM_Publication ptr get content();

The Messenger’ s MessengerHome manages the Messenger’s life cycle. The
component container creates an instance of the Messenger executor through
itsMessengerHome.

Recall that the Messenger’s CIDL composition is as follows:

composition session Messenger Impl

{

home executor MessengerHome Exec

{

implements MessengerHome;
manages Messenger Exec;

}i

The CIDL compiler uses both the Messenger’s IDL interface and its CIDL
composition to generate an implementation of its executor. It generates a
default Messenger executor with empty implementations of the

get control(),get content (), and get message history () facet

ociweb.com 1249

CIAO and CCM

accessors. The class diagram illustrates the Messenger executor class
hierarchy.

Components::EnterpriseComponent

<<executor interface>>

Components::
CCM_Messenger

SessionComponent

TAO_Local_RefCounted_Object
ACE_Task_Base
| AN

<<executor impl>>
Messenger_exec_i

+get_content() =0
+get_control() = 0
+get_message_history() =0

T

<<session executor>>
Messenger_exec

ZAN

CORBA::LocalObject

+get_content():CCM_Publication
+get_control():CCM_Runnable
+get_message_history():CCM_History

Class in the ACE Library, inheritance added by developer
Class in the CIAO Library

Class in the TAO Library

Class generated by the CIDL compiler

JONNL

Class implemented by the component developer

Figure 32-14 Messenger Executor Class Diagram

The IDL compiler does not generate aMessenger stub. The Messenger
component is not an IDL 2 interface. The CIDL compiler generates an abstract
executor base class, CCM_Messenger, just asit did for the Runnable facet.
The CIDL compiler also generates aMessenger exec class that identifies
the Messenger as a session component. A session component exports

1250

[
ociweb.com I

OBJECT COMPUTING, INC.

32.2 Example - The Messenger Application

transient object references and is responsible for managing its own persistent
state if it has any.

The CIDL compiler optionally generates an empty executor implementation,
Messenger exec_i.The CIDL compiler generates a default constructor, a
destructor, and avirtual method for each of the Messenger’sfacets.

The executor implementation class a so inherits from

: : CORBA: : LocalObject, marking the Messenger exec i asa

CORBA: :LocalObject and allowing the component container to manage the
executor’s memory through reference counting.

The CIDL-generated executor implementation is as follows; as always, our
changes are in bold. Comments are interspersed through the class definition.

#include "Messenger svnt.h"
#include "Messenger exec_export.h"
#include "tao/LocalObject.h"

#include <string>
#include <ace/Task.h>

namespace Messenger Impl

{

// forward declarations for executor implementations referenced
// in the Messenger exec i class definition

class Runnable exec i;

class Publication exec_i;

class History exec i;

The Messenger executor is an active object, publishing messages in its own
thread. It inheritsfrom ACE_Task_Base to redlize the active object behavior.
There will be more on the implications of this later.

class MESSENGER EXEC Export Messenger exec i
: public virtual Messenger Exec,
public virtual ::CORBA::LocalObject,
public virtual ACE Task Base

{

public:

The CIDL compiler generates adefault constructor and destructor. Thereisno
reason to change the signatures of these methods.

Messenger exec i (void);
virtual ~Messenger exec_ i (void);

|
@ I ociweb.com 1251

OBJECT COMPUTING, INC.

CIAO and CCM

The CIDL compiler generates an empty accessor and modifier for the
subject attribute.

virtual char* subject ();

virtual void subject (const char* subject);

The CIDL compiler generates aget operation for each of the Messenger’s
three provided facets.

virtual ::CCM_Runnable ptr get control ();
virtual ::CCM_Publication ptr get content ();

virtual ::CCM_History ptr get message history ();

The Messenger has three facets: aRunnable facet called control, a
Publication facet called content, and aHistory facet called
message history.

// Operations from Components::SessionComponent

The CIDL compiler generates a callback operation to set the component’s
session context. It generates a session context class that is specific to the
component type. The component container instantiates and sets the
component instance’ s session context at application startup.

The session context contains methods that enable the component to interact
with the other components to which it is connected. Contexts are the glue that
plug collaborating components together. Aswe' |l see later, the Messenger
component publishes Message events to interested consumers through its
context.

virtual void set_session context (::Components::SessionContext ptr ctx);

The component container callsset session context () afterit
instantiates the component executor instance. The CIDL compiler also
generates a private class member called context to store the context and
generates the implementation of the set _session context () operation.
No work is required on the part of the component developer.

|
1252 ociweb.com @ I

OBJECT COMPUTING, INC.

32.2 Example - The Messenger Application

i

OBJECT COMPUTING, INC.

The CIDL compiler generates three callback operations through which the
component container indicates when the component is being activated,
passivated, or removed.

virtual void ccm_activate ();
virtual void ccm_passivate ();

virtual void ccm_remove () ;

The component container calls ccm_activate () to notify component that it
has been activated. The ccm_activate () call completes before any other
component operations are invoked. The component executor may perform its
initializationin ccm_activate (). The component devel oper can assume that
the session context has been initialized when the component container cals
cem_activate (). The Messenger’simplementation of ccm_activate ()
callSACE Task Base::activate () tolaunch amessage-publishing thread.

The component container calls ccm_passivate () to notify the component
that it has been deactivated. Here, the component executor should release any
resources acquired in ccm_activate (). The component container then calls
cem_remove () when the component executor is about to be destroyed. The
component developer can assume that the session context is still available
when the component container calls ccm passivate () or ccm_remove ().

Theccm activate(), ccm passivate (), and ccm _remove () operations
areregquired by the OMG CORBA Component Model specification.

The svc () method is an implementation detail that is specific to our
implementation of the Messenger executor.

virtual int svec();

It isoverridden from the inherited ACE_Task_Base class. Our
implementation of ccm_activate () calSACE Task Base::activate()
to launch athread that executesthe sve () method. The implementation of the
sve () method publishes Message events to interested consumers.

The CIDL compiler automatically generates a context class member.

private:
: :CCM_Messenger_Context_var context_;

ociweb.com 1253

CIAO and CCM

The component container calls set session context () to set the context
when it initializes the component executor. The Messenger publishesits
Message events through the context.

The component devel oper may add additional class members required to
implement the component executor. We add several.

private:
Runnable exec i* control ;
Publication exec i* content ;
History exec i* history ;

std::string subject ;
const std::string user ;
}i

The private control , content , and history class memberswill be
initialized by the user’s code to contain pointers to the facet executors for the
Runnable, Publication, and History facets of the Messenger component.
Theuser class member isastring that contains a user name that the
Messenger embeds into each Message it publishes.

The Messenger executor implementation follows. As always, changes to the
CIDL-generated default executor implementation code arein bold. Comments
are interspersed with the code.

#include "Messenger exec_i.h"
#include "ciao/CIAO_common.h"

The Messenger executor includes the executor class definitions for its
History, Runnable, and Publication facets.

#include <ace/0S.h>

#include "History exec_i.h"
#include "Runnable exec i.h"
#include "Publication exec_i.h"

namespace Messenger Impl

1254

[
ociweb.com I

OBJECT COMPUTING, INC.

32.2 Example - The Messenger Application

i

OBJECT COMPUTING, INC.

The constructor creates executors for each of the Messenger’ s three facets
and initializes a“ username.”

Messenger exec i::Messenger exec i ()
: subject ("Test Subject"),
user ("ciao_user")

// initialize user-defined data members

this->control = new Runnable exec i();
this->history = new History exec i();
this->content = new Publication exec i(

"Test Subject",
"The quick brown fox jumped over the lazy dog",
2);

The destructor rel eases the memory for the Messenger’ s three facet executors.
Because an executor is reference counted, wecall _remove ref () torelease
the memory of the executor rather than use the C++ delete operation.

Messenger exec i::~Messenger exec_ i (void)
this->control -> remove ref();
this->history -> remove ref();
this->content -> remove ref();

}
The bulk of the Messenger’slogicisin the sve () method.
int Messenger exec i::svc() {
ACE DEBUG((LM _INFO, ACE TEXT("svc()\n")));

while (1)

{

ACE_OS::sleep(this->content ->period());

// get the run lock from the Runnable executor; we have an

// agreement with the Runnable executor that we must wait for

// the run lock to be released before we publish.
ACE_Guard<ACE Thread Mutex> guard(this->control ->get run lock());

// create a message to publish

::Message var msg = new ::0BV Message();

msg->subject (this->subject());

msg->text(this->content ->text());

msg->user (CORBA::string dup(this->user .c str()));

ociweb.com 1255

CIAO and CCM

// add the message to the message history
this->history ->add(msg.in());

ACE_DEBUG((LM_INFO,
ACE_TEXT ("Messenger_ exec i::svc: publishing message\n")));

// publish to all interested consumers
this->context ->push message publisher(msg.in());

ACE DEBUG ((LM _INFO,
ACE_TEXT ("Published Message on subject %C\n User %C\n Text %C\n"),
msg->subject(),
msg->user (),
msg->text ()));

}

// not reached
return 0;

}

We override the svc () method from the inherited ACE_Task Base class.
Our implementation of ccm_activate () callsthe

ACE Task Base::activate () method which launchesthe svc () method
in a new thread. This method performs the bulk of the Messenger’s work,
looping continuously and publishing messages.

First, the sve () method sleeps for the period of time defined by the period
attribute of the Messenger’ s Publication executor. Next, the sve () method
attempts to acquire alock from its Runnable executor. The Messenger
executor and the Runnable executor have an agreement that the Messenger
will not publish messages unlessit can acquire the Runnable executor’s
ACE Thread Mutex lock. This permits the Runnable executor to start and
stop message publication.

Once the Messenger acquires the Runnable’slock, it publishes a message
throughitscontext . Thecontext actslike aproxy representing all interested
consumers.

The CIDL compiler generates an empty accessor and modifier for the
subject attribute. We add an implementation to each.

char*
Messenger exec_i::subject ()

return CORBA::string dup(this->subject .c str());

}

1256

[
ociweb.com I

OBJECT COMPUTING, INC.

32.2 Example - The Messenger Application

void
Messenger exec i::subject (const char* subject)

{
this->subject = CORBA::string dup(subject);

}

The CIDL compiler generates an empty implementation of each of the

get content (), get_control (), and get _message history () facet
accessor operations. We modify each to return the appropriate facet executor,
incrementing its reference count before returning it.

::CCM_Publication ptr
Messenger exec_i::get_content ()

{

// Your code here.

// bump up ref count because we give up ownership when we return this
this->content -> add ref();
return this->content_;

}

The publication facet controls the Messenger’ s message text and
publication period. It isimportant to increment the reference count before
returning the facet executor because we give up ownership of the facet
executor when we return it. This behavior is consistent with the CORBA’s
memory management rules. Notice that we do not need to convert the
executor to an object reference; we merely return it an allow the component
container to do the heavy lifting.

The implementation of theget control () facet accessor is nearly
identical...

::CCM_Runnable ptr
Messenger exec i::get control ()

{

// Your code here.

// bump up ref count because we give up ownership when we return this
this->control -> add ref();
return this->control ;

}

...asisthe implementation of get message history ().

|
@ I ociweb.com 1257

OBJECT COMPUTING, INC.

CIAO and CCM

::CCM_History ptr
Messenger_exec_i::get_message_history ()

{

// Your code here.

// bump up ref count because we give up ownership when we return this
this->history -> add ref();
return this->history ;

}

The CIDL compiler generates a complete implementation of the
set session context () operation.

// Operations from Components::SessionComponent

void
Messenger_exec_i::set_session context (::Components::SessionContext ptr ctx)
this->context = ::CCM _Messenger Context:: narrow (ctx);

if (CORBA::is nil (this->context .in ()))

{

}
}

throw CORBA::INTERNAL ());

The component container calls this operation immediately after it instantiates
the Messenger executor. The component container calls ccm_activate () to
notify the component that it has been activated.

void
Messenger exec_i::ccm_activate ()

{

// Your code here.
ACE DEBUG((LM_INFO, ACE TEXT ("Messenger exec_i::ccm_activate\n")));
this->activate();

}

The container does not send any requests to the component until
cem_activate () completes. Thisistypically where the component executor
initializesitself. The Messenger executor callsthe

ACE Task Base::activate () method to spawn athread running the

sve () method.

The component container calls ccm passivate () to notify the component
that it has been deactivated and the component container will call

|
1258 ociweb.com @ I

OBJECT COMPUTING, INC.

32.2 Example - The Messenger Application

32.2.4.5

ccem_remove () when the component executor is about to be destroyed. Once
ccm_passivate () iscalled, the component instance cannot be reactivated.

void
Messenger exec i::ccm passivate ()

{

// Your code here.

}

void
Messenger exec i::ccm_remove ()

{

// Your code here.

}

Typically, acomponent executor cleans up after itself in ccm passivate (),
whereit is guaranteed that the container hasn't started destroying its other
component executors yet. Our executor has nothing to clean up.

The MessengerHome Executor

The CIDL compiler generates an implementation of the Messenger’s home.
Recall that the MessengerHome's IDL3 interface is as follows:

component Messenger { ... };

home MessengerHome manages Messenger {};

and the Messenger’s CIDL composition is as follows:

composition session Messenger Impl

{

home executor MessengerHome Exec

{

implements MessengerHome;
manages Messenger Exec;

}i
}i

The CIDL compiler generates a complete implementation of the
MessengerHome executor and alibrary entry point function. The component
container instantiates the MessengerHome through the entry point function
when it dynamically loads the Messenger’ s library. It generates the

|
@ I ociweb.com 1259

OBJECT COMPUTING, INC.

CIAO and CCM

MessengerHome executor in the same file as the Messenger component
executor.

The MessengerHome isresponsible for creating and destroying instances of
the Messenger executor. The component container instantiates the M essenger
executor through its home when it activates the Messenger. In our examplethe
component devel oper does not need to maodify any of the generated
MessengerHome code nor the library entry point function.

The class diagram illustrates the MessengerHome executor class hierarchy.

‘ Components::HomeExecutorBase

L%

CCM_MessengerHomeExplicit ‘

CCM_MessengerHomelmplicit

+create()

T

<<executor interface>>

CCM_MessengerHome
CORBA::LocalObject
7 2

<<session executor>> TAO_Local_RefCounted_Object
MessengerHome_exec

VAN

<<executor home impl>>
MessengerHome_exec_i

+create()

Class in the CIAO Library
Class in the TAO Library
Class generated by the CIDL compiler

Class implemented by the component developer

JHE

Figure 32-15 Messenger Home Executor Class Diagram

|
1260 ociweb.com @ I

OBJECT COMPUTING, INC.

32.2 Example - The Messenger Application

<

OBJECT COMPUTING, INC.

Both the class definition and the implementation of the MessengerHome and
its entry point function are as follows. We make no changes to the generated
code; thus, nothing is shown in bold. Comments are interspersed.

namespace CIDL Messenger_ Impl

{

Like the Messenger executor, the MessengerHome executor inherits from a
generated executor base class.

class MESSENGER_EXEC_Export MessengerHome_exec i
: public virtual MessengerHome Exec,
public virtual ::CORBA::LocalObject

{

public:
The CIDL compiler generates a default constructor and destructor.

MessengerHome exec i (void) ;
virtual ~MessengerHome exec i (void);

The CIDL compiler generates adefault create () operation. The component
container callsthis create () operation to instantiate the Messenger
component executor.

virtual ::Components::EnterpriseComponent ptr create ();
}i

Finally, the CIDL compiler generates alibrary entry point function. The
component container’s underlying ACE Service Configurator callsthis entry
point function to instantiate the MessengerHome executor when it
dynamically loads the component’ s library. The entry point function must
have “C” linkage to prevent C++ name mangling. The name of the functionis
CIAO-gpecific, but every CCM implementation generates an entry point
function with this signature.

extern "C" MESSENGER_EXEC_Export ::Components::HomeExecutorBase ptr
create MessengerHome Impl (void);

}

Asyou can see, we also make no changes to the generated MessengerHome
implementation, which follows:

ociweb.com 1261

CIAO and CCM

The CIDL compiler generates adefault constructor and an empty destructor.
The component devel oper may modify these. However, if the devel oper
modifies the signature of the constructor, the developer must modify the
implementation of the component home' s library entry point function to pass
the appropriate constructor arguments. The library entry point function will be
shown in afew paragraphs.

MessengerHome exec_i::MessengerHome exec_i (void)

{
}

MessengerHome exec_i::~MessengerHome_exec_ i (void)

{
}

The Messenger’ s home has one operation, create (). The CIDL-generated
implementation of create () simply invokes the Messenger executor’s
default constructor.

: :Components: : EnterpriseComponent_ptr
MessengerHome exec_i::create ()

: :Components: :EnterpriseComponent ptr retval =
: :Components: :EnterpriseComponent:: nil ();

ACE NEW THROW EX (retval,
Messenger exec i,
CORBA: :NO_MEMORY ()) ;

return retval;

}

Finally, the CIDL compiler generates alibrary entry point function for the
Messenger. Thisfunction simply creates an instance of the Messenger’ s home
executor. The component container calls this function to create a
MessengerHome when it loads the Messenger’ s dynamic library.

extern "C" MESSENGER EXEC Export ::Components::HomeExecutorBase ptr
create MessengerHome Impl (void)

{

|
1262 ociweb.com @ I

OBJECT COMPUTING, INC.

32.2 Example - The Messenger Application

: :Components: :HomeExecutorBase ptr retval =
: :Components: :HomeExecutorBase: :_nil ();

ACE_NEW RETURN (retval,
MessengerHome_exec_i,
: :Components: :HomeExecutorBase:: nil ());

return retval;

}
}

32.2.4.6 The Receiver Component Executor
The Receiver component connects to the Messenger component in two ways.
First, itsmessage consumer port connects to the Messenger’s
message publisher port. Second, itSmessage history receptacle
connects to the Messenger' smessage history facet.

Runnable
O\ runnables
<<component>> o <<component>>
Messenger Publication Administrator
O content

History é @ Message

message_consumer |

<<component>>

message_historyl Receiver

facet

44()
J)— receptacle
—> > publisher

>>— consumer

Figure 32-16 The Receiver Component

Recall that the Receiver’s IDL specification is as follows:

component Receiver {

|
@ I ociweb.com 1263

OBJECT COMPUTING, INC.

CIAO and CCM

consumes Message message_consumer;
uses History message history;

}i

home ReceiverHome manages Receiver {};

The Receiver component subscribesto Message eventsand usesaHistory
facet through which it retrieves a history of messages published. Both of these
facets happen to be provided by the Messenger component, but the Receiver
does not know that and does not need to know that. In fact, the Message
events could be published by several different suppliers without the Receiver
being aware of it.

The Receiver’ sReceiverHome manages the Receiver’slife cycle. The
component container creates an instance of the Receiver executor through its
ReceiverHome.

Recall that the Receiver’s composition is as follows:

composition session Receiver Impl

{

home executor ReceiverHome Exec

implements ReceiverHome;
manages Receiver Exec;

}i

There are many similarities between the Receiver’s executor and the
Messenger’ s executor. As with the Messenger, the CIDL compiler uses both
the Receiver’sIDL interface and its CIDL composition to generate its
executor. The CIDL compiler generates a class definition for the Receiver
executor, another for the ReceiverHome, and alibrary entry point function.
The CIDL compiler generates the Receiver’ s executor classesinto the
Receiver Impl C++ namespace as specified by the Receiver's CIDL
composition.

The most noticeable difference between the Messenger and the Receiver
executors is the Receiver’ s message consumption callback operation. Asa
genera rule, an IDL 3 statement of the form

consumes <event type> <facet name>;

1264

[
ociweb.com I

OBJECT COMPUTING, INC.

32.2 Example - The Messenger Application

causesthe CIDL compiler to generate a callback operation in the component’s
executor of the form:

virtual void push <facet name>(<event types* ev);
In our example, the IDL statement

consumes Message mes sage_consumer;

causes the CIDL compiler to generate a callback operation with the signature

virtual void push message_consumer(::Message* ev);

The component container calls this operation when a connected Message
supplier (in our case, the Messenger) publishes aMessage event. The
component container connects the suppliers and consumers dynamically at
deployment time.

The CIDL-generated Receiver and ReceiverHome executor
implementation class definitions are as follows. We make no changes to the
generated Receiver executor class definition. Comments are interspersed.

#include "Receiver svnt.h"
#include "Receiver_ exec_export.h"
#include "tao/LocalObject.h"

namespace Receiver Impl

{

The Receiver’s executor implements the abstract executor base class
Receiver exec.

class RECEIVER_EXEC Export Receiver exec i
: public virtual Receiver Exec,
public virtual ::CORBA::LocalObject

{
The CIDL compiler generates a default constructor and a destructor.

public:
Receiver exec i (void);
virtual ~Receiver exec_i (void);

|
@ I ociweb.com 1265

OBJECT COMPUTING, INC.

CIAO and CCM

The component container callspush _message consumer () onthe
Receiver when the Messenger publishes aMessage.

virtual void push message consumer (::Message *ev);

Like the Messenger component, the Receiver component has a
CIDL-generated set _session context () callback operation. Again, the
component container calls this operation after it instantiates the Receiver
executor.

virtual void set_session context (::Components::SessionContext ptr ctx);

The CIDL compiler aso generates standard ccm_activate (),
ccm_passivate (), and ccm remove () operations.

virtual void ccm_activate ();
virtual void ccm passivate ();

virtual void ccm_remove () ;

Finally, the CIDL compiler generates type-specific context member for the
Receiver component.

private:
::CCM_Receiver Context var context_;

}i

Our Receiver executor has no state nor private methods, so we make no
changes to the CIDL-generated Receiver executor class definition.

The CIDL compiler aso generates an implementation of the Receiver
executor. The bulk of the work in implementing the Receiver executor isin
the push message consumer () operation. The

push message consumer () implementation uses the Receiver's
message history facet to get alist of all Message events published. The
Receiver accessesthe message history facet through its session context.

Asagenera rule, an IDL3 statement of the form

uses <facet interface> <facet_name>;

1266

[
ociweb.com I

OBJECT COMPUTING, INC.

32.2 Example - The Messenger Application

is mapped to a C++ function in the component’ s session context with the
signature

::<facet_interface> ptr get connection <facet namex();

Thus, the Receiver’s IDL 3 statement

uses History message history;

is mapped to a C++ function in the Receiver’ s context with the signature

::History ptr get connection message history();

Note The Receiver specifiesthe servicesthat it requires through the uses
statement. This syntax enables the dynamic connection of service providers
and service users at run time.

The Receiver executor implementation follows. Changes to CIDL-generated
executor implementation code are noted in bold:

#include "Receiver_exec_i.h"
#include "ciao/CIAO_common.h"

namespace Receiver Impl

{

Receiver exec i::Receiver exec i (void)

Receiver exec_i::~Receiver exec_i (void)

The component container invokes the push message consumer ()
operation a connected supplier publishes aMessage event.

void
Receiver exec i::push message consumer (::Message * ev)

|
@ I ociweb.com 1267

OBJECT COMPUTING, INC.

CIAO and CCM

// Your code here.

CORBA: :String var subject = ev->subject();
CORBA::String var user = ev->user();
CORBA: :String var text = ev->text();

ACE_DEBUG (
(LM_INFO,
ACE_TEXT ("Received Message:\n Subject: %C\n User: %C\n Text: %C\n"),
subject.in(),
user.in(),
text.in()));

// Use the history to (inefficiently) get the total number of messages

// published on this item so far

::History var history = this->context ->get connection message history();

: :Messages var messages = history->get all();

ACE_DEBUG ((LM_INFO,
ACE_TEXT (" Subject \"%C\" has published %d messages so far\n"),
subject.in(),
messages->length()));

The implementation of push message consumer () printsout the
message’ s subject, user, and text. Then, it gets the component’s
message history facet, getsalist of al Message events published, and
prints out the number of messages published so far.

Aswith the Messenger component, the CIDL compiler generates a complete
implementation of the set_session context () method.

// Operations from Components::SessionComponent

void
Receiver exec i::set session context (::Components::SessionContext ptr ctx)
this->context = ::CCM_Receiver Context:: narrow (ctx)

if (CORBA::is nil (this->context .in ()))

{

throw CORBA::INTERNAL() ;

}
}

The component container callsthe set _session context () operation to
set the Recelver’s context immediately after it instantiates the Receiver

|
1268 ociweb.com @ I

OBJECT COMPUTING, INC.

32.2 Example - The Messenger Application

executor. The Receiver uses this context to access its connected
message history facet. We do not make any changes to this method.

The CIDL compiler generates empty implementations of ccm_activate (),
ccm_passivate (), and ccm_remove (). We do not modify any of these
methods.

void
Receiver exec i::ccm activate ()

{

// Your code here.

}

void
Receiver exec i::ccm passivate ()

{

// Your code here.

}

void
Receiver exec i::ccm remove ()

{

// Your code here.

}

32.2.4.7 The ReceiverHome Executor
Recall that the ReceiverHome’sIDL3 interfaceis as follows;

component Receiver { ... };

home ReceiverHome manages Receiver {};

and the Receiver’s CIDL composition is as follows:

composition session Receiver Impl

{

home executor ReceiverHome Exec
implements ReceiverHome;
manages Receiver Exec;
}i
}i

|
@ I ociweb.com 1269

OBJECT COMPUTING, INC.

CIAO and CCM

TheReceiverHome class definition and implementation are nearly identical
to the MessengerHome class definition and implementation. We make no
changes to the CIDL-generated code.

class RECEIVER_EXEC Export ReceiverHome_exec i
: public virtual ReceiverHome Exec,
public virtual ::CORBA::LocalObject

public:

ReceiverHome exec_i (void);

virtual ~ReceiverHome exec_ i (void);

virtual ::Components::EnterpriseComponent ptr create ();
}i

extern "C" RECEIVER EXEC Export ::Components::HomeExecutorBase ptr
create ReceiverHome Impl (void);

Finally, the CIDL compiler generatesimplementations of the ReceiverHome
executor and the Receiver’ slibrary entry point function. We do not modify
these implementations.

ReceiverHome exec i::ReceiverHome exec i (void)

ReceiverHome exec_i::~ReceiverHome exec_i (void)

{
}

: :Components: :EnterpriseComponent _ptr
ReceiverHome exec i::create ()
: :Components: :EnterpriseComponent ptr retval =
: :Components: :EnterpriseComponent:: nil ();

ACE_NEW_THROW_EX (retval,
Receiver exec i,
CORBA: :NO_MEMORY ()) ;

return retval;

}

1270

[
ociweb.com I

OBJECT COMPUTING, INC.

32.2 Example - The Messenger Application

extern "C" RECEIVER_EXEC Export ::Components::HomeExecutorBase ptr
create_ReceiverHome Impl (void)

{

: :Components: :HomeExecutorBase_ptr retval =
: :Components: :HomeExecutorBase::_nil ();

ACE_NEW_RETURN (retval,
ReceiverHome_exec i,
: :Components: :HomeExecutorBase:: nil ());

return retval;

}
}

32.2.4.8 The Administrator Component Executor
The Administrator component starts and stops the Messenger’ s message
publication and controls the published text and the publication period. The
Administrator component demonstrates use of the uses multiple
mechanism of connecting a component receptacle to multiple facets
simultaneously.

|
@ I ociweb.com 1271

OBJECT COMPUTING, INC.

CIAO and CCM

Runnable
Q runnables
<<component>> <<component>>
Messenger Publication Administrator
O\ content
‘ > a | |
History 5 U Message
message_consumer
_ <<component>>
message_history Receiver

facet
receptacle
publisher
consumer

AR

Figure 32-17 The Administrator Component
Recadll that the Administrator’s IDL3 interfaceis as follows:

component Administrator {
uses multiple Runnable runnables;
uses multiple Publication content;

}i

home AdministratorHome manages Administrator {};

At deployment time, we connect the Administrator’s runnables and
content receptaclesto the Messenger’s Runnable and Publication
facets. The Administrator controls the starting and stopping of message
publication through the Runnable facet and controls the message text
published and the publication period through the Publication facet.

Theuses multiple modifier onthe runnables and content receptacles
permits the Administrator to connect an unlimited number of Runnable and
Publication facets. Thistype of receptacle is a multiplex receptacle. Our
example uses only one of each; however, an application deployer may add

1272

[
ociweb.com I

OBJECT COMPUTING, INC.

32.2 Example - The Messenger Application

i

OBJECT COMPUTING, INC.

additional Messengers into the application through XML -based configuration
at deployment time. More information on deployment is available in 32.2.5.

Recall that the Administrator’ s composition, describing the implementation of
the Administrator component, is as follows:

composition session Administrator_Impl

{

home executor AdministratorHome Exec

{

implements AdministratorHome;
manages Administrator Exec;

}i

The CIDL compiler generates the Administrator’ s executor implementation
codeinto an Administrator Impl namespace. It generatesan
Administrator exec executor base classfor the Administrator and an
AdministratorHome exec executor base class for the Administrator’s
home. In addition, the CIDL compiler optionally generates default
implementations of the executors. These are anal ogous to the CIDL -generated
classes for the Messenger and Receiver components.

Itis not surprising that there are many similarities between the Administrator
executor and the Messenger and Receiver executors. The most noticeable
change we make to the CIDL-generated executor implementation isto add
inheritance from the ACE Task Base class and override the

ACE Task Base::svc () method. The Administrator’s implementation
launches athread that displays a simple text menu to start, stop, and otherwise
control the Messenger’ s message publication. A more realistic application
might use a GUI of some kind. The purpose of thisexample implementationis
to demonstrate that a user can manually interact with a deployed component.

The Administrator’s IDL3 interface introduces the uses multiple
receptacle, or multiplex receptacle. A multiplex receptacle can connect to an
unlimited number of type-compatible facets. The mapping from IDL to C++is
different for a multiplex receptacle than for a simplex receptacle, which
connects to exactly one facet.

Y ou might remember that for a receptacle of the form

uses <facet interface> <facet_ name>;

ociweb.com 1273

CIAO and CCM

the CIDL compiler generates a C++ function in the component’ s context with
the signature

::<facet interface> ptr get connection <facet namex();

For example,

uses History message history;

is mapped to a C++ function in the component’ s context with the signature
::History ptr get connection message history();

Thistype of receptacleis called a simplex receptacle because it connects to
exactly one facet. However, a multiplex receptacle of the form

uses multiple <facet_ interface> <facet name>;

causesthe IDL and CIDL compilers to generate the following:

* A C++dtruct called <facet _names>Connection:

struct <facet name>Connection

{

typedef <facet name>Connection var _var_ type;
<facet_type> var objref;
Components: :Cookie_var ck;

}i

* A typedef for asequence of <facet name>Connection elementscalled
<facet name>Connections. Weillustrate with the equivalent IDL2:

typedef sequence< <facet name>Connection > <facet name>Connections;

» A facet accessor C++ function through which the component retrieves a
sequence of connected facets:

: :<component name>::<facet_name>Connections*
get_connections <facet names() ;

In our example, the multiplex Runnables receptacle

uses multiple Runnable runnables;

1274

[
ociweb.com I

OBJECT COMPUTING, INC.

32.2 Example - The Messenger Application

causesthe IDL and CIDL compilersto generate the following:
e A C++ struct called runnablesConnection:

struct runnablesConnection

{

typedef runnablesConnection var _var type;
Runnable_var objref;
Components: :Cookie var ck;

}i

* A C++ sequence type of runnablesConnection elements called
runnablesConnections. Again, weillustrate with the equivalent IDL2:

typedef sequence< runnablesConnection > runnablesConnections;

» A facet accessor C++ function through which the component retrieves a
sequence of connected Runnable facets:

::Administrator: :runnablesConnections* get connections runnables();

ThestartPublishing(), stopPublishing(),
changePublicationText (), and changePublicationPeriod () helper
methods illustrate the usage of the multiplex receptacle.

TheAadministrator executor follows. Changesto CIDL-generated code are

in bold.

#include
#include
#include
#include

"Administrator_svnt.h"
"Administrator exec export.h"
"tao/LocalObject.h"
<ace/Task.h>

namespace Administrator Impl

{

The executor inheritsfrom ACE_Task Base to realize the active object

pattern.

class ADMINISTRATOR EXEC Export Administrator_ exec_ i
: public virtual Administrator_ Exec,

public virtual ACE Task Base,

public virtual ::CORBA::LocalObject

{

public:

[
I ociweb.com

OBJECT COMPUTING, INC.

1275

CIAO and CCM

The remainder of the executor class definition is the analogous to the
Messenger’ s and Receiver’s...

Administrator_exec_i (void);
virtual ~Administrator exec i (void);

virtual void set_session context (::Components::SessionContext ptr ctx);
virtual void ccm_activate ();

virtual void ccm_passivate ();

virtual void ccm_remove () ;

private:
::CCM_Administrator Context var context_;

...except that we overridethe ACE_Task Base: :svc () method and add
several private helper methods to control the connected Runnable and
Publication facets.

public:
// Overridden from ACE Task Base
int sve();

private:
void startPublishing();
void stopPublishing();
void changePublicationPeriod();
void changePublicationText () ;

}i

The Administrator’ s executor implementation follows, with changesto
CIDL-generated codein bold:

#include "Administrator exec_i.h"
#include "ciao/CIAO common.h"

#include <iostream>
#include <string>

namespace Administrator Impl

// Component Executor Implementation Class: Administrator exec i

|
1276 ociweb.com @ I

OBJECT COMPUTING, INC.

32.2 Example - The Messenger Application

Administrator_exec_i::Administrator_exec i (void)

{
}

Administrator exec i::~Administrator exec i (void)

As usual, we have no need to modify the generated
set session context () callback operation.

void
Administrator exec i::set_session context (
: :Components: : SessionContext ptr ctx)

{

this->context = ::CCM_Administrator Context:: narrow (ctx);

if (CORBA::is nil (this->context .in ()))

{

throw CORBA::INTERNAL () ;

}
}

Inthe ccm_activate () implementation, the executor calls
ACE Task Base::activate() tolaunchitssvc () method in athread.

void
Administrator exec i::ccm_activate ()

{

// Your code here.

// Activate the Task, triggering its svc() method
this->activate();

}

We have no need to modify any of the remaining generated operations.

void
Administrator_exec_i::ccm_passivate ()

{

// Your code here.

}

void
Administrator_exec_i::ccm_remove ()

|
@ I ociweb.com 1277

OBJECT COMPUTING, INC.

CIAO and CCM

{

// Your code here.

}

The Administrator’ simplementation of the ccm_activate () launchesa
thread and calls svc (). The sve () method creates a small text menu through
which auser can start and stop message publication, change the message text,
and change the publication period for every Messenger attached to the
Administrator. Helper methods implement those behaviors. Nothing in the
implementation of the svc () method involves the CORBA Component
Model. Code relevant to CCM isin the helper methods, described later.

int
Administrator exec i::svc()

{

enum SelectionType { START=1, STOP, CHANGE PERIOD, CHANGE TEXT };

while (1) {
std::cout << "\nWhat do you want to do to the Messenger(s)?" << std::endl;

std::cout << START << ". Start" << std::endl;

std::cout << STOP << ". Stop" << std::endl;

std::cout << CHANGE PERIOD << ". Change Publication Period" << std::endl;
std::cout << CHANGE TEXT << ". Change Publication Text" << std::endl;

char selection text[10];

std::cout << "Please enter a selection: ";
std::cin.getline(selection text, sizeof(selection text));
int selection = ACE OS::atoi(selection_ text);

switch (selection) {
case START:
startPublishing();
break;
case STOP:
stopPublishing() ;
break;
case CHANGE PERIOD:
changePublicationPeriod() ;
break;
case CHANGE TEXT:
changePublicationText () ;
break;
default:
std::cout << "Please enter a valid option" << std::endl;
}

}

return 0;

}

|
1278 ociweb.com @ I

OBJECT COMPUTING, INC.

32.2 Example - The Messenger Application

i

OBJECT COMPUTING, INC.

The following four devel oper-written methods are hel per methods invoked by
sve () inresponse to user interaction. The first method,

startPublishing (), retrievesthe Runnable facets connected to the
Administrator’s runnables receptacle and invokes start () on each one.

void Administrator exec i::startPublishing()

{

// Get the attached Runnable facet(s)
::Administrator::runnablesConnections var connections =
this->context ->get connections_runnables();

std::cout << "Starting Publication" << std::endl;

for (CORBA::ULong i = 0; i < connections->length(); ++i) {
Runnable var runnable = (*connections) [i].objref;
runnable->start();

}
}

In startPublishing (), we usethe Administrator context’s

get connections_runnables () method to get alist of the Runnable
facets connected to the Administrator’s runnables receptacle. That method
returns a sequence of runnablesConnection structs. One of the members
of the runnablesConnection struct isaRunnable object reference called
objref. We pull the object reference out of the struct and call start () onit
to start message publication.

The stopPublishing () method isamost identical to the
startPublishing () method...

void Administrator exec i::stopPublishing()
// Get the attached Runnable facet(s)
::Administrator::runnablesConnections var connections =
this->context ->get connections runnables();

std::cout << "Stopping Publication" << std::endl;

for (CORBA::ULong i = 0; i < connections->length(); ++i) {
Runnable var runnable = (*connections) [i].objref;
runnable->stop() ;

}
}

..., except it calls stop () on each connected Runnable facet instead of
start ().

ociweb.com 1279

CIAO and CCM

The changePublicationPeriod () and changePublicationText ()
methods are similar to startPublishing () and stopPublishing (). The
main differenceis that they operate on the Publication receptacle rather
than the Runnables receptacle.

void Administrator exec_i::changePublicationPeriod()

// Get the attached Publication facet(s)
::Administrator::contentConnections var contents =
this->context ->get connections content();

char period[10];

std::cout << "Please enter a new period in seconds: ";

std::cin.getline(period, sizeof(period));

for (CORBA::ULong i = 0; i < contents->length(); ++i) {
Publication var publication = (*contents) [i].objref;
publication->period(ACE OS::atoi(period));

}

}

In changePublicationPeriod (), we use the Administrator context’s
get connections content () operation to get alist of the Publication
facets connected to the Administrator’s content receptacle. That method
returns a sequence of contentConnection structs. One of the members of
the contentConnection struct isaPublication object reference caled
objref. We pull the object reference out of the struct and call period () on
it to change the message publication period.

The changePublicationText () method is nearly identical to
changePublicationPeriod()...

void Administrator exec i::changePublicationText ()
// Get the attached Publication facet(s)
::Administrator::contentConnections var contents =
this->context ->get connections content();

char buffer[1024];

std::cout << "Please enter new text: ";

std::cin.getline(buffer, sizeof (buffer));

for (CORBA::ULong i = 0; i < contents->length(); ++i) {
Publication var publication = (*contents) [i].objref;
publication->text(buffer);

}

}

1280

[
ociweb.com I

OBJECT COMPUTING, INC.

32.2 Example - The Messenger Application

32.24.9

... except it callsthe text () method on each Publication object reference
to change the published text.

The AdministratorHome Executor
Recall that the AdministratorHome'sIDL3 interfaceis asfollows:

component Administrator { ... };

home AdministratorHome manages Administrator {};

and the Administrator’s CIDL composition is as follows:

composition session Administrator Impl

{

home executor AdministratorHome_ Exec

implements AdministratorHome;
manages Administrator Exec;

}i
}i

The AdministratorHome class definition and implementation are nearly
identical to the MessengerHome and ReceiverHome class definition and
implementation. Aswith those, the CIDL compiler can optionally generate the
full class definition, implementation, and library entry point function.

class ADMINISTRATOR EXEC_Export AdministratorHome exec_ i
: public virtual AdministratorHome Exec,
public virtual ::CORBA::LocalObject

public:
AdministratorHome exec i (void);
virtual ~AdministratorHome exec i (void);

virtual ::Components::EnterpriseComponent ptr create ();

}i

extern "C" ADMINISTRATOR EXEC_Export ::Components::HomeExecutorBase ptr
create AdministratorHome Impl (void);
}

The implementation of the class and the library entry point function follows.

// Home Executor Implementation Class: AdministratorHome exec_i

|
@ I ociweb.com 1281

OBJECT COMPUTING, INC.

CIAO and CCM

32.2.4.10

AdministratorHome exec_i::AdministratorHome_exec_i (void)

{
}

AdministratorHome exec i::~AdministratorHome exec i (void)

{
}

: :Components: :EnterpriseComponent _ptr
AdministratorHome exec 1i::create ()

{

: :Components: :EnterpriseComponent ptr retval =
: :Components: :EnterpriseComponent:: nil ();

ACE_NEW_THROW_EX (retval,
Administrator exec_i,
CORBA: :NO_MEMORY ()) ;

return retval;

}

extern "C" ADMINISTRATOR EXEC Export ::Components::HomeExecutorBase ptr
create AdministratorHome Impl (void)

{

: :Components: :HomeExecutorBase ptr retval =
: :Components: :HomeExecutorBase:: nil ();

ACE_NEW RETURN (retval,
AdministratorHome exec i,
: :Components: :HomeExecutorBase:: nil ());

return retval;

}
}

Summary of the Code

The code for our Messenger example is complete. We have implemented
executors for the Messenger, Receiver, and Administrator components. We
aso implemented executors for the Runnable, Publication, and History
facets of the Messenger component.

We have seen how the component container injects a context into each
component executor to facilitate connections between facets and receptacles

1282

and between publishers and consumers.
||
ociweb.com @ I

OBJECT COMPUTING, INC.

32.2 Example - The Messenger Application

32.2.5

i

OBJECT COMPUTING, INC.

Consider what we have not done. We have not written amain () . We have not
interacted with the Portable Object Adapter, nor have we been exposed to any
classes with the prefix POA_. We have not written any code that attempts to
find another component or object; instead, those connections are provided
through each component’ s context.

In the following sections we deploy the Messenger exampl e through CIAO’s
implementation of the CCM Deployment and Configuration specification.

Deploying the Messenger Application

As the previous sections have demonstrated, a CCM-based application
consists of small, self-contained, reusable software components defined using
IDL3. A component defines its interactions with other components via ports
indicating provided and required interfaces and messages published and
consumed. The deployment activity separates business application logic from
process and interaction details.

¢+ Define an IDL interface for each component and its facets
¢ Implement each component and its facets
¢« Define each component’s composition
¢ Implement a C++ executor for each component and facet
(Describe the application’s deployment>
¢« Describe each component’s libraries and ports
¢ Connect component instances through their ports
¢« Deploy each component into a component container
¢ Build the application

¢ Run the application

Figure 32-18 Road Map

An assembly isaset of interconnected component instances. Each assembly is
itself a component; an assembly may be deployable as a full application, or
may represent a higher-level component for usein alarger application. An
assembly is arealizations of the composite pattern; an assembly may be
composed of other assemblies and may be a part of other assemblies.

A component deployer deploys an assembly into one or more application
servers that might be distributed across a network. XML descriptor files

ociweb.com 1283

CIAO and CCM

describe how the components are plugged together into an assembly and how
each component of the assembly is mapped to an application server process.
Thus, component assembly and deployment is completely independent of
component implementation, achieving a separation of concerns.

Each component may be platform-specific, but an assembly may be
heterogeneous. A component implementation neither knows nor cares which
assemblies it may be apart of nor knows to which other components it may

connect.

Our deployment of the Messenger application is described by the following
UML deployment diagram.

<<execution environment>>,
:ApplicationServer

<<component>>
anAdministrator
:Administrator

<<execution environment>>
:ApplicationServer Runnable
Q runnables
<<component>>
aMessenger Publication
:Messenger content
@),
History Q Message
.

message_consumer

<<execution environment>>
:ApplicationServer

message_history

<<component>>
firstReceiver
:Receiver

message_consumer

<<execution environment>>
:ApplicationServer

message_history

<<component>>
secondReceiver
:Receiver

Figure 32-19 Deployment of the Messenger Application

1284

ociweb.com

i

OBJECT COMPUTING, INC.

32.2 Example - The Messenger Application

The deployment consists of one Messenger instance, two Receiver instances,
and one Administrator instance. We deploy each instance in its own
component server, although it is not necessary to do that. In our deployment,
the four component servers execute on the same host, although we could
distribute them across the network with no code changes and minimal
configuration changes.

The “Deployment and Configuration of Component-based Distributed
Applications” specification (OMG Document ptc/03-07-08) prescribes how
components are instantiated, connected, and assigned to processesin a
distributed software system. Thefollowing sectionsillustrate the salient points
of the D& C specification through the deployment of the Messenger
application.

The example’'s XML descriptor files aresin the
$CIAO ROOT/examples/DevGuideExamples/Messenger/descriptor
s directory.

32.2.5.1 Deployment and Configuration Specification
The OMG' s specification for the “Deployment and Configuration of
Component-based Distributed Applications’ is a deployment and
configuration specification that is independent of the CORBA Component
Model. It describes a general -purpose deployment and configuration
framework for use by any component-based application. The specification
defines IDL interfaces and XML descriptor file formats for configuring
individual components and component assemblies for deployment.

This Deployment and Configuration specification supersedes the “ Packaging
and Deployment” chapter of the OMG CORBA Component Model (CCM)
(OMG Document formal/02-06-65) specification.

CIAO'sredlization of the Deployment and Configuration specification is
called DANCE (Deployment And Configuration Engine). DANCE supersedes
CIAQO’simplementation of the CCM specification’s “ Packaging and
Deployment” chapter. We deploy the Messenger application using DANCE in

this section.

32.2.5.2 Deployment Descriptors
The Deployment and Configuration specification presents a set of XML
descriptors for describing deployment aspects of a software system. Each

|
@ I ociweb.com 1285

OBJECT COMPUTING, INC.

CIAO and CCM

component has a set of descriptorsto defineits libraries, exposed ports, and
implementation. Each application consists of one or more assemblies that
describe the application’ s packaging and deployment onto component servers.

A CCM application deployer writes many deployment descriptor filesto
describe the application’s deployment. These files are written by hand.
Usually, an application deployer copies and edits an existing set of XML
deployment descriptors to describe a new application’s deployment. In the
future, we might expect tools such as Vanderbilt's CoOSMIC or Kansas State’ s
Cadena to generate the bulk of our CIAO application’s deployment
descriptors.

A component such as the Messenger component describes its deployment
using the following descriptors:

* AnImplementation Artifact Descriptor (.iad) file for each of the
Messenger’ slibraries.

* A CORBA Component Descriptor (.ccd) file defining the Messenger’s
exposed ports and attributes.

* A Component Implementation Descriptor (.cid) file describing the
component’ simplementation in terms of its Implementation Artifact
Descriptors and its CORBA Component Descriptor.

» A Component Package Descriptor (.cpd) file describing one or more
implementations of the component.

An assembly is a composite component, consisting of interconnected
subcomponents. We assembl e a M essenger component instance, two Receiver
component instances, and an Administrator component instance into a
deployable assembly. The assembly describes its deployment using the
following descriptors:

* Another CORBA Component Descriptor (.ccd) file defining the
assembly’ s exposed ports and attributes, if any.

* Another Component Implementation Descriptor (.cid) file describing the
assembly’ simplementation in terms of its subcomponents and the
connections between their ports.

* Another Component Package Descriptor (.cpd) file describing one or
more implementations of the assembly.

1286

[
ociweb.com I

OBJECT COMPUTING, INC.

32.2 Example - The Messenger Application

An application consists of one or more assemblies. The application describes
its deployment using the following descriptors:

» A Package Configuration Descriptor (.pcd) that describes a deployable
component package.

» A Top-level Package Descriptor (package.tpd) that contains one or more
Package Configuration Descriptors.

* A Component Deployment Plan (.cdp) that maps each component instance
in the assembly’s Component Implementation Description to alogical
node.

* A Component Domain Descriptor (.cdd) that describes available nodes,
interconnects, and bridges.

* A Node Map that maps each logical node to a physical component server
process.

The deployment engineer may choose to combine several of these descriptor
filesinto one. In fact, we could describe the Messenger application’s
deployment with one rather large XML descriptor. However, we will keep the
descriptor files separate for maximum flexibility.

The following sections outline the deployment of the individual components,
the Messenger assembly, and the full application.

32.25.3 Deployment.xsd and XMI.xsd Files

The deployment descriptors are described by two XML Schema Definition
(XSD) files: Deployment .xsd and XMI . xsd. The directory containing the
Messenger application’s deployment descriptors must contain a copy of each
of these files. Each file can be copied from DANCE’ sroot directory,

$CIAO ROOT/DAnCE Or $CIAO_ROOT%\DAnCE. Thesedirectoriesarereferred
to as SDANCE_ROOT or %DANCE_ROOT% from this point forward.

|
@ I ociweb.com 1287

OBJECT COMPUTING, INC.

CIAO and CCM

32.2.5.4 Deploying the Messenger Component
The Messenger component’ s deployment descriptors packageits libraries and
its exposed ports into one deployable package.

< Define an IDL interface for each component and its facets
< Implement each component and its facets
< Define each component’s composition
< Implement a C++ executor for each component and facet
< Describe the application’s deployment
Q Describe each component’s libraries and ports>
< Connect component instances through their ports
< Deploy each component into a component container

¢ Build the application
< Run the application

Figure 32-20 Road Map

Six XML descriptors describe the Messenger component’ s deployment: three
descriptors describe each of the Messenger’ s three libraries; one descriptor
describes its exposed ports; one descriptor combines the library descriptors
and the port descriptor into an implementation; and one descriptor packages
the Messenger into a deployable package.

|
1288 ociweb.com @ I

OBJECT COMPUTING, INC.

32.2 Example - The Messenger Application

The drawing illustrates the rel ationships between the six Messenger
deployment descriptors.

Component
Package Messenger.cpd
Descriptor
A4
Component

Implementation | Messenger.cid

Descriptor CORBA
Component
Descriptor
Messenger.ccd
Implementation
Artifact
Descriptors

Messenger_Stub.iad Messenger_Svnt.iad Messenger_Exec.iad
Dynamic
Libraries \
<<artifact>> <<artifact>> <<artifact>>
Messenger_stub.dll Messenger_svnt.dll Messenger_exec.dll

—» Directly references file

Figure 32-21 Messenger Component Deployment Descriptors

The Messenger’ s implementation is linked into three dynamic libraries:
Messenger_stub, containing the Messenger’s IDL-generated stub code;
Messenger_ svnt, containing the Messenger’s IDL- and CIDL-generated
skeleton and servant code; and Messenger exec, containing the
Messenger’ s home and component executors. We create an |mplementation
Artifact Descriptor for each of these libraries.

A CORBA Component Descriptor describes the Messenger’s public interface.
It contains information about each of the component’s ports, including the

|
@ I ociweb.com 1289

OBJECT COMPUTING, INC.

CIAO and CCM

port name, the type of port (Facet, EventPublisher, EventConsuner,
etc.) and the port’ s supported IDL interfaces.

The Component I mplementation Descriptor describes the Messenger
component’ s monolithic implementation. A monolithic component
implementation consists of one or more implementation artifacts. In aC++
application, an implementation artifact is adynamic library.

At the top level, a Component Package Descriptor may describe several
aternate implementations of acomponent, permitting the component server to
choose the correct implementation at run-time based on platform and QoS
regquirements. Our example provides one implementation of the Messenger
component.

Messenger Component - Implementation Artifact Descriptors (.iad)
Animplementation artifact isalibrary, ajar file, or some other artifact
containing a component’ s executable code. We create an I mplementation
Artifact Descriptor for each of our three Messenger libraries. We also create a
separate |mplementation Artifact Descriptor for the ACE, TAO, and CIAO
libraries.

The Implementation Artifact Descriptor for the ACE, TAO, and CIAO
librariesis asfollows:

<?xml version="1.0" encoding="UTF-8" standalone="no" ?>
<Deployment: ImplementationArtifactDescription
xmlns:Deployment="http://www.omg.org/Deployment"
xmlns:xmi="http://www.omg.org/XMI"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://www.omg.org/Deployment Deployment.xsd">
<label>ACE/TAO/CIAO Libraries</labels>
<location>$ACE_ROOT/1lib/ACE</location>
<location>$ACE ROOT/1lib/TAO</location>
<location>$ACE_ROOT/1ib/CIAO Client</location>
</Deployment : ImplementationArtifactDescriptions

The optional <1abel > element contains a human-readable description of the
implementation artifact. It may be used by atool for display purposes. The
mandatory <location> elementsreferencethe ACE, TAO and CIAO Client
libraries that the M essenger depends upon. File extensionsfor the libraries are
not necessary, or even desired. Multiple alternate location for the same entity
can be provided. The underlying implementation uses the operating system’s

1290

[
ociweb.com I

OBJECT COMPUTING, INC.

32.2 Example - The Messenger Application

i

OBJECT COMPUTING, INC.

Note

dynamic library capabilities, meaning that it can use the contents of the PATH
and/or the LD_LIBRARY PATH to find the dynamic libraries.

Notice the simplicity of the specified library names. The ACE library is
specified merely asACE, not asACE.d11l, ACEd.dll, 1ibACE. so, etc. The
simplified name enabl es the component devel oper to describe an
implementation artifact in a platform-independent manner. This behavior is
specific to CIAO.

An Implementation Artifact Descriptor describes each of the three Messenger
libraries. The Messenger stub library is described as follows:

<?xml version="1.0" encoding="UTF-8" standalone="no" ?>
<Deployment : ImplementationArtifactDescription
xmlns:Deployment="http://www.omg.org/Deployment"
xmlns:xmi="http://www.omg.org/XMI"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xs1i:schemalocation="http://www.omg.org/Deployment Deployment.xsd">
<label>Messenger Stub Artifact</labels
<location>Messenger stub</location>
<dependsOn>
<name>ACE/TAO/CIAO</name>
<referencedArtifact href="Libraries.iad"/>
</dependsOn>
</Deployment : ImplementationArtifactDescriptions>

The optional <1abel > element may be used by atool for display purposes.
The <location> element contains the simplified name of the library. Since
we have not provided a path, the library must be in the application’s PATH
(Windows) or LD_LIBRARY PATH (UNIX). Optionally, we could provide a
path, aswe did for the ACE, TAO, and CIAO libraries.

Each <dependsOn> element contains references to dependent
implementation artifacts. We depend on the ACE/TAO/CIAQ libraries, so our
<dependsOn> entry referencesthe Libraries. iad file containing
references to the ACE/TAQ/CIAOQ libraries. The mandatory <name>
sub-element may be used by atool for display purposes.

The descriptor aso recognizes one or more optional <infoProperty>
elementsthat provide non-functional information that might be displayed by a
tool. For example:

ociweb.com 1291

CIAO and CCM

<infoPropertys>
<name>comment</names
<value>
<type>
<kind>tk string</kind>
</type>
<value>
<string>This IAD describes the Messenger's stub library</strings
</value>
</value>
</infoProperty>

The Messenger has two more Implementation Artifact Descriptors, one for its
Messenger svnt library and one for itSMessenger exec library. The
Messenger svnt.iad filesisasfollows:

<?xml version="1.0" encoding="UTF-8" standalone="no" ?>
<Deployment : ImplementationArtifactDescription
xmlns:Deployment="http://www.omg.org/Deployment"
xmlns:xmi="http://www.omg.org/XMI"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://www.omg.org/Deployment Deployment.xsd">
<label>Messenger Servant Artifact</labels>
<location>Messenger svnt</location>
<dependsOn>
<name>ACE/TAO/CIAO</name>
<referencedArtifact href="Libraries.iad"/>
</dependsOn>
<dependsOn>
<name>Messenger_Stub</name>
<referencedArtifact href="Messenger Stub.iad"/>
</dependsOn>
<execParameter>
<name>entryPoint</name>
<value>
<type>
<kind>tk string</kind>
</type>
<value>
<string>createMessengerHome Servant</string>
</value>
</value>
</execParameter>
</Deployment : ImplementationArtifactDescriptions>

The <labels, <locations, and first <dependsOn> € ements contain
similar information to that in the Messenger stub.iad file. However, the
Messenger_ svnt library also depends on the Messenger stub library, as

|
1292 ociweb.com @ I

OBJECT COMPUTING, INC.

32.2 Example - The Messenger Application

i

OBJECT COMPUTING, INC.

reflected in the additional <dependsOn> element. In addition, the
Messenger_svnt library has an entry point function, configured through the
<execParameters> element. An entry point function always has the <name >
of “entryPoint”. The execution parameter’'s <value> element is actually an
XML representation of a CORBA Any. The <value> element’s string value
matches the name of the Messenger’ slibrary entry point function as generated
by the CIDL compiler. Additional information on the CIDL compiler is
availablein 32.5.

Note CIAO looksfor an“ entryPoint” execution parameter for any implementation

artifact that endsin _svnt or _exec. Thus, your servant and executor
implementation artifacts should end in _svnt and _exec, respectively.

TheMessenger exec Implementation Artifact Descriptor is nearly identical
to theMessenger svnt descriptor, asis shown below:

<?xml version="1.0" encoding="UTF-8" standalone="no" ?>
<Deployment:ImplementationArtifactDescription
xmlns:Deployment="http://www.omg.org/Deployment"
xmlns:xmi="http://www.omg.org/XMI"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://www.omg.org/Deployment Deployment.xsd">
<label>Messenger Executor Artifact</labels>
<location>Messenger exec</location>
<dependsOn>
<name>ACE/TAO/CIAO</name>
<referencedArtifact href="Libraries.iad"/>
</dependsOn>
<dependsOn>
<name>Messenger Stub</name>
<referencedArtifact href="Messenger Stub.iad"/>
</dependsOn>
<execParameter>
<name>entryPoint</name>
<value>
<type>
<kind>tk string</kind>
</type>
<value>
<string>createMessengerHome Impl</string>
</value>
</value>
</execParameter>
</Deployment : ImplementationArtifactDescriptions>

ociweb.com 1293

CIAO and CCM

TheMessenger exec implementation artifact also has a library entry point
function, matching the name of the entry point function generated by the
CIDL compiler.

In summary, each of the component’s Implementation Artifact Descriptor
files contains information about one of the component’s libraries. Thereisan
Implementation Artifact Descriptor for each of theMessenger stub,
Messenger svnt, and Messenger exec libraries.

Messenger Component - CORBA Component Descriptor (.ccd)

The CORBA Component Descriptor describes the component’s IDL3
interfacein an XML format. Primarily, it describes the component’ s exposed
ports and attributes. The mapping from a component’s IDL fileto a CORBA
Component Descriptor is purely mechanical.

There are six kinds of component ports: Facet, SimplexReceptacle,
MultiplexReceptacle, EventPublisher, EventEmitter, and
EventConsumer, as shown in Table 32-4:

Table 32-4 Component Port Types

Port Kind Sample IDL3 Declaration
Facet provides Runnable control
SimplexReceptacle uses Runnable control

MultiplexReceptacle uses multiple Runnable controls

EventPublisher publishes Message message publisher
EventEmitter emits Message message_emitter
EventConsumer consumes Message message_consumer

Recall that the Messenger component’s IDL3 isasfollows:

component Messenger {
attribute string subject;

provides Runnable control;
provides Publication content;

publishes Message message publisher;
provides History message history;

}i

We create the Messenger . ccd file describing the Messenger's IDL3

1294

interface as follows. Comments are interspersed.
||
ociweb.com @ I

OBJECT COMPUTING, INC.

32.2 Example - The Messenger Application

i

OBJECT COMPUTING, INC.

<?xml version="1.0" encoding="UTF-8" standalone="no" ?>

<Deployment : Component InterfaceDescription

xmlns:Deployment="http://www.omg.org/Deployment"

xmlns:xmi="http://www.omg.org/XMI"

xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"

xs1:schemalocation="http://www.omg.org/Deployment Deployment.xsd">
<label>Messenger Component</labels>
<specificType>IDL:Messenger:1.0</specificType>
<supportedType>IDL:Messenger:1.0</supportedType>
<idlFile>Messenger.idl</id1lFile>

The optional <1abel > element contains a description that may be used by a
tool for display purposes. The <specificType> element containsthe
Interface Repository |d of the component’s IDL interface.

The descriptor has a <supportedType> element for the component’s
Interface Repository Id. It also has a <supportedType> element for each
IDL2 interface supported by the component either directly or through
inheritance. A component may indicate that it supports an IDL2 interface
through the supports keyword. For example.

component Messenger supports MyInterface {

would map to an additional <supportedType> element such asthis:

<supportedType>IDL:MyInterface:1.0</supportedType>

A component supporting an interface inherits the operations, attributes, etc.
from that interface. However, we don't use the supports keyword in our
examples.

The optional <id1File> element pointsto the IDL file that is the source of
thisinformation. It is for documentation purposes.

<property>
<name>subject</name>
<type>
<kind>tk string</kind>
</type>
</propertys>

A <property> element describes each of the component’s IDL attributes.
This <property> element describes the component’s subject attribute. The

ociweb.com 1295

CIAO and CCM

<name> element’ s value matches the attribute namein the IDL file. The
<type> element’s <kind> isatype code. In our example, the attributeis a
string. The “Deployment and Configuration” specification (OMG Document
ptc/03-07-08) and the Deployment . xsd schemafile contain more
information on representing data typesin XML descriptors.

<port>
<name>control</name>
<exclusiveProvider>false</exclusiveProviders>
<exclusiveUsers>false</exclusiveUser>
<optionals>true</optionals>
<providers>true</providers>
<specificType>IDL:Runnable:1.0</specificType>
<supportedType>IDL:Runnable:1.0</supportedType>
<kind>Facet</kind>

</port>

Each provides, uses, usesmultiple, publishes, emits, and consumes
declaration has a matching <port> element. This port corresponds to the

provides Runnable control;

facet. The <name> element’ s value matches the facet namein the IDL file.
The <specificType> element contains the Interface Repository 1d of the
facet’sIDL interface. There may be several <supportedType> elements;
thereis one for the facet’s most specific IDL interface and one for each
inherited interface regardless of whether the inheritance is direct or indirect.

The <kind> element’svalueis Facet. Vaid <kind> values are Facet,
SimplexReceptacle, MultiplexReceptacle, EventPublisher,
EventEmitter, and EventConsumer. The <optionals> element indicates
if connecting to the port isoptional or mandatory. The <provider> element’s
valueistruefor provides and consumes, false for uses and publishes.

<port>
<name>content</name>
<exclusiveProvider>false</exclusiveProviders>
<exclusiveUsers>false</exclusiveUsers>
<optional>true</optional>
<providers>true</providers>
<supportedType>IDL:Publication:1.0</supportedType>
<specificType>IDL:Publication:1.0</specificType>
<kind>Facet</kind>

</port>

|
1296 ociweb.com @ I

OBJECT COMPUTING, INC.

32.2 Example - The Messenger Application

Thisisthe Publication facet called content. Itsdeclaration is nearly
identical to that of the Runnable facet

<port>
<name>message publisher</name>
<exclusiveProvider>false</exclusiveProviders>
<exclusiveUser>false</exclusiveUsers
<optional>true</optionals>
<provider>false</providers>
<supportedType>IDL:Message:1l.0</supportedType>
<specificType>IDL:Message:1l.0</specificType>
<kind>EventPublisher</kind>

</port>

Thisisthe Message publishing port called message publisher. The
<supportedType> and <specificType> arethe Interface Repository Id of
the event type being published. The port’s <kind> iSEventPublisher.

<port>
<name>message_history</name>
<exclusiveProvider>false</exclusiveProvider>
<exclusiveUsers>false</exclusiveUsers>
<optional>true</optional>
<providerstrue</provider>
<supportedType>IDL:History:1.0</supportedType>
<specificType>IDL:History:1.0</specificType>
<kind>Facet</kind>

</port>

ThisistheHistory facet called message history. Itsdeclaration isnearly
identical to that of the to the Runnable and Publication facets.

<configPropertys>
<name>subject</name>
<value>
<type>
<kind>tk string</kind>
</type>
<value>
<string>Default Subject</string>
</value>
</value>
</configProperty>

|
@ I ociweb.com 1297

OBJECT COMPUTING, INC.

CIAO and CCM

Note

This <configPropertys> element sets adefault value for the Messenger’s
subject attribute. Both the “ Deployment and Configuration” specification
and the Deployment . xsd schemafile contain more information on
representing data types and values in XML descriptors.

CIAQO currently ignores <configProperty> elementsthat set values for
IDL attributes.

</Deployment : ComponentInterfaceDescription>

The descriptor also recognizes one or more optional <infoProperty>
elementsthat provide non-functional information that might be displayed by a
tool as explained above.

In summary, the Messenger’s CORBA Component Descriptor file,
Messenger.ccd, isan XML rendition of the component’s IDL3 interface. It
contains a <property> element for each component attribute and a <port >
element for each port.

Messenger Component - Component Implementation Descriptor (.cid)
The Messenger’ s Component | mplementation Descriptor describes the
monolithic implementation of the Messenger component. A monolithic
implementation consists of a set of implementation artifacts, or libraries. (By
contrast, an assembly implementation is a component implementation that
consists of subcomponents). Our monolithic Messenger implementation pulls
together the Messenger’ s three dynamic libraries—Messenger stub,
Messenger svnt, and Messenger exec.

The Messenger component’s Component Implementation Descriptor follows.
Comments are interspersed.

<?xml version="1.0" encoding="UTF-8" standalone="no" ?>

<Deployment : Component ImplementationDescription

xmlns:Deployment="http://www.omg.org/Deployment"

xmlns:xmi="http://www.omg.org/XMI"

xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"

xsi:schemalocation="http://www.omg.org/Deployment Deployment.xsd">
<label>Messenger Implementation</labels>

1298

[
ociweb.com I

OBJECT COMPUTING, INC.

32.2 Example - The Messenger Application

i

OBJECT COMPUTING, INC.

The optional <1abel > element describes the implementation. A tool may use
it for display purposes.

<implements href="Messenger.ccd"/>

The <implements> element describes the interface that the component
implements by referencing the component’s CORBA Component Descriptor
file.

<monolithicImpls>
<primaryArtifacts>
<name>Messenger_Stub</name>
<referencedArtifact href="Messenger Stub.iad"/>
</primaryArtifacts>
<primaryArtifacts>
<name>Messenger_Svnt</name>
<referencedArtifact href="Messenger Svnt.iad"/>
</primaryArtifacts>
<primaryArtifacts>
<name>Messenger Exec</name>
<referencedArtifact href="Messenger Exec.iad"/>
</primaryArtifact>
</monolithicImpls>

The <monolithicImpl> element pullstogether the Messenger’ s three
libraries. Each library isa <primaryArtifact> represented by areference
to an Implementation Artifact Descriptor file.

<configProperty>
<name>ComponentIOR</name>
<value>
<type>
<kind>tk string</kind>
</type>
<value>
<string>Messenger.ior</string>
</value>
</values
</configPropertys>

CIAO supports one optional <configPropertys, the Component TOR
property, for acomponent implementation. At run time, the component server
writes the component’ s object reference to the file indicated by the
ComponentIOR property value. By default, the component server writes the

ociweb.com 1299

CIAO and CCM

file to the directory from which it was launched. A non-CCM CORBA client
may use that IOR file to discover the component.

</Deployment : Component ImplementationDescription>

The Component I mplementation Descriptor also accepts <capabilitys>
elements which can be used by the component server to choose between
component implementations. It also accepts non-functional
<infoProperty> elements as explained above.

In summary, the Messenger’ s Component I mplementation Descriptor
constructs a monolithic Messenger implementation from the Messenger’s
libraries.

Messenger Component - Component Package Descriptor (.cpd)

The Component Package Descriptor is the component’ s top-level packaging
file. It can describe multiple aternative implementations of the same
component interface and can contain configuration properties for the
component.

In our example, we merely reference the component implementation defined
in the previous subsection.

The Component Package Descriptor for the Messenger component is as
follows, with comments interspersed:

<?xml version="1.0" encoding="UTF-8" standalone="no" ?>
<Deployment : ComponentPackageDescription
xmlns:Deployment="http://www.omg.org/Deployment"
xmlns:xmi="http://www.omg.org/XMI"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://www.omg.org/Deployment Deployment.xsd">

<label>Messenger Component</labels>

The optional <1abel> element isahuman readable package label that may be
used by atool for display purposes.

<realizes href="Messenger.ccd"/>

The <realizes> element indicates the component’s IDL 3 interface by
referencing the component’s CORBA Component Descriptor file.

1300

[
ociweb.com I

OBJECT COMPUTING, INC.

32.2 Example - The Messenger Application

<implementations>
<name>MessengerImpl</name>
<referencedImplementation href="Messenger.cid"/>
</implementation>

The <implementation> element references one or more Component
Implementations Descriptors. Our example has just one Messenger
implementation, so we refer to that implementation here. A more complex
example may have multiple implementations and may use
<deployRequirement> elements to enable a component server to choose
between them.

</Deployment : ComponentPackageDescriptions>

The Component Package Descriptor aso recognizes <infoProperty>
documentation elements and <configProperty> default attribute value
configuration elements.

Note CIAQO does not yet support the setting of a default attribute value through a
<configProperty> element, so thisvalueis currently ignored.

To summarize, the Component Package Descriptor isthe component’s
top-level descriptor, representing the component to the rest of the application.

Messenger Component - Summary
The table summarizes the six Messenger component descriptor files

Table 32-5: Messenger Descriptor Files

File Description

Implementation Artifact Descriptor for the Messenger’s stub
library

Implementation Artifact Descriptor for the Messenger’s
servant library

Implementation Artifact Descriptor for the Messenger’s
executor library

CORBA Component Descriptor for the Messenger’s IDL3
interface

Component Implementation Descriptor describing the
Messenger’simplementation in terms of its libraries

Messenger stub.iad

Messenger svnt.iad

Messenger exec.iad

Messenger.ccd

Messenger.cid

|
@ I ociweb.com 1301

OBJECT COMPUTING, INC.

CIAO and CCM

Table 32-5: Messenger Descriptor Files

File Description

Component Package Descriptor packaging the Messenger

Messenger . cpd component into one deployable package.

32.2.5.5 Receiver Component Descriptors

The Receiver component type has asimilar set of descriptor files, as
illustrated by the diagram.

Component .
Package | Receiver.cpd

Descriptor

Component
Implementation | Receiver.cid

Descriptor CORBA
Component
Descriptor
Receiver.ccd
Implementation
Artifact
Descriptors

Receiver_Stub.iad Receiver_Svnt.iad Receiver_Exec.iad
Dynamic
Libraries \J \
<<artifact>> <<artifact>> <<artifact>>
Receiver_stub.dll Receiver_svnt.dll Receiver_exec.dll

—» Directly references file

Figure 32-22 Receiver Descriptor Files

|
1302 ociweb.com @ I

OBJECT COMPUTING, INC.

32.2 Example - The Messenger Application

i

OBJECT COMPUTING, INC.

The primary differences between the Receiver’'s and the Messenger’s
descriptor files are in the Implementation Artifact Descriptor and the CORBA
Component Descriptor.

The Receiver’ s three Implementation Artifact Descriptors reflect the fact that
each of the Receiver’ sthree libraries has a dependency on the Messenger’s
stub library. The dependency isillustrated by the Receiver stub.iad file

<?xml version="1.0" encoding="UTF-8" standalone="no" ?>
<Deployment:ImplementationArtifactDescription
xmlns:Deployment="http://www.omg.org/Deployment"
xmlns:xmi="http://www.omg.org/XMI"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xs1:schemalocation="http://www.omg.org/Deployment Deployment.xsd">
<label>Receiver Stub Artifact</labels>
<location>Receiver stub</locations
<dependsOn>
<name>ACE/TAO/CIAO</name>
<referencedArtifact href="Libraries.iad"/>
</dependsOn>
<dependsOn>
<name>Messenger Stub</name>
<referencedArtifact href="Messenger Stub.iad"/>
</dependsOn>
</Deployment : ImplementationArtifactDescriptions>

The Receiver’s servant and executor Implementation Artifact Descriptor files
are analogous to the Messenger’ s with the additional dependency on the
Messenger stub library. We do not show them here.

The Receiver’'s CORBA Component Descriptor file describes the Receiver’'s
IDL3interface, which is asfollows:

component Receiver {
consumes Message message_consumer;
uses History message history;

}i

The CORBA Component Descriptor describes the Receiver’ s two ports, an
EventConsumer and aSimplexReceptacle. It isasfollows, with
comments interspersed:

<?xml version="1.0" encoding="UTF-8" standalone="no" ?>
<Deployment : Component InterfaceDescription
xmlns:Deployment="http://www.omg.org/Deployment"
xmlns:xmi="http://www.omg.org/XMI"

ociweb.com 1303

CIAO and CCM

xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"

xsi:schemalocation="http://www.omg.org/Deployment Deployment.xsd">
<label>Receiver Component</label>
<specificType>IDL:Receiver:1.0</specificType>
<supportedType>IDL:Receiver:1.0</supportedType>
<idlFile>Receiver.idl</idlFile>

<port>
<name>message consumer</name>
<exclusiveProvider>false</exclusiveProviders>
<exclusiveUser>false</exclusiveUsers
<optional>false</optionals>
<providers>true</providers>
<supportedType>IDL:Message:1.0</supportedType>
<specificType>IDL:Message:1.0</specificType>
<kind>EventConsumer</kind>

</port>

Themessage consumer port isan EventConsumer that consumes
Message events. The <supportedType> and <specificType> elements
contain the Interface Repository Id of the published event type.

<port>
<name>message history</name>
<exclusiveProvider>false</exclusiveProviders>
<exclusiveUserstrue</exclusiveUsers>
<optional>true</optional>
<provider>false</providers>
<supportedType>IDL:History:1.0</supportedType>
<specificType>IDL:History:1.0</specificType>
<kind>SimplexReceptacle</kind>

</port>

Themessage history port usesthe Messenger’sHistory interface. The
uses keyword in the component’ sinterface indicates that itisa
SimplexReceptacle, meaning that the receptacle connects to exactly one
History facet. Themessage consumer port may receive Message events
from multiple publishers, but the message history port may only retrieve
the History from one provider.

</Deployment : Component InterfaceDescriptions>

|
1304 ociweb.com @ I

OBJECT COMPUTING, INC.

32.2 Example - The Messenger Application

The table summarizes the six Receiver descriptor files.
Table 32-6 Receiver Descriptor Files

File Description

Implementation Artifact Descriptor for the Receiver’s stub
library

Implementation Artifact Descriptor for the Receiver’'s
servant library

Implementation Artifact Descriptor for the Receiver’'s
executor library

CORBA Component Descriptor for the Receiver'sIDL3
interface

Receiver stub.iad

Receiver svnt.iad

Receiver exec.iad

Receiver.ccd

Component mplementation Descriptor describing the

Recei .cid o o ioni itsli i
ecelver.ci Receiver’ simplementation in terms of itslibraries

Component Package Descriptor packaging the Receiver

Receiver.cpd component into one deployable package.

|
@ I ociweb.com 1305

OBJECT COMPUTING, INC.

CIAO and CCM

32.2.5.6 Administrator Component Descriptors
The Administrator component type also has asimilar set of descriptor files, as
illustrated in the diagram.

Component .
Package | Administrator.cpd
Descriptor
v
Component
Implementation | Administrator.cid
Descriptor CORBA
Component
Descriptor

Administrator.ccd

Implementation
Artifact
Descriptors

Administrator_Stub.iad| | Administrator_Svnt.iad Administrator_Exec.ia}

Dynamic
Libraries A /
<<artifact>> <<artifact>> <<artifact>>
Administrator_stub.dll | |Administrator_svnt.dll Administrator_exec.dll

—» Directly references file

Figure 32-23 Administrator Descriptor Files

Like the Receiver, each of the Administrator’s libraries depends on the
Messenger’sMessenger_stub library. We won't replicate the
Implementation Artifact Descriptor files here.

The Administrator's CORBA Component Descriptor file describes the
Administrator’s IDL3 interface, which is as follows:

component Administrator {

|
1306 ociweb.com @ I

OBJECT COMPUTING, INC.

32.2 Example - The Messenger Application

uses multiple Runnable runnables;
uses multiple Publication content;

}i

The Administrator’s CORBA Component Descriptor describes the two
Administrator MultiplexReceptacle ports. Itisasfollows, with comments
interspersed:

<?xml version="1.0" encoding="UTF-8" standalone="no" ?>
<Deployment : ComponentInterfaceDescription
xmlns:Deployment="http://www.omg.org/Deployment"
xmlns:xmi="http://www.omg.org/XMI"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xs1:schemalocation="http://www.omg.org/Deployment Deployment.xsd">
<label>Administrator Component</labels>
<specificType>IDL:Administrator:1.0</specificType>
<supportedType>IDL:Administrator:1.0</supportedType>
<idlFile>Administrator.idl</idlFile>

<port>
<name>runnables</name>
<exclusiveProvider>false</exclusiveProviders>
<exclusiveUserstrue</exclusiveUsers>
<optional>true</optionals>
<provider>false</providers>
<supportedType>IDL:Runnable:1.0</supportedType>
<specificType>IDL:Runnable:1.0</specificType>
<kind>MultiplexReceptacle</kind>

</port>

The runnables port uses the Messenger’s Runnable interface. Theuses
multiple keyword inthe IDL3 interfaceindicatesthat itisa
MultiplexReceptacle, meaning that it may connect to many Runnable
facets.

<port>
<name>content</name>
<exclusiveProvider>false</exclusiveProviders>
<exclusiveUserstrue</exclusiveUsers
<optional>true</optional>
<provider>false</providers>
<supportedType>IDL:Publication:1.0</supportedType>
<specificType>IDL:Publication:1.0</specificType>
<kind>MultiplexReceptacle</kind>

</port>

|
@ I ociweb.com 1307

OBJECT COMPUTING, INC.

CIAO and CCM

The content port uses the Messenger’s Publication interface. Itisalso a
MultiplexReceptacle, meaning that it may connect to many
Publication facets.

</Deployment : Component InterfaceDescriptions

The table summarizes the six Administrator descriptor files.
Table 32-7 Administrator Descriptor Files

File Description

Administrator stub.iad Implementation Artifact Descriptor for the
ator_stub-18¢ 1 Administrator’s stub library

Implementation Artifact Descriptor for the
Administrator’s servant library

Implementation Artifact Descriptor for the
Administrator’s executor library

Administrat 4 CORBA Component Descriptor for the Administrator’s
ministrator.cc IDL3|nterfa:e

Component Implementation Descriptor describing the
Administrator’ simplementation in terms of its libraries

Component Package Descriptor packaging the
Administrator component into one deployable package.

Administrator svnt.iad

Administrator exec.iad

Administrator.cid

Administrator.cpd

|
1308 ociweb.com @ I

OBJECT COMPUTING, INC.

32.2 Example - The Messenger Application

32.2.5.7 Messenger Assembly Descriptors

An assembly is a component implementation that consists of a set of
subcomponent instances connected through their ports.

o

Define an IDL interface for each component and its facets
¢« Implement each component and its facets

¢+ Define each component’s composition

¢ Implement a C++ executor for each component and facet
¢+ Describe the application’s deployment

¢« Describe each component’s libraries and ports

Q Connect component instances through their ports>

< Deploy each component into a component container

¢ Build the application

¢ Run the application

Figure 32-24 Road Map

We package the Messenger, Receiver, and Application components into one
top-level component we refer to as the Messenger Assembly. Our Messenger
Assembly consists of one Messenger component instance, two Receiver
component instances, and one Administrator component instance.

The Messenger Assembly’ s deployment is described by three descriptor files:
a CORBA Component Descriptor describing the assembly’ s exposed
properties and ports; a Component I mplementation Descriptor describing the
assembly’ simplementation in terms of its subcomponent instances and the
connections between them; and a Component Package Descriptor that

|
@ I ociweb.com 1309

OBJECT COMPUTING, INC.

CIAO and CCM

packages the assembly into a deployable component. The relationships
between the descriptor files areillustrated in the diagram.

Component
Package MessengerAssembly.cpd
Descriptor
\J
Component
Implementation | MessengerAssembly.cid
Descriptor - CORBA
. Component
O\ Descriptor
SO\ MessengerAssembly.ccd
Component ‘ N
Package Messenger.cpd Receiver.cpd | | Administrator.cpd
Descriptors : N L
I N \\\
CORBA v 1
Component | Messenger.ccd Receiver.ccd Administrator.ccd

Descriptors

—» Directly references file

—————— P Depends on information in file

Figure 32-25 Messenger Assembly Descriptor Files

A CORBA Component Descriptor describes the Messenger Assembly’ spublic
interface. An assembly may expose ports and attributes of its subcomponents
to the outside world. The Messenger Assembly exposes the M essenger
component’ s subject attribute, but does not expose any Messenger, Receiver,
or Administrator ports.

A Component Implementation Descriptor describes the Messenger
Assembly’ simplementation. Its implementation is composed of one instance
of the Messenger component, two instances of the Receiver component, and
one instance of the Administrator component. The Component
Implementation Descriptor describes how the component instances’ facetsand
event publishers connect to receptacles and event consumers to comprise the

1310

assembly.
[
ociweb.com @ I

OBJECT COMPUTING, INC.

32.2 Example - The Messenger Application

A Component Package Descriptor can describe many aternate
implementations of the assembly. Our exampl e provides one implementation
of the Messenger Assembly.

Messenger Assembly - CORBA Component Descriptor

A CORBA Component Descriptor describes a component’s ports and
attributes. An assembled component may expose ports or attributes of its
subcomponents. Our Messenger Assembly merely exposes the Messenger
component’ s subject attribute.

The Messenger Assembly’s CORBA Component Descriptor follows.

<?xml version="1.0" encoding="UTF-8" standalone="no" ?>

<Deployment : Component InterfaceDescription

xmlns:Deployment="http://www.omg.org/Deployment"

xmlns:xmi="http://www.omg.org/XMI"

xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"

xs1i:schemalocation="http://www.omg.org/Deployment Deployment.xsd">
<label>Messenger Assembly</labels>

<property>
<name>subject</name>
<type>
<kind>tk string</kind>
</type>
</property>

</Deployment : Component InterfaceDescriptions

The <property> element indicates that the assembly exposes an attribute
called “subject”, whose type is a string. The assembly’s Component
Implementation Descriptor file, described in the next section, defines how the
assembly’ s subject attribute is mapped to the subject attribute of its M essenger
subcomponent.

We can think of the Messenger Assembly as a component whose implied
IDL3 interfaceisthe following:

component MessengerAssembly {
attribute string subject;

}i

|
@ I ociweb.com 1311

OBJECT COMPUTING, INC.

CIAO and CCM

Messenger Assembly - Component Implementation Descriptor

The Messenger Assembly’s Component I mplementation Descriptor describes
the subcomponent instances that comprise the assembly and the connections
between their ports. The Component I mplementation Descriptor describes the
subcomponent instances and connections as shown in the deployment
diagram.

<<execution environment>> <<execution environment>>|
:ApplicationServer Runnable :ApplicationServer

1 runnables
<<component>> | m <<component>>

aMessenger Publication anAdministrator

:Messenger content :Administrator
] O)]

1
History b & Message . .
<<execution environment>>

A4 ? :ApplicationServer
o mCS530C CONSUMEY
<<component>>
message histo firstRec.eiver
:Receiver

<<execution environment>>
:ApplicationServer

message consumer

<<component>>

. secondReceiver
message histo :Receiver

Figure 32-26 Messenger Application Deployment Diagram

The Messenger Assembly’s Component I mplementation Descriptor is as
follows, with comments interspersed.

<?xml version="1.0" encoding="UTF-8" standalone="no" ?>
<Deployment : Component ImplementationDescription
xmlns:Deployment="http://www.omg.org/Deployment"

1312

[
ociweb.com I

OBJECT COMPUTING, INC.

32.2 Example - The Messenger Application

i

OBJECT COMPUTING, INC.

xmlns:xmi="http://www.omg.org/XMI"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://www.omg.org/Deployment Deployment.xsd">
<label>Messenger Assembly</label>
<implements href="MessengerAssembly.ccd"/>

The <implements> element references the Messenger Assembly’s CORBA
Component Descriptor documented in the previous section.

<assemblyImpl>

An <assemblyImpls> element indicates that thisis an assembly-based
component, meaning that is composed of subcomponent instances.

<instance xmi:id="a Messenger">
<name>Messenger_lnstance</name>
<package href="Messenger.cpd"/>

</instances>

<instance xmi:id="first Receiver">
<name>First Receiver Instance</name>
<package href="Receiver.cpd"/>

</instances>

<instance xmi:id="second Receiver">
<name>Second Receiver Instance</names
<package href="Receiver.cpd"/>

</instance>

<instance xmi:id="a Administrator">
<name>Administrator Instance</name>
<package href="Administrator.cpd"/>

</instances>

The <instance> elements create the Messenger instance, the two Receiver
instances, and the Administrator instance. Each <instance> refersto the
Component Package Descriptor of its component type. Thexml : : id
attributes of the instances are used by <connections> elementsto connect the
instances' ports.

<connection>
<name>Messenger to First Receiver Publish</name>
<internalEndpoint>
<portName>message publisher</portName>
<instance xmi:idref="a Messenger"/>
</internalEndpoint>
<internalEndpoint>
<portName>message consumer</portName>
<instance xmi:idref="first Receiver"/>

ociweb.com 1313

CIAO and CCM

</internalEndpoint>
</connection>

This connection connects the Messenger instance’ smessage publisher
port to one Receiver instance’ smessage consumer port. The connection’s
<name> iSaunique identifier for the connection within the assembly. The
valuein each <portName> element must match the port namein the
Messenger’s and Receiver's CORBA Component Descriptor files. The
<instances dement’sxml: : idref attribute matchesthe <instances>
element’sxml : : id attribute above.

<connection>
<name>Messenger to First Receiver History</name>
<internalEndpoint>
<portName>message history</portName>
<instance xmi:idref="a Messenger"/>
</internalEndpoint>
<internalEndpoint>
<portName>message history</portName>
<instance xmi:idref="first Receiver"/>
</internalEndpoint>
</connection>

This connection connects the Messenger’ smessage _history facet to a
Receiver instance’ smessage history receptacle.

|
1314 ociweb.com @ I

OBJECT COMPUTING, INC.

32.2 Example - The Messenger Application

Themessage publisher-to-message consumer connection and the
message history-to-message history connection areillustrated by the
highlights in the deployment diagram.

<<execution environment>> <<execution environment>>
:ApplicationServer Runnable :ApplicationServer
1 Q runnables
<<component>> <<component>>
:Messenger _7@ content :
_J
-
Historyb @ Message) .
<<execution environment>>
A\ N
:ApplicationServer
message _consumer
<<component>>
message histor firstReceiver
:Receiver

<<execution environment>>
:ApplicationServer

message_consumer

<<component>>
) secondReceiver
message_history :Receiver

Figure 32-27 One Messenger and Receiver Connection

<connection>

<name>Messenger to_Second Receiver Publisher</namex>
<internalEndpoint>

<portName>message publisher</portName>

<instance xmi:idref="a Messenger"/>
</internalEndpoint>
<internalEndpoint>

<portName>message consumer</portName>

<instance xmi:idref="second Receiver"/>
</internalEndpoint>

|
@ I ociweb.com 1315

OBJECT COMPUTING, INC.

CIAO and CCM

</connection>
<connection>
<name>Messenger to_Second Receiver History</names>
<internalEndpoint>
<portName>message history</portName>
<instance xmi:idref="a Messenger"/>
</internalEndpoint>
<internalEndpoint>
<portName>message history</portName>
<instance xmi:idref="second Receiver"/>
</internalEndpoint>
</connection>

These two connections connect the second Receiver instance to the M essenger
instance. The Messenger instance' smessage publisher port connectsto
the Receiver instance’ smessage consumer port and the Messenger

instance’ Smessage history facet connects to the Receiver instance’s
message history receptacle.

<connection>
<name>Messenger to Administrator Control</name>
<internalEndpoint>
<portName>control</portName>
<instance xmi:idref="a Messenger"/>
</internalEndpoint>
<internalEndpoint>
<portName>runnables</portName>
<instance xmi:idref="a Administrator"/>
</internalEndpoint>
</connections>
<connection>
<name>Messenger to Administrator Content</names>
<internalEndpoint>
<portName>content</portName>
<instance xmi:idref="a Messenger"/>
</internalEndpoint>
<internalEndpoint>
<portName>content</portName>
<instance xmi:idref="a Administrator"/>
</internalEndpoint>
</connection>

These two connections connect the Administrator instance to the M essenger
instance. The Messenger instance’s control facet connectsto the
Administrator instance’ s runnables receptacle and the Messenger instance’s
content facet connects to the Administrator instance’s content receptacle.

|
1316 ociweb.com @ I

OBJECT COMPUTING, INC.

32.2 Example - The Messenger Application

<externalProperty>
<name>Subject Mapping</names>
<externalName>subject</externalName>
<delegatesTo>
<propertyName>subject</propertyName>
<instance xmi:idref="a Messenger"/>
</delegatesTo>
</externalPropertys>

The <externalProperty> element maps the Messenger Assembly’s
exposed subject attribute to the Messenger component instance's subject
attribute. The Messenger Assembly doesn’t implement its own subject
attribute; it must map to an attribute of one of its subcomponents.

</assemblyImpl>
</Deployment : Component ImplementationDescriptions>

In summary, the Messenger Assembly’s Component | mplementation
Descriptor describes the four subcomponent instances that comprise the
assembly and describes the connections that connect their ports together.

Messenger Assembly - Component Package Descriptor

The Messenger Assembly’s Component Package Descriptor is the top-level
descriptor that represents the assembly as a depl oyable component. That
should sound familiar; the Messenger, Receiver, and Administrator
Component Package Descriptors serve exactly the same purpose.

The Messenger Assembly’s Component Package Descriptor isnearly identical
to the Messenger component’s.

<?xml version="1.0" encoding="UTF-8" standalone="no" ?>
<Deployment : Component PackageDescription
xmlns:Deployment="http://www.omg.org/Deployment"
xmlns:xmi="http://www.omg.org/XMI"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://www.omg.org/Deployment Deployment.xsd">
<label>Messenger Assembly Package</labels>
<realizes href="MessengerAssembly.ccd"/>
<implementation>
<name>Messenger Application</names
<referencedImplementation href="MessengerAssembly.cid"/>
</implementation>
</Deployment : ComponentPackageDescriptions>

|
@ I ociweb.com 1317

OBJECT COMPUTING, INC.

CIAO and CCM

The <realizes> element references the assembly’s CORBA Component
Descriptor, which describes the assembly’simplied IDL3 interface. The
<referencedImplementations> element references the assembly’s
Component Implementation Descriptor, which describes the assembly’s
implementation in terms of its subcomponents.

Messenger Assembly - Summary

The Messenger Assembly’s descriptors files describe the M essenger
Assembly’ composition in terms of its subcomponent instances the
connections between them. The table summarizes the Messenger Assembly
descriptor files.

Table 32-8 Messenger Assembly Descriptor Files

File Description

CORBA Component Descriptor for the Messenger
Assembly’simplied IDL 3 interface

MessengerAssembly.ccd

Component Implementation Descriptor describing the
MessengerAssembly.cid | Messenger Assembly’simplementation in terms of its
subcomponent instances and connections

Component Package Descriptor packaging the Messenger

Messengerhssembly.cpd | A csambly component into one deployable package.

1318

ociweb.com @

OBJECT COMPUTING, INC.

32.2 Example - The Messenger Application

32.2.5.8 Application Descriptors
The application’ s deployment descriptors describe how the assembly’s
component instances are deployed onto logical nodes and how each logical
node is mapped to a physical component container.

¢+ Define an IDL interface for each component and its facets
¢ Implement each component and its facets
¢+ Define each component’s composition
¢ Implement a C++ executor for each component and facet
¢« Describe the application’s deployment
¢ Describe each component’s libraries and ports
¢ Connect component instances through their ports
Q Deploy each component into a component containeD
¢ Build the application

¢« Run the application

Figure 32-28 Road Map

|
@ I ociweb.com 1319

OBJECT COMPUTING, INC.

CIAO and CCM

The application’s UML Deployment Diagram illustrates the deployment.

<<execution environme
:ApplicationServer

nt>>

\Runnable

<<execution environment>>
:ApplicationServer

<<component>>
anAdministrator
:Administrator

O\ runnables
<<component>>
a'\I\A/Iessengel' ublication
:Messenger O\ content
History Q Message
L

message_consumer

N

<<execution environment>>
:ApplicationServer

message_history

<<component>>
firstReceiver
:Receiver

message_consumer

7 o

\

<<execution environment>>
:ApplicationServer

message_history

<<component>>
secondReceiver
:Receiver

A

\

Figure 32-29 Deployment of the Messenger Application

The Application’s deployment is described by five descriptor files: a Package
Configuration Descriptor that wraps the Messenger Assembly’ s package
descriptor; a Top-level Package Descriptor that represents the entire
application; a Component Deployment Plan descriptor that maps the Message
Assembly’ s subcomponent instances to logica deployment nodes; a
Component Domain Descriptor that describes each of the logical nodes; and a
node map that maps logical deployment nodes to physical component server

jprocesses.

1320

ociweb.com

i

OBJECT COMPUTING, INC.

32.2 Example - The Messenger Application

i

OBJECT COMPUTING, INC.

The Package Configuration Descriptor describes one possible configuration
of acomponent package by indicating deployment requirements and/or
configuration properties of the component package.

The Top-level Package Descriptor references the Package Configuration
Descriptor that is the root of the deployed application. It always has the name
package. tpd.

The Component Deployment Plan contains the bulk of the application’s
deployment information. It maps each component instance onto alogical
deployment node, achieving a separation of concerns between the Component
Implementation Descriptor’ s instance connections and the Component
Deployment Plan’ s node mappings.

The Component Domain Descriptor describes the target deployment
environment in terms of its nodes, interconnects, and bridges.

The Node Map maps each logical hode onto a physical component server
process.

ociweb.com 1321

CIAO and CCM

The rel ationships between the application descriptor files areillustrated in the
diagram.

Top-Level Component
Package package.tpd Domain Domain.cdd
Descriptor Descriptor
\4
Package Nod
Configuration | Application.pcd ode .
Descriptor Map ApplicationNodeMap.dat
v
Component
Deployment | Application.cdp
Plan :
v
Component
Package MessengerAssembly.cpd
Descriptor E
/ d
Component \ »
Implementation | MessengerAssembly.cid
Descriptor
—» Directly references file
****** » Depends on information in file

Figure 32-30 The Application’s Deployment Descriptors

Application - Package Configuration Descriptor

The Package Configuration Descriptor describes one configuration of a
deployable component package. It may define deployment requirements or
configure attribute values. Our Package Configuration Descriptor references
the Messenger Assembly’s Component Package Descriptor and configures a
default value for the Messenger Assembly’s exposed subject attribute. The
descriptor is as follows, with comments interspersed:

<?xml version="1.0" encoding="UTF-8" standalone="no" ?>
<Deployment : PackageConfiguration
xmlns:Deployment="http://www.omg.org/Deployment"

1322

[
ociweb.com I

OBJECT COMPUTING, INC.

32.2 Example - The Messenger Application

xmlns:xmi="http://www.omg.org/XMI"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://www.omg.org/Deployment Deployment.xsd">
<label>Messenger Application Configuration</labels
<basePackage href="MessengerAssembly.cpd"/>

The <basePackage> element references the Messenger Assembly’s
Component Package Descriptor. Either a <basePackage> element or a
<specializedConfig> element is mandatory. A <specializedConfigs>
element can reference another Package Configuration Descriptor and override
its requirements and/or configuration values.

<configProperty>
<name>subject</name>
<value>
<type>
<kind>tk string</kind>
</type>
<value>
<string>Typewriter practice</string>
</value>
</value>
</configPropertys>

The <configProperty> element defines a default value for the Messenger
Assembly’s subject attribute.

Note CIAO does not yet support the setting of a default attribute value through a
<configProperty> element, so thisvalueis currently ignored.

</Deployment : PackageConfiguration>

A Package Configuration Descriptor may aso contain
<selectRequirement > requirement e ements. In future implementations of
CIAOQ, these elements would be matched against <capability> elementsin
the Component Implementation Description.

Application - Top-level Package Descriptor

Each application has exactly one Top-level Package Descriptor. It isalways
named package . tpd, and it points to the application’s Package

|
@ I ociweb.com 1323

OBJECT COMPUTING, INC.

CIAO and CCM

Configuration Descriptor file. The Top-level Package Descriptor for our
applicationis asfollows:

<?xml version="1.0" encoding="UTF-8" standalone="no" ?>
<Deployment : TopLevelPackageDescription
xmlns:Deployment="http://www.omg.org/Deployment"
xmlns:xmi="http://www.omg.org/XMI"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://www.omg.org/Deployment Deployment.xsd">
<package href="Application.pcd"/>
</Deployment : TopLevelPackageDescriptions>

A Top-level Package Descriptor has exactly one <package> element that
points to the application’ s Package Configuration Descriptor.

Application - Component Deployment Plan

The application’s Component Deployment Plan describes how the M essenger
Assembly’ s component instances are deployed onto logical processing nodes.
Through this descriptor, the application deployer can vary the component
instance-to-node mapping independently from the connections between
component instances.

The Component Deployment Plan for our application is as follows, with
comments interspersed:

<?xml version="1.0" encoding="UTF-8" standalone="no" ?>
<Deployment :DeploymentPlan
xmlns:Deployment="http://www.omg.org/Deployment"
xmlns:xmi="http://www.omg.org/XMI"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://www.omg.org/Deployment Deployment.xsd">
<label>Messenger Deployment Plan</labels>
<instance xmi:id="Messenger Instance ID">
<name>Messenger_Instance</name>
<node>Messenger Node</node>
</instance>

This <instance> element indicates that the Messenger Instance is
deployed onto the Messenger Node. Thevalue of the <name> element must
match the Messenger instance’s <name> element in the Messenger
Assembly’s Component Implementation Descriptor file.

<instance xmi:id="First Receiver Instance ID">
<name>First Receiver Instance</name>

1324

[
ociweb.com I

OBJECT COMPUTING, INC.

32.2 Example - The Messenger Application

i

OBJECT COMPUTING, INC.

<node>First Receiver Node</node>

</instance>

<instance xmi:id="Second Receiver Instance ID">
<name>Second Receiver Instance</name>
<node>Second_Receiver Node</node>

</instance>

Thesetwo <instance> elementsindicate that each of the two Receiver
instances is deployed on its own logical node. Again, the value of each
<name> element must match the Receiver instances’ <name> elementsin the
Messenger Assembly’s Component Implementation Descriptor file.

<instance xmi:id="Administrator Instance ID">
<name>Administrator Instance</name>
<node>Administrator Node</node>

</instance>

This <instance> element indicates that the Administrator instanceis
deployed onto the Administrator Node.

</Deployment :DeploymentPlan>

In summary, the Component Deployment Plan maps each component instance
onto alogical processing node. Each instance name must match an instance
name in the assembly’ s Component |mplementation Descriptor.

Application - Component Domain Descriptor

The Component Domain Descriptor describes the target environment in terms
of its nodes, interconnects, and bridges. The Messenger application’s
Component Domain Descriptor is as follows:

<?xml version="1.0" encoding="UTF-8" ?>
<Deployment :Domain
xmlns:Deployment="http://www.omg.org/Deployment"
xmlns:xmi="http://www.omg.org/XMI"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://www.omg.org/Deployment Deployment.xsd">
<label>Messenger Application Domain</labels
<node>
<name>Messenger Node</name>
<label>Messenger's Node</label>
</node>
<node>
<name>First Receiver Node</name>

ociweb.com 1325

CIAO and CCM

<label>First Receiver's Node</labels>
</node>
<node>
<name>Second Receiver Node</name>
<label>Second Receiver's Node</labels
</node>
<node>
<name>Administrator Node</name>
<label>Administrator's Node</labels>
</node>
</Deployment : Domain>

This Component Domain Descriptor describes the four nodes of the
Messenger application. The <name> of each <node> matches the node hame
in the Component Deployment Plan. The <1abel >, asalways, is optional and
may be used for display purposes by atool. Our sample application doesn’t
use this descriptor, but we define it for completeness.

Node Map

The node map is atext file that maps each of the Component Deployment
Plan’slogical nodes onto a physical component server process by mapping
each logical node to aNodeManager object reference. The node map for the
Messenger application is as follows:

Administrator Node corbaloc:iiop:localhost:10000/NodeManager
First Receiver Node corbaloc:iiop:localhost:20000/NodeManager
Second Receiver Node corbaloc:iiop:localhost:30000/NodeManager
Messenger Node corbaloc:iiop:localhost:40000/NodeManager

The contents of this file determine where each component executes. Our
deployment environment consists of four NodeManager processes running on
the localhost, each listening on adifferent port. Each NodeManager isa
component server, capable of dynamically loading a component’s libraries
and making connections between components. The NodeManager is
documented in 32.2.7 and 32.4.

The node map enables agreat deal of deployment flexibility. We could deploy
the Messenger application across a network simply by running our
NodeManager processes across the network and changing our node map’'s
NodeManager object referencesto reflect that.

We could also deploy several component instances on one component server
simply by mapping several logical nodes to the same NodeManager object

1326

reference.
[
ociweb.com @ I

OBJECT COMPUTING, INC.

32.2 Example - The Messenger Application

32.2.6

i

OBJECT COMPUTING, INC.

Messenger Application - Summary

The Messenger Application’s descriptors describe how each subcomponent
instance is deployed onto a physical component server process. The table
summarizes the Messenger application’s descriptor files.

Table 32-9 Messenger Application Descriptor Files

File

Description

Application.pcd

Package Configuration Descriptor that configures the
top-level component’ s deployment attributes.

package.tpd

Top-level Package Descriptor that represents the
application.

Application.cdp

Component Deployment Plan that maps component
instances to logical nodes.

Domain.cdd

Component Domain Descriptor that describes the target
deployment environment.

ApplicationNodeMap.dat

Text file that maps each logical node to a physical
component server object.

The following sections discusses the execution of the Messenger application.

Building the Messenger Application

The Messenger application consists of three component types. Messenger,
Receiver, and Administrator. Each component type is composed of three
libraries: astub library, a servant library, and an executor library. We manage

ociweb.com

1327

CIAO and CCM

these libraries with three Make Project Creator (MPC) files, one file for each
component type.

< Define an IDL interface for each component and its facets
< Implement each component and its facets

< Define each component’s composition

¢ Implement a C++ executor for each component and facet
< Describe the application’s deployment

< Describe each component’s libraries and ports

< Connect component instances through their ports

< Deploy each component into a component container

(Build the application>
< Run the application

Figure 32-31 Road Map

The exampl€e' s source code, build files, and XML descriptor files aresin the
$CIAO ROOT/examples/DevGuideExamples/Messenger directory.

32.2.6.1 Setting Up Your Environment
There are several environment variables used by ACE, TAO, and CIAO
during both the compilation and execution of applications. Information about
ACE and TAO environment variablesisavailable at 3.2. CIAO’ senvironment
variables are described below. Syntax for Windows is shown in parentheses.
e CIAO ROOT
The base path for all CIAO-related code, normally $TAO ROOT/CIAO
(3TAO_ROOT%\CIAO).
® XERCESCROOT
The base directory of the Xerces C++ installation. See 32.3.1 and 32.3.2
for more information on Xerces C++.
* Library Path
The library path must include the directory containing the Xerces C++
dynamic libraries, $XERCESCROOT /bin ($XERCESCROOT%\bin). You
should add thislocation to your LD_LIBRARY PATH environment variable
1328

[
ociweb.com I

OBJECT COMPUTING, INC.

32.2 Example - The Messenger Application

32.2.6.2

or its equivalent. (On Windows, add this directory to your PATH so DLLs
can be located at run time.)

Creating the Messenger’s MPC File

The CIAO source tree contains agenerate component mpc.pl script to
generate the beginning of a component’s MPC file.

UNIX and UNIX-like Systems
The script is $CIAO_ROOT/bin/generate component mpc.pl

Windows Systems
The script is $CIAO _ROOT%\bin\generate component mpc.pl.

General Usage
The general usage of the generate component mpc.pl scriptisas
follows:

$CIAO_ROOT/bin/generate component mpc.pl <component name>

For example:

$CIAO_ROOT/bin/generate component mpc.pl Messenger

creates an MPC file called Messenger .mpc.

The script also prints the following text to indicate that it generated the export
header file for each Messenger library:

The following commands have beenexecuted:
generate_export_file.pl MESSENGER_STUB > Messenger stub_export.h
generate export file.pl MESSENGER SVNT > Messenger svnt export.h
generate export file.pl MESSENGER _EXEC > Messenger exec_export.h

We deploy our component executors in dynamic libraries. On Windows
platforms, classes exported from a dynamic library must define an export
macro. On UNIX-like platforms, the export macros define to nothing.
However, the 4.x versions of the gcc compiler support the C++ export
keyword, which may reduce code size by reducing the number of exported
symbols. In either case, the export macros enable cross-platform devel opment.

See 5.12 for more information on the generate export file.pl script.

|
@ I ociweb.com 1329

OBJECT COMPUTING, INC.

CIAO and CCM

The Messenger’s MPC File
The generated MPC fileis asfollows:

project (Messenger stub): ccm stub {

sharedname = Messenger_stub

idlflags += -Wb,stub export macro=MESSENGER STUB Export
idlflags += -Wb,stub_export include=Messenger stub export.h
idlflags += -Wb,skel_export_macro=MESSENGER_SVNT Export
idlflags += -Wb,skel export include=Messenger svnt export.h
dynamicflags = MESSENGER STUB BUILD DLL

IDL Files {
Messenger.idl

}

Source Files {
MessengerC. cpp
}
}

project (Messenger svnt) : ciao_servant {
after += Messenger stub
sharedname = Messenger_ svnt
libs += Messenger stub
idlflags += -Wb,export macro=MESSENGER SVNT Export
idlflags += -Wb,export_include=Messenger_ svnt_ export.h

dynamicflags = MESSENGER SVNT BUILD DLL

CIDL Files {
Messenger.cidl

}

IDL Files {
MessengerE. idl
}

Source Files {
MessengerEC. cpp
MessengersS.cpp
Messenger svnt.cpp

}

}

project (Messenger exec) : ciao_executor {
after += Messenger_svnt
sharedname = Messenger exec
libs += Messenger stub Messenger svnt
idlflags += -Wb,export macro=MESSENGER EXEC Export

1330

[
ociweb.com I

OBJECT COMPUTING, INC.

32.2 Example - The Messenger Application

idlflags += -Wb,export include=Messenger exec_export.h
dynamicflags = MESSENGER_EXEC_BUILD_ DLL
IDL Files {

}

Source Files {
Messenger_exec.cpp

}
}

That's areasonable start towards our final Messenger .mpc file. We edit the
file as follows, with comments interspersed. First, we discuss the project for
the Messenger’s stub library, Messenger stub.

project (Messenger stub): cem stub

Because we deploy the application using the DANCE facility, we change the
ciao client base project dependency to ciao client dnc.

sharedname = Messenger stub

idlflags += -Wb,stub_export macro=MESSENGER STUB_ Export
idlflags += -Wb,stub_export_include=Messenger stub_export.h
idlflags += -Wb,skel export macro=MESSENGER SVNT Export
idlflags += -Wb,skel export_ include=Messenger svnt_export.h
dynamicflags = MESSENGER_STUB BUILD DLL

We make no changes to the sharedname, id1flags, or dynamicflags.

IDL_Files {
Runnable.idl
Publication.idl
Message.idl
History.idl
Messenger.idl

The Messenger component’ s interfaces, event types, and component
declaration are spread across five IDL files. The

|
@ I ociweb.com 1331

OBJECT COMPUTING, INC.

CIAO and CCM

generate component mpc.pl script does not know this. Thus, we add
four IDL filesto the IDL._Files section.

Source Files {
RunnableC.cpp
PublicationC.cpp
MessageC.cpp
HistoryC.cpp
MessengerC. cpp

}

We add stub source code files for each of the Messenger component’s IDL
files.

}

Next, we discuss the project for the Messenger’ s servant library,
Messenger svnt.

project (Messenger svnt): ciao_servant dnc {

Again, because we deploy the application using the DANCE facility, we
changethe ciao servant base project dependency to ciao servant dnc.

after += Messenger_stub

sharedname = Messenger_svnt

libs += Messenger stub

idlflags += -Wb,export macro=MESSENGER_SVNT Export
idlflags += -Wb,export_include=Messenger svnt_export.h
dynamicflags = MESSENGER SVNT BUILD DLL

We make no changesto the after, sharedname, libs, id1flags, or
dynamicflags.

// project must be a ciao servant or ciao_server to use CIDL files
CIDL Files {
Messenger.cidl

|
1332 ociweb.com @ I

OBJECT COMPUTING, INC.

32.2 Example - The Messenger Application

}

IDL_Files {
MessengerE. idl

}
We make no changesto the CIDL Files or the IDL Files.

Source Files {
RunnableS.cpp
PublicationS.cpp
MessageS.cpp
HistoryS.cpp
MessengerS.cpp
MessengerEC. cpp
Messenger svnt.cpp

}
We add skeleton source code files for the Messenger component’s IDL files.
}

Finally, we discuss the project for the Messenger’ s executor library,
Messenger exec.

project (Messenger exec): ciao component dnc {

Once more, because we deploy the application using the DANCE facility, we
changethe ciao_component base project dependency to
ciao component dnc.

after += Messenger_ svnt

sharedname = Messenger exec

libs += Messenger stub Messenger svnt

idlflags += -Wb,export macro=MESSENGER EXEC Export
idlflags += -Wb,export_include=Messenger exec_ export.h
dynamicflags = MESSENGER_EXEC BUILD DLL

|
@ I ociweb.com 1333

OBJECT COMPUTING, INC.

CIAO and CCM

We make no changesto the after, sharedname, libs, id1flags, or
dynamicflags.

IDL Files {

}

Source Files {
MessengerES.cpp
Messenger exec_i.cpp
Publication exec i.cpp
History exec i.cpp
Runnable exec i.cpp

}

We make quite afew changes to the executor library’s Source Files
section. First, we add MessengerES . cpp, the Messenger executor’ s skeleton
file. ThenwechangeMessenger exec.cpptoMessenger exec i.cppto
reflect the fact that we' ve renamed the CIDL-generated executor
implementation file as described in 32.2.3. Finally, we add the facet executor
implementation files.

}

32.2.6.3 Creating the Administrator’s and Receiver’s MPC Files
The Receiver’sand Administrator's MPC files are similar to the Messenger's.
We generate each file using the generate_component_mpc.pl script.
generate component mpc.pl Receiver
generate_component mpc.pl Administrator
We modify the generated MPC files by hand, just aswe did for the Messenger.
WEe'll examine the modified Receiver.mpc file and highlight significant
differences between Receiver .mpc and Messenger . mpc. Comments are
interspersed. First, we discuss the project for the Receiver’s stub library,
Receiver stub.
project (Receiver stub): ccm stub {
after += Messenger stub
sharedname = Receiver stub
libs += Messenger stub
1334

[
ociweb.com I

OBJECT COMPUTING, INC.

32.2 Example - The Messenger Application

The Receiver’ s stub library is dependent on the Messenger’ s stub library and
must be built after the Messenger’ s stub library.

idlflags += -Wb,stub export macro=RECEIVER STUB Export
idlflags += -Wb,stub export include=Receiver stub export.h
idlflags += -Wb,skel_ export macro=RECEIVER_ SVNT_Export
idlflags += -Wb,skel export include=Receiver svnt export.h
dynamicflags = RECEIVER STUB BUILD DLL

IDL Files {
Receiver.idl

}

Source Files {
ReceiverC.cpp

}
}

Next, we discuss the project for the Receiver’s servant library,
Receiver svnt.

project (Receiver svnt): ciao servant dnc {

after += Receiver stub Messenger svnt
sharedname = Receiver svnt
libs += Receiver_stub Messenger stub Messenger svnt

The Receiver’s servant library is dependent on the Messenger’s stub and
servant libraries and must be built after the Messenger’ s servant library.

idlflags += -Wb,export macro=RECEIVER SVNT Export
idlflags += -Wb,export include=Receiver svnt export.h
dynamicflags = RECEIVER SVNT BUILD DLL

CIDL Files {
Receiver.cidl

}

IDL Files {
ReceiverE.idl

}

Source Files {
ReceiverS.cpp
ReceiverEC.cpp
Receiver svnt.cpp

|
@ I ociweb.com 1335

OBJECT COMPUTING, INC.

CIAO and CCM

}
}

Finally, we discuss the project for the Receiver’s executor library,
Receiver exec.

project (Receiver exec): ciao_component dnc {

after += Receiver_ svnt
sharedname = Receiver_exec
libs += Receiver stub Receiver svnt Messenger stub

The Receiver’s executor library is dependent on the Messenger’ s stub library.

idlflags += -Wb,export macro=RECEIVER EXEC Export
idlflags += -Wb,export_include=Receiver exec_export.h
dynamicflags = RECEIVER_EXEC BUILD DLL

IDL Files {

}

Source Files {
ReceiverES.cpp
Receiver exec i.cpp

}

The Receiver’s executor library has just one executor implementation file.

}

The modified Administrator.mpc fileissimilar. The primary difference
between the Administrator component and the Receiver component is that the
Administrator is not an event consumer, and thus the Administrator’ s servant
library does not depend on the Messenger’s servant library.

32.2.6.4 Running MPC
Execute the Make Project Creator to generate the Messenger’ s build files for
your platform. For example:
UNIX and UNIX-like Systems
cd $CIAO_ROOT/examples/DevGuideExamples/Messenger
1336

[
ociweb.com I

OBJECT COMPUTING, INC.

32.2 Example - The Messenger Application

$ACE ROOT/bin/mwc.pl -type gnuace

Windows Systems

cd %CIAO _ROOT%\examples\DevGuideExamples\Messenger
perl $ACE _ROOT%\bin\mwc.pl -type vc71

See Chapter 4 for more information on MPC.

32.2.6.5 Building
Build the Messenger application using the target build environment.

32.2.7 Running the Messenger Application

Finally, we can execute the application.

s

Define an IDL interface for each component and its facets
< Implement each component and its facets
¢ Define each component’'s composition
¢ Implement a C++ executor for each component and facet
¢« Describe the application’s deployment
< Describe each component’s libraries and ports
¢« Connect component instances through their ports
< Deploy each component into a component container
¢ Build the application

(Run the application>

Figure 32-32 Road Map

|
@ I ociweb.com 1337

OBJECT COMPUTING, INC.

CIAO and CCM

Recall that we deploy the Messenger application on four nodes asillustrated in

the diagram.
<<execution environment>> <<execution environment>>
‘ApplicationServer Runnable :ApplicationServer
Q runnables
<<component>> <<Compo_nent>>
aMessenger Publication a.nAdmwstrator
:Messenger O content -Administrator
_/
History () Message : :
N <<execution environment>>

:ApplicationServer

message_consumer

<<component>>
firstReceiver

message_history ‘Receiver

<<execution environment>>
:ApplicationServer

message_consumer

<<component>>

) secondReceiver
message_history :Receiver

Figure 32-33 Messenger Deployment

Each component type -- the Messenger, Receiver, and Administrator --
consists of aset of dynamic libraries. We have not created any executabl es.
Deployment descriptor files, as described in 32.2.5, define how the component
instances are created and connected together and how those component
libraries are deployed onto physical nodes.

32.2.7.1 Setting Up Your Environment

Please see 32.2.6.1 for information on setting up the environment variables
required to execute a CIAO application.

|
1338 ociweb.com @ I

OBJECT COMPUTING, INC.

32.2 Example - The Messenger Application

32.2.7.2

32.2.7.3

DANCE Executables

CIAQO’ s Deployment And Configuration Engine (DANCE), which implements
the OMG “Deployment and Configuration of Component-based Distributed
Applications” specification (OMG Document ptc/03-07-08), contains a set of
executables to dynamically load component libraries, create component
instances, and make connections between them. The table summarizes the
DANCE executables that we' Il use to deploy the application. The executables
are described in more detail in 32.4.

Table 32-10 DANCE Executables

Name Description

dance_node_manager | A daemon process that launches component servers

ciao_componentserv
or The component server

dance execution ma| A Processthat maps component instances to component
nager servers

dance_repository m| A processthat parsesaset of deployment descriptors and sends
anager deployment information to the ExecutionManager

Deploying the Messenger with DANCE

First, we run four dance_node_manager daemon processes. In our example,
each Node Manager process executes on the localhost. The four processes
listen on ports 10000, 20000, 30000, and 40000, respectively. Each Node
Manager launches a Node Application process when an applicationis
deployed upon it.

$DANCE_ROOT/bin/dance node manager \
-ORBListenEndpoints iiop://localhost:10000 \
-s "$CIAO_ROOT/bin/ciao_componentserver"

$DANCE_ROOT/bin/dance node manager \
-ORBListenEndpoints iiop://localhost:20000 \
-s "$CIAO ROOT/bin/ciao_componentserver"

$DANCE_ROOT/bin/dance_node manager \
-ORBListenEndpoints iiop://localhost:30000 \
-s "$CIAO ROOT/bin/ciao_componentserver"

$DANCE_ROOT/bin/dance node manager \
-ORBListenEndpoints iiop://localhost:40000 \
-s "$CIAO_ROOT/bin/ciao_componentserver"

|
@ I ociweb.com 1339

OBJECT COMPUTING, INC.

CIAO and CCM

Then, we start an Execution Manager that reads the node map file
ApplicationNodeMap.dat and writesits own object referenceto afile
called em. ior. The Execution Manager executable must be run in the
directory containing the application’s deployment descriptors.

cd $CIAO_ROOT/examples/DevGuideExamples/Messenger/descriptors
$DANCE_ROOT/bin/dance execution manager \
-0 em.ior -i ApplicationNodeMap.dat

Finally, we start a Repository Manager that connects to the Execution
Manager and reads the application’s Top-level Package Descriptor and its
Component Deployment Plan. The Repository Manager executable must also
be run in the directory containing the application’s deployment descriptors.

cd $CIAO_ROOT/examples/DevGuideExamples/Messenger/descriptors
$DANCE_ROOT/bin/dance repository manager \
-p package.tpd -d Application.cdp -k file://em.ior

The Execution Manager deploys a component instance in each of the Node
Manager windows.

The Messenger does not begin publishing automatically. One of the Node
Manager windows contains the Administrator component instance. That
window displays the following menu:

What do you want to do to the Messenger(s)?
1. Start

2. Stop

3. Change Publication Period

4. Change Publication Text

Please enter a selection:

Use the menu to start and stop publishing and change attributes of the
publication. A more industrial-strength application might launch a GUI of
some kind. The Administrator’s menu illustrates that a component
implementation can contain user interface el ements.

32.2.7.4 Debugging
It can be a challenge to debug a component executor implementation.
Thorough unit testing uncovers many problems before the component istested
in deployment. However, it may be necessary to debug a component in its
component server process.

1340

[
ociweb.com I

OBJECT COMPUTING, INC.

32.3 Building CIAO

We launch a component executor in the debugger by changing the Node
Manager’ s launch command for its Node Application. It is easiest to illustrate
with an example.

UNIX and UNIX-like Systems

$DANCE_ROOT/bin/dance node manager
-ORBListenEndpoints iiop://localhost:10000
-d 180
-s "gdb --args $CIAO ROOT/bin/ciao_componentserver"

Windows Systems

$DANCE_ROOT%\bin\dance node manager.exe
-ORBListenEndpoints iiop://localhost:10000
-d 180
-s "devenv /debugexe %CIAO ROOT%\bin\ciao componentserver.exe"

The Node Manager’ slaunch command launches the component server process
in the debugger. The -d 180 command-line option delays the launching of the
NodeApplication process by 180 seconds, or three minutes. In that three
minutes you must set a breakpoint in your component executor to stop
program execution. Once a breakpoint is reached you may debug as usual.

32.3 Building CIAO

Before building CIAO, build the ACE and TAO libraries as described in
Chapter 2 and Appendix A.

CIAOQ requires three external libraries. Xerces C++; Boost; and Utility. The
DANCE deployment framework requires Xerces C++. The CIDL compiler
requires Boost and Utility. These build instructions describe how to obtain and
build those libraries. For more information, see

$CIAO ROOT/CIAO-INSTALL.html.

Building CIAO entails severa steps:
1. Build ACE and TAOQ, including the following targets:

ACE
ACEXML_Parser
TAO_IDL

|
@ I ociweb.com 1341

OBJECT COMPUTING, INC.

CIAO and CCM

32.3.1

TAO

IFR_Client
IORInterceptor
IORTable

Naming Service
RTCORBA
RTPortableServer
Valuetype
Security

Utils

Obtain and build the Xerces C++ library

Obtain and build the Boost library

Obtain the Utility library

Set up the build environment

Enable the CIDL compiler in MPC's global featuresfile.
Generate build fileswith MPC

Build CIAO’s CIDL compiler

Build CIAO’slibraries and DANCE executables

© © N UMW

Building CIAO with Visual C++

The CIAOQ libraries and DANCE executables can be built with either Visual
C++ 7.1/8/9. However, the CIDL compiler can only be built with Visual C++
7.1. This section contain directionsfor building CIAO and the CIDL compiler
with Visual C++ 7.1.

Obtain and Build the Xerces C++ Library

The source code for Xerces C++ can be obtained from
<http://xml.apache.org/xerces-c>. At publication time, the latest
version of Xerces C++ was version 2.6. Download and unzip the Xerces C++
2.6 source code. The remainder of this section assumes that Xerces C++ is
installed in adirectory called C: \xerces-c-src-2_6 0.

The Xerces C++ site also contains many prebuilt distributions of the Xerces
C++ library. If you find a binary distribution that matches your platform and
compiler then you can avoid building Xerces C++.

Set the XERCESCROOT environment variable to your root Xerces C++
directory, asfollows:

1342

[
ociweb.com I

OBJECT COMPUTING, INC.

32.3 Building CIAO

i

OBJECT COMPUTING, INC.

set XERCESCROOT=C:\xerces-c-src_2 6 0

Open the Visual Studio solution file called xerces-all.slninthe
$XERCESCROOT%\Projects\Win32\VC7\xerces-all directory. If Visua
Studio asksif you want to convert the projects to the current version of Visua
Studio, answer “yes”. If thereisaVisual Studio solution file for Visual
Studio .NET (Visual C++ 7.1), useit instead. Build the XercesLib target.

The Xerces C++ project does not install its include files and librariesin the
directories where CIAQO is expecting them. We manually rectify this. First, we
copy the Xerces C++ source filesto an include directory. This copies both
header and source files, but that is not a problem.

cd %$XERCESCROOT%
xcopy /E /I src include

Then, we create directories for the Xerces C++ libraries.

mkdir $XERCESCROOT%\1lib
mkdir %$XERCESCROOT%\bin

Finally, we copy the Xerces C++ libraries to the appropriate directories

cd %XERCESCROOT%\1ib
copy ..\Build\Win32\VC7\Debug\xerces-c 2D.lib
copy xerces-c_2D.lib xerces-cd.lib

cd %$XERCESCROOT%\bin
copy ..\Build\Win32\VC7\Debug\xerces-c_2 6D.dll

Obtain and Build the Boost library

CIAO'sCIDL compiler usesthe Boost regex and filesystem libraries and
the spirit parser framework. The spirit parser framework consistsonly of
header files.

CIAO’s Windows build requires Boost version 1.30.2. The Boost 1.30.2
source tree and the latest version of the Boost Jam build system can be
downloaded from the Boost web site, <http://www.boost .org>.

Install Boost 1.30.2 and the latest Boost Jam in the directories of your choice.
For this example, we assume that Boost 1.30.2 isinstalled in
C:\Boost-1.30.2 and Boost Jamisinstalled in C: \Boost -Jam.

ociweb.com 1343

CIAO and CCM

You can edit the Boost Jamfilein C: \Boost-1.30.2\Jamfile tolimit the
build to the filesystem and regex libraries. For example:

Boost Jamfile

project-root ;

please order by name to ease maintenance
#subinclude libs/date time/build ;
subinclude libs/filesystem/build ;
#subinclude libs/python/build ;

subinclude libs/regex/build ;

#subinclude libs/signals/build ;
#subinclude libs/test/build ;

#subinclude libs/thread/build ;

Build the Boost 1.30.2 regex and filesystem libraries with Boost Jam as
follows:

cd C:\Boost-1.30.2
vsvars32.bat
C:\Boost-Jam\bjam.exe "-sTOOLS=vc7.1"

Create adirectory called C: \Boost-1.30.2\11ib. Copy the regex and
filesystem library filesto C: \Boost-1.30.2\1ib and rename them so
CIACO’s build can find them.

mkdir C:\Boost-1.30.2\1ib
cd C:\Boost-1.30.2\1ib

copy
C:\Boost-1.30.2\1ibs\regex\build\bin\libboost regex.lib\ve7.1\debug\runtime-
link-dynamic\libboost regex debug.lib

copy
C:\Boost-1.30.2\1ibs\filesystem\build\bin\libboost filesystem.lib\ve7.1\debu
g\runtime-link-dynamic\libboost filesystem.lib

rename libboost regex debug.lib boost_ regex debug.lib
rename libboost filesystem.lib boost filesystem debug.lib

Obtain the Utility Library
CIAO’s CIDL compiler usesthe Utility library. Download the Utility 1.2.2
library from the following location:

http://www.dre.vanderbilt.edu/cidlc/prerequisites/Utility-1.2.2.tar.bz2

|
1344 ociweb.com @ I

OBJECT COMPUTING, INC.

32.3 Building CIAO

i

OBJECT COMPUTING, INC.

There is nothing to build. The remaining instructions assume that the Utility
library has been unzipped into adirectory called C:\Utility-1.2.2.

Set Up the Build Environment

Set CIAO_ROOT, XERCESCROOT, and UTILITY ROOT environment variables
and update your PATH. Setting CIAO ROOT is not strictly necessary on
Windows, but it makes using CIAO more convenient. Setting XERCESCROOT
and UTILITY ROOT isnecessary.

For example:

set CIAO ROOT=%TAO ROOT%\CIAO

set XERCESCROOT=C:\xerces-c-src_2 6 0

set UTILITY ROOT=C:\Utility-1.2.2

set PATH=%PATH%; $XERCESCROOT%\bin;$CIAO ROOT%\bin

The $XERCESCROOT% \bin directory contains the XercesDLLs. The
$CIAO ROOT%\bin directory containsthe CIAO CIDL compiler.

Update theinclude and library directoriesin Visua Studio. Add the Boost root
directory to Visual Studio’sinclude directories:

C:\Boost-1.30.2

Add the Boost 11b directory that we created to Visual Studio’slibrary
directories:

C:\Boost-1.30.2\1ib

Enable CIAO and the CIDL Compiler in MPC'’s Default Features File
Create or edit the
$ACE_ROOT%\bin\MakeProjectCreator\config\default.features
file and enable CIAO and the CIDL compiler.

1
1

ciao
cidl

Generate Build Files with MPC
Generate CIAO’s Visual Studio project files with MPC:

cd $CIAO ROOTS

ociweb.com 1345

CIAO and CCM

32.3.2

perl $ACE_ROOT%\bin\mwc.pl -recurse -type vc71

This command generates a Visual Studio solution file for each MPC
workspace file found in the build tree.

Build CIAO’s CIDL Compiler
Build CIAO’s CIDL compiler by using the Visual Studio workspace
$CIAO ROOT%\CIDLC\CIDLC.sln.

Y ou may use the Batch Build command in Visual Studio to build the CIDL
compiler’slibraries and executables. Alternatively, you may find that it is
easier to build the libraries and executables from the command line, as
follows:

cd %CIAOiROOT%\CIDLC
devenv CIDLC.sln /build debug

Build CIAQO’s Libraries and DAnCE Executables
Build CIAO’slibraries and DANCE executables by using the Visual Studio
workspace $CIAO ROOT%\CIAO.sln.

Y ou may use the Batch Build command in Visual Studio to build the libraries
and configurations in which you are interested. Alternatively, you may find
that it iseasier to build just the configurationsin which you are interested from
the command line. For example:

cd $CIAO_ROOT%
devenv CIAO.sln /build debug

Building CIAO on UNIX with GNU Make and gcc
CIAO may be built with gcc versions 3.3 and later.

Obtain and Build the Xerces C++ Library

The source code for Xerces C++ can be obtained from
<http://xml.apache.org/xerces-c>. At publication time, the latest
version of Xerces C++isversion 2.6. Download and unzip the Xerces C++ 2.6
source code. The remainder of this section assumes that Xerces C++ is
installed in adirectory called $SHOME/xerces-c-src-2_6 0.

1346

[
ociweb.com I

OBJECT COMPUTING, INC.

32.3 Building CIAO

i

OBJECT COMPUTING, INC.

The Xerces C++ site also contains many prebuilt distributions of the Xerces
C++ library. If you find a binary distribution that matches your platform and
compiler then you can avoid building Xerces C++.

Set the XERCESCROOT environment variable to your root Xerces C++
directory, asfollows:

export XERCESCROOT=$HOME/xerces-c-src_2 6 0

Build the Xerces C++ libraries as follows:

cd $XERCESCROOT/src/xercesc

autoconf

./runConfigure -plinux -cgcc -xg++ -minmem -nsocket -tnative -rpthread
make

This execution of the Xerces C++ runConfigure script command uses the
gcc compiler, targets the 1inux platform, and builds with pthreads. For
more information, type enter the following at the command line:

./runConfigure -help

The Xerces C++ project does not install itsinclude filesin the directories
where CIAQ is expecting them. We manually rectify this by creating a
symbolic link to an include directory.

cd $XERCESCROOT
1n -s src include

Obtain and Build the Boost library

CIAO'sCIDL compiler usesthe Boost regex and filesysten libraries and
the spirit parser framework. The spirit parser framework consistsonly of
header files.

CIAO’'sUNIX versions can use the latest version of Boost, which isversion
1.32 at publication time. Using alater version of Boost allows more flexibility
in the choice of compiler version. The Boost source tree and the latest version
of the Boost Jam build system can be downloaded from the Boost web site,
<http://www.boost.org>.

ociweb.com 1347

CIAO and CCM

Install Boost 1.32 and the latest Boost Jam in the directories of your choice.
For this example, we assume that Boost 1.32 isinstaled in
$HOME/boost 1 32 0 and Boost Jamisinstalled in $HOME /boost -jam.

Build the Boost 1.32 libraries with Boost Jam as follows:

cd $HOME/boost 1 32 0
$HOME/boost-jam/bjam -sTOOLS=gcc

Obtain the Utility Library
CIAO’s CIDL compiler usesthe Utility library. Download the Utility 1.2.2
library from the following location:

http://www.dre.vanderbilt.edu/cidlc/prerequisites/Utility-1.2.2.tar.bz2

Thereis nothing to build. The remaining instructions assume that the Utility
library has been unzipped into adirectory called SHOME /Utility-1.2.2.

Set Up the Build Environment

Set CIAO _ROOT, XERCESCROOT, UTILITY ROOT, BOOST ROOT,

BOOST INCLUDE, and BOOST LIB environment variablesand update your
PATH. Setting CIAO_ROOT is not strictly necessary on Windows, but it makes
using CIAO more convenient. Setting XERCESCROOT, UTILITY ROOT, and
the Boost environment variables is necessary.

For example:

export CIAO ROOT=$TAO ROOT/CIAO

export XERCESCROOT=$HOME/xerces-c-src_2 6 0

export UTILITY ROOT=$HOME/Utility-1.2.2

export BOOST ROOT=$HOME/boost_1 32 0

export BOOST INCLUDE=$BOOST ROOT

export BOOST LIB=$BOOST ROOT/libs

export LD LIBRARY PATH=SLD LIBRARY PATH:S$XERCESCROOT/lib

Enable CIAO and the CIDL Compiler in MPC's Default Features File
Create or edit the
SACE_ROOT/bin/MakeProjectCreator/config/default.features
file and enable CIAO and the CIDL compiler.

1
1

ciao
cidl

1348

[
ociweb.com I

OBJECT COMPUTING, INC.

32.4 DAnCE Executable Reference

324

Generate Build Files with MPC
Generate CIAO's GNU Makefiles with MPC:

cd $CIAO_ROOT
$ACE_ROOT/bin/mwc.pl -recurse -type gnuace

Build CIAQO’s CIDL Compiler
Build CIAO's CIDL compiler by executing make inthe $SCIAO ROOT/CIDLC
directory.

cd $CIAO_ROOT/CIDLC
make ciao=1 cidl=1

Build CIAO's Libraries and DAnCE Executables

Build CIAO's libraries and DANCE executables by executing make in the
$CIAO ROOT/ccm, $CIAO ROOT/ciao, and $CIAO ROOT/ciao
directories.

cd $CIAO_ROOT/ccm
make ciao=1 cidl=1

cd $CIAO_ROOT/ciao
make ciao=1 cidl=1

cd $CIAO_ROOT/DAHCE
make ciao=1 cidl=1

DANCE Executable Reference

i

OBJECT COMPUTING, INC.

CIA O’ s Deployment And Configuration Engine (DANCE), which implements
the OMG “Deployment and Configuration of Component-based Distributed
Applications” specification (OMG Document ptc/03-07-08), contains a set of
executables to dynamically load component libraries, create component
instances, and make connections between them.

The DANCE executables are described in the following subsections.

ociweb.com 1349

CIAO and CCM

324.1

32.4.2

Overview

The DANCE executables are as follows:

UNIX and UNIX-like Systems
Table 32-11 DAnCE Executables

Name

Path

dance_node_manager

SDANCE_ROOT/bin/dance node manager

ciao_componentserv
er

$CIAO_ROOT/bin/ciao_componentserver

dance_execution ma
nager

$DANCE ROOT/bin/dance execution manager

dance_repository m
anager

$DANCE ROOT/bin/dance_repository manager

Windows Systems
Table 32-12 DANCE Executables

Name

Path

dance node manager

$DANCE ROOT%\bin\dance node manager

ciao_componentserv
er

$CIAO_ROOT%\bin\ciao_componentserver

dance_execution_ma
nager

$DANCE ROOT%\bin\dance execution manager

dance_repository m
anager

$DANCE_ROOT%\bin\dance repository manager

Node Manager and Node Application
The dance node manager iSadaemon process that launches
ciao componentserver processes asdirected by the

dance execution manager. Each object referencein the Messenger's
ApplicationNodeMap.dat configuration file refersto aNodeManager
object in the NodeManager daemon process. Recall that the Messenger’s

ApplicationNodeMap.dat fileisasfollows:

Administrator Node corbaloc:iiop:localhost:10000/NodeManager
First Receiver Node corbaloc:iiop:localhost:20000/NodeManager
Second_Receiver Node corbaloc:iiop:localhost:30000/NodeManager

Messenger Node

The node map file expects to find four different NodeManager objects on the
localhost, each in an ORB listening on a different port. Presumably, each

corbaloc:iiop:localhost:40000/NodeManager

1350

ociweb.com @

32.4 DAnCE Executable Reference

NodeManager object livesin a different process. Each NodeManager
launchesaciao compontnserver process asacontainer for the component
instance or instances mapped to it. For example:

$DANCE ROOT/bin/dance node manager \
-ORBListenEndpoints iiop://localhost:10000 \
-s "$CIAO_ROOT/bin/ciao_componentserver"

The dance node manager executable recognizes the following
command-line options

Table 32-13 dance_node_manager Command-Line Options

Option Description Default

Componentserver executable
to be launched. REQUIRED

Export theNodeManager IOR to
-0 ior file afile. Supersedes registration off
with Naming Service.

-s server executable

Delay spawning of the
NodeApplication by 0
spawn_delay seconds. This can
be helpful for debugging.

Register the NodeManager
with the Naming Service in the
root naming context with the off
name retrieved by calling

ACE _0OS::hostname().
Superseded by export of IOR file.

-2 Display usage information. n/a

-d spawn_delay

32.4.3 Execution Manager
Thedance execution manager readsthe node map file and maps each
component instance to the dance _node manager responsible for it. For
example:

$DANCE_ROOT/bin/dance_execution Manager \
-0 em.ior -i ApplicationNodeMap.dat

|
@ I ociweb.com 1351

OBJECT COMPUTING, INC.

CIAO and CCM

32.4.4

32.5

Thedance execution manager executable recognizes the following
command-line options

Table 32-14 Execution Manager Command-Line Options

Option Description Default

-i node map file Path of the node map file. deployment .dat

Export the Execut ionManager
-0 ior file IOR to afile. Supersedesregistration | off
with Naming Service.

Register the Execut ionManager
with the Naming Service in the root
-n naming context with the name off
ExecutionManager. Superseded
by export of IOR file.

-2 Display usage information. n/a

Repository Manager

TheRepositoryManager parsesthe XML Deployment and Configuration
files and passes the relevant deployment information to the

dance execution manager. For example:

$DANCE_ROOT/bin/dance repository manager \
-p package.tpd -d Application.cdp -k file://em.ior

TheRepositoryManager executable recognizes the following
command-line options

Table 32-15 Repository Manager Command-Line Options

Option Description Default

-k execution manager ior | The Execution Manager'slOR. | file://exec_mgr.ior

The Top-level Package
Descriptor's URL

The Component Deployment
Descriptor’s URL REQUIRED

-p package url REQUIRED

-d plan url

CIDL Compiler Reference

A CIDL composition embedded in aCIDL file describes a component
implementation. CIAO includesaCIDL compiler, cidlc, that generateslocal

1352

[
ociweb.com I

OBJECT COMPUTING, INC.

32.5 CIDL Compiler Reference

Note

325.1

32.5.2

IDL interfaces for component homes and executors and C++ classes for
servants and default executor implementations.

The generated C++ code isonly usable by CIAO. The C++ output from CIDL
compilers cannot be interchanged among CORBA implementations. However,
the code generated by CIAO’s CIDL compiler is platform-independent,
making it possible to use CIAO in cross-compilation environments.

CIAO's CIDL compiler maps CIDL filesto equivalent IDL and C++
according to the CORBA Component Model specification.

CIDL Executables

UNIX and UNIX-like Systems
The CIDL compiler executable is SCIAO_ROOT/bin/cidlc.

Windows Systems
The CIDL compiler executableis $CIAO_ROOT%\bin\cidlc.exe.

General Usage
The genera usage of the CIAO CIDL compiler is asfollows:

cidlc <options> -- CIDL-file

The CIDL file name must be listed after the "--", which is listed after the
options. For example:

cidlc -I . -I $CIAO_ROOT/ccm -I $CIAO_ROOT/ciao -I $TAO ROOT \
-I $TAO ROOT/tao -I $TAO ROOT/orbsvcs -- Messenger.cidl

Output Files Generated

The CIDL compiler generates three filesfor each CIDL file. One of thesefiles
isan IDL2 file containing the component executor’s local IDL2 interfaces.
The component developer compilesthat file withthe TAO IDL compiler. The
remaining two files are C++ files containing the component servant’s class
definition and implementation. The generation of these files ensures that the

|
@ I ociweb.com 1353

OBJECT COMPUTING, INC.

CIAO and CCM

generated code is portable and optimized for awide variety of C++ compilers.
The diagram illustrates the generated files.

IDL File

Messenger.idl CIDL File

I Messenger.cidl l

Compile IDL

MessengerC.h MessengerS.h

Compile CIDL
MessengerC.cpp| | MessengerS.cpp

Messenger Messenger
Stub Skeleton

Messenger_exec.h,
Messenger_exec.cpp

IDL File,
Executor
Interfaces

\
MessengerE.idl

(Optional)
Default Executor
Implementation(s)

Messenger_svnt.h,
Messenger_svnt.cpp

Compile IDL

Servants

Msxs:g:]t%fr MessengerEC.h, M;f;celj‘t%?r MessengerEC.h,
Stub MessengerEC.cpp Skeleton MessengerEC.cpp

Figure 32-34: Compiling a CIDL File

For aCIDL file named Messenger.cidl, running the command

cidle -I . -I $CIAO ROOT/ccm -I $CIAO ROOT/ciao -I $TAO _ROOT \
-I $TAO ROOT/tao -I $TAO ROOT/orbsvcs -- Messenger.cidl

|
1354 ociweb.com @ I

OBJECT COMPUTING, INC.

32.5 CIDL Compiler Reference

32.5.3

32.5.4

i

OBJECT COMPUTING, INC.

generates the following files (we show how to customize these names later):
Table 32-16 IDL and C++ Files Generated

File Name Description

IDL2 for the component executor, to be run through the

M E.idl] i
essengerE.id tao_idl compiler.

Messenger_svnt.h Component and facet servant class definition.

Messenger_svnt.cpp Component and facet servant class implementations.

Using CIDL Compiler Options
We discuss CIDL compiler command line options in 32.5.4 through 32.5.9.
To see acomplete list of the CIDL compiler’s options, enter the following:

cidlc --help

In addition to the CIDL compiler options listed by the - -help argument, the
CIDL compiler also recognizes the - I preprocessor argument for specifying
an element of the include path.

Preprocessing Options

The CIDL compiler does not run the full C preprocessor. It recognizes only
the-I include path preprocessor command-lineoption andthe #include
preprocessor directive. All other preprocessor directives are ignored.

Each CIDL file must be compiled with, at a minimum, the following include
path:

-I $CIAO_ROOT/cecm -I $CIAO ROOT/ciao -I $TAO _ROOT -I $TAO ROOT/tao -I
$TAO_ROOT/orbsvcs

Each CIDL fileindirectly includes a standard IDL file called
Components. idl, which in turn includes several other IDL files.

The table provides details of the preprocessing options.
Table 32-17 Preprocessing Options

Option Description Default
 oreorocess-only | RUN the preprocessor onthe IDL file, but | generate IDL and
prep Y| do not generate any IDL or C++ code. C++ code
ociweb.com 1355

CIAO and CCM

Table 32-17 Preprocessing Options

Option Description Default
, Add include path tothelist of paths
-1 include-path | gonrched for include files. none

32.5.5 General Options
The CIDL compiler has an option that allows you to turn on a verbose mode
that displays detailed information about the CIDL file compilation steps.
There are also two options for displaying usage information. The options are
summarized in the table.
Table 32-18 General CIDLC Options
Option Description Default
--trace-semantic-actions | TUrn on verbose mode. off
--help Output usage information to stderr. n/a
help-html 8u;pgtéteurs]?geinformation inHTML format |
32.5.6 Servant File Options
The CIDL compiler generates a complete servant class implementation for
each component and each facet. The component devel oper has some control
over the servant’ s usage of event type factories and the names of the generated
files.
The table summarizes the servant-related CIDL compiler options.
Table 32-19 Servant File Options
Option Description Default
Suppress automatic registration of a :
value type factory for each event type. gf\];émg?m neg
By default, avaluetype factory is factor igp
--suppress-register-fact automatically registered for each event autom)gticall
ory type. If factory registration is registered fo)r/
suppressed, then the devel oper must e?a%h event
manually register avalue type factory tvpe
for each event type. yp
, , Use this suffix instead of the default to
_osynt-hdr-filessuffix | congtruct the name of the servant's | _svnt.h
header file.
1356 ociweb.com @

OBJECT COMPUTING, INC.

32.5 CIDL Compiler Reference

i

OBJECT COMPUTING, INC.

Table 32-19 Servant File Options

Option Description Default
--svnt-hdr-file-regex Usethisregular expression to construct na
regex the name of the servant’s header file

, , Use this suffix instead of the default to
—-svat-src-file-suffix | congtruct the name of the servant's svnt.cpp
suffix 7 _

sourcefile.

--svnt-src-file-regex Usethisregular expression to construct na
regex the name of the servant’s source file
--svnt-export-macro Replace the servant’ s default export
macro macro with this export macro see below
--svnt-export-include Replace the servant’ s default export
Fite include file with this file see below

The CIDL compiler assumes that the servant is part of adynamic library. On
Windows platforms, classes exported from dynamic libraries must define an
export macro. On UNIX-like platforms, the export macros define to nothing.
However, future versions of the gcc compiler support the C++ export
keyword, which may reduce code size by reducing the number of exported
symbols. In either case, the export macros enable cross-platform devel opment.

The CIDL compiler assumes that a component servant’s export macro is
called <COMPONENT>_ SVNT Export and that the macro is defined in aheader
filecalled <Component> svnt export .h. For example, the Messenger
component’ s servant export macro is assumed to be

MESSENGER_SVNT_Export

and it is assumed to be defined in a C++ header file called

Messenger_svnt_export.h

If that is not the case, then use the - - svnt -export -macro command-line
argument to indicate the correct name of the export macro and the
--gvnt-export-include command-line argument to indicate the correct
name of the export header file.

See 32.2.6, “Building the Messenger Application,” for more information on
component export macros.

ociweb.com 1357

CIAO and CCM

32.5.7

32.5.8

Note

Local Executor File Options

The CIDL compiler generates an IDL file containing the component
implementation’s local executor interfaces. The component devel oper
implements the component and its facets by implementing these local
executor interfaces.

The table summarizes the executor-related CIDL compiler options.
Table 32-20 Local Executor File Options

Option Description Default

--lem-file-suffix suffix | SUffix for the generated executor IDL file. | E

Regular expression to use when
--lem-file-regex regex | constructing the name of thelocal executor | n/a
IDL file.

Force generation of local executor
mapping for all IDL types, whether used
by the composition or not. By default, the off
CIDL compiler generates local executor
interfaces only for those components used
by the composition.

--lem-force-all

Starter Executor Implementation File Options

The CIDL compiler can generate a default executor implementation for each
component and facet. These default executor implementation files contain
empty C++ member function definitions that you fill in with your
implementation code. This can be agreat time saver.

Running the CIDL compiler with the starter implementation options
overwrites any existing implementation files of the same names. Any
modifications will be lost unless you rename the starter implementation files
after they are generated (recommended).

The table summarizes the implementation-related CIDL compiler options.
Table 32-21 Executor Implementation File Options

Option Description Default

Generate a default executor
--gen-exec-impl implementation class for each off

1358

component and facet.
||
ociweb.com @ I

OBJECT COMPUTING, INC.

32.5 CIDL Compiler Reference

i

OBJECT COMPUTING, INC.

Table 32-21 Executor Implementation File Options

Option Description Default
, , Use this suffix instead of the default to
_-execthdr-filessuffix | congtruct the name of the default _exec.h

executor implementation’s header file.

, Use thisregular expression to construct
pacrecthr-fitesresex | the name of the default executor na
implementation’s header file.

, , Use this suffix instead of the default to
_-exec-sre-filessuffix | congtruct the name of the default _exec.cpp
executor implementation’s source file.

i1 Use this regular expression to construct
;é;’e‘ff'src‘ Le-regex the name of the default executor n/a
implementation’s sourcefile.

Replace the default executor
--Sxec-export-macro implementation’s default export macro | see below
with this export macro.

, Replace the default executor
_-exec-export-include | jmplementation’s default export include | see below

file filethisfile.

Y ou are strongly advised to rename the generated default executor
implementation files before modifying them. Otherwise, the CIDL compiler
will likely overwrite your changes. For example, rename

Messenger exec.handMessenger exec.cpptOMessenger exec i.h
and Messenger exec_1i.cpp.

The CIDL compiler assumes that the executor implementation is part of a
dynamic library. On Windows platforms, classes exported from a dynamic
library must define an export macro.

The CIDL compiler assumes that a component executor’ s export macro is
called <COMPONENT>_ EXEC Export and that the macro is defined in aheader
filecalled <Component> exec_export .h. For example, the Messenger
component’ s executor export macro is assumed to be

MESSENGER_EXEC_Export

and it is assumed to be defined in a C++ header file called

Messenger exec_export.h

ociweb.com 1359

CIAO and CCM

32.5.9

32.6

If that is not the case, then use the - -exec-export -macro command-line
argument to indicate the correct name of the export macro and the

- -exec-export -include command-line argument to indicate the correct
name of the export header file.

Descriptor File Options

The CIDL compiler generates a CORBA Component Descriptor for each
component. However, the generated descriptor fileis not usable to deploy a
CCM application using CIAO’s DANCE facility. The generated descriptor file
is formatted in accordance with the deprecated “ Packaging and Deployment”
chapter of the OMG CORBA Component Model specification (OMG
Document formal/02-06-65) rather than the updated OM G “ Deployment and
Configuration of Component-based Distributed Applications’ specification
(OMG Document ptc/03-07-08). Thus, we ignore the generated CORBA
Component Descriptor filesin our deployment.

The table summarizes the descriptor-related CIDL compiler options:
Table 32-22 Descriptor File Options

Option Description Default

--desc-file-suffix Use this suffix instead of the default to

suffix construct the name of the descriptor file.| - ¢4

Use this regular expression to construct

the name of the descriptor file Wa

--desc-file-regex regex

IDL3-to-IDL2 Compiler Reference

Note

CIAO includes an IDL3-to-IDL 2 compiler that generates | DL 2-compatible
interfaces for ORB implementations that do not recognize IDL 3 keywords
such as“component” and “provides”. Thisenablesaclient developed with
anon-CCM-aware ORB to communicate with a CCM component. For
example, a Java client built with an ORB such as JacORB can use CIAO’s
IDL3-to-IDL 2 output files as its interface to the Messenger component.
Simply compile the Messenger’s IDL 3 fileswith CIAO's IDL3-to-IDL 2
compiler, and then compile the IDL 2 output with JacORB’s IDL compiler.

The generated IDL2 code is usable by any ORB.

1360

[
ociweb.com I

OBJECT COMPUTING, INC.

32.6 IDL3-to-IDL2 Compiler Reference

32.6.1

32.6.2

i

OBJECT COMPUTING, INC.

CIAO'sIDL3-to-1IDL2 compiler maps IDL 3 filesto equivalent IDL2
according to the Equivalent IDL sections of the CORBA Component M odel
specification.

For an example of using the IDL 3-to-IDL 2 compiler, please see the
Administrator Client IDL2.mpc projectinthe
$CIAO ROOT/examples/DevGuideExamples/Messenger directory.

IDL3-to-IDL2 Source Code

The source code for the IDL3-to-IDL2 compiler isin the

$SCIAO ROOT/tools/IDL3_ to IDL2 directory. Build the codein that
directory to createthe tao_id13 to idl12 executable.

IDL3-to-IDL2 Executable

UNIX and UNIX-like Systems
The IDL3-to-IDL2 compiler executableis
$CIAO_ROOT/bin/tao idl3 to_ idl2.

Windows Systems
The IDL3-to-IDL2 compiler executableis
$CIAO ROOT%\bin\tao idl3 to idl2.exe.

General Usage
The genera usage of the CIAO IDL3-to-IDL2 compiler is asfollows:

tao idl3 to idl2 -I $CIAO ROOT -I $CIAO ROOT/ciao -I $CIAO ROOT/ciao -I
$TAO_ROOT \

-I $TAO ROOT/tao -I $TAO ROOT/orbsves \

<options> <idl3 files>

For example:

tao_idl3_to_idl2 -I $CIAO_ROOT -I $CIAO_ROOT/ciao -I $CIAO_ROOT/ciao -I
$TAO_ROOT \

-I $TAO ROOT/tao -I $TAO ROOT/orbsves \
-I . Messenger.idl

The lengthy include path is necessary to enable the IDL 3-to-IDL2 compiler to
find CIAO’'s CCM-related IDL files.

ociweb.com 1361

CIAO and CCM

32.6.3 Output Files Generated
The IDL3-to-1DL 2 compiler generates one IDL 2 output file for each input
file. A developer typically compiles that output file with another ORB’s IDL
compiler. The diagram illustrates the generated files.

IDL3 File

Messenger.idl

IDL3-to-IDL2 .
CIAO’s CCM IDL2 File

Components.idl

IDL2 N

File Messenger_IDL2.idl

N

Compile IDL Another ORB’s IDL Compiler

Messenger_IDL2C.h Messenger_IDL2S.h
Messenger_IDL2C.cpp Messenger_IDL2S.cpp

Messenger Messenger
Stub Skeleton

Figure 32-35: Compiling an IDL File with IDL3-to-IDL2

For an IDL3 file named Messenger . id1, running the command

tao idl3 to idl2 -I $CIAO ROOT -I $CIAO ROOT/ciao -I $CIAO ROOT/ciao -I
$TAO_ROOT \

-I $TAO ROOT/tao -I $TAO ROOT/orbsvecs \

-I . Messenger.idl

|
1362 ociweb.com @ I

OBJECT COMPUTING, INC.

32.6 IDL3-to-IDL2 Compiler Reference

generates the following file:
Table 32-23 IDL and C++ Files Generated

File Name

Description

Messenger IDL2.idl

through another ORB’s IDL compiler.

Equivalent IDL2 for Messenger’s IDL 3 file, to be run

The generated Messenger IDL2.1idl fileincludes CIAO’s
Components.idl file, which contains IDL2 CCM declarations. When
compiling theMessenger IDL2.idl filewith anon-CCM-aware ORB’s
IDL compiler, the Components. idl file and thefilesit includes must bein

theinclude

path of that ORB’s IDL compiler.

In our example, we compilethe IDL3 fileMessenger. id1, which follows:

// file Messenger.idl
#include <Components.idls>
#include <Runnable.idls>
#include <Publication.idl>

#include <Message.idl>
#include <History.idls>

component

Messenger {

attribute string subject;

provides Runnable control;
provides Publication content;

publishes Message message_publisher;
provides History message history;

}i

home MessengerHome manages Messenger {};

Note that you must also compile the included IDL 3 filesRunnable.

Publication.idl, Message.idl, and History.idl withthe

IDL3-to-ID

L2 compiler.

The compiler generatesthe IDL2 fileMessenger IDL2.idl:

// file Messegner IDL2.idl

#include
#include
#include
#include
#include

"Components.idl"
"Runnable IDL2.idl"
"Publication IDL2.idl"
"Message IDL2.idl"
"History IDL2.idl"

idl,

[
I ociweb.com

OBJECT COMPUTING, INC.

1363

CIAO and CCM

interface Messenger : Components::CCMObject

{

attribute string subject;

Runnable provide control ();
Publication provide content ();
History provide message history ();

Components: : Cookie subscribe message publisher (
in MessageConsumer consumer)
raises (Components::ExceededConnectionLimit) ;

MessageConsumer unsubscribe message publisher (in Components::Cookie ck)
raises (Components::InvalidConnection);

}i

interface MessengerHomeExplicit : Components::CCMHome

{
}i

interface MessengerHomeImplicit : Components::KeylessCCMHome

Messenger create ()
raises (Components::CreateFailure);

}i

interface MessengerHome : MessengerHomeExplicit, MessengerHomeImplicit

{
}i

32.6.4 IDL3-to-IDL2 Compiler Options
We discuss IDL 3-to-1DL 2 compiler command line optionsin 32.6.5 through
32.6.6. To seeacomplete list of the IDL3-to-IDL2 compiler’s options, enter
the following:

tao_idl3 to_idl2 -u

32.6.5 Preprocessing Options
The IDL3-to-IDL2 compiler uses the same preprocessor asthe tao_idl
compiler. For more information on the preprocessor options and directives,
please see 5.5. The most commonly used of these optionsisthe -1 option,
which specifies adirectory for the include path. For example:

|
1364 ociweb.com @ I

OBJECT COMPUTING, INC.

32.6 IDL3-to-IDL2 Compiler Reference

tao_1dl3 to idl2 -I $CIAO _ROOT -I $CIAO ROOT/ciao -I $CIAO ROOT/ciao -I
$TAO ROOT \

-I $TAO ROOT/tao -I $TAO ROOT/orbsvcs \

-I . Messenger.idl

32.6.6 General Options
TheIDL3-to-1DL2 compiler’ s other remaining options are summarized bel ow.
Each option’sfunction isidentical to its matching option of the IDL compiler.

Table 32-24 General IDL3-to-IDL2 Options

Option Description Default

Subdirectory in which to
-o output-directory | placethegenerated stub | Current directory
and skeleton files.

In UNIX, usesthe value of the
TMPDIR environment variable,
if set, or /tmp by default. In
Windows, uses the value of the
TMP environment variable, if
set, or the TEMP environment
variable, if set, or the WINNT
directory (on NT).

Directory used by the IDL
-t dir compiler for temporary
files.

Verbose flag. IDL
compiler will print No progress messages
progress messages after displayed.

completing major phases.

Print the Abstract Syntax

-d Tree (AST) to stdout. AST isnot displayed.
-w Suppress warnings. All warnings displayed.
. Print version information | No version information
for front end and back end. | displayed.
Output awarning if two
identifiersin the same :
-Cw scope differ in spelling Error output is default.
only by case.
Output an error if two
indentifiersin the same ;
-Ce scope differ in spelling Error output is default.
only by case.
Specify a path for the

-g gperf-path $ACE_ROOT/bin/gperf

gperf program

|
@ I ociweb.com 1365

OBJECT COMPUTING, INC.

CIAO and CCM

32.7 Future Topics

Severa CCM and CIAO-related topics are beyond the scope of this chapter.
They include the following:

» Component navigation

» Keyed component homes

* Homefinders

» Lifecyclecategoriesservice, process, and entity
e ThelDL3 supports keyword

In addition, there are several capabilities that are expected to be addressed in
future versions of CIAO. These include the following:

e Static application deployment
» Deployment of real-time applications

e Container-managed persistent using the Persistent State Service (PSS) and
Persistent State Definition Language (PSDL) (OMG Document
formal/02-09-06)

» Integration with Enterprise Java Beans

» Using the Real-Time Event Service or OMG Notification Service asthe
event delivery infrastructure

* Quality-of-Service

|
1366 ociweb.com @ I

OBJECT COMPUTING, INC.

	CIAO and CCM
	32.1 Introduction
	32.1.1 Prerequisites
	32.1.2 What is a Component?
	32.1.3 Component Deployment
	32.1.4 Summary of the CCM Programming Model
	32.1.5 Road Map

	32.2 Example - The Messenger Application
	32.2.1 The Messenger Application’s IDL Interfaces
	32.2.1.1 The Messenger Component and Facets
	32.2.1.2 The Receiver Component
	32.2.1.3 The Administrator Component

	32.2.2 Implementing the Components
	32.2.2.1 The Messenger Composition
	32.2.2.2 The Receiver and Administrator Compositions

	32.2.3 Compiling the IDL and CIDL
	32.2.4 Implementing the Executors
	32.2.4.1 The Runnable Facet Executor
	32.2.4.2 The Publication Facet Executor
	32.2.4.3 The History Facet Executor
	32.2.4.4 The Messenger Component Executor
	32.2.4.5 The MessengerHome Executor
	32.2.4.6 The Receiver Component Executor
	32.2.4.7 The ReceiverHome Executor
	32.2.4.8 The Administrator Component Executor
	32.2.4.9 The AdministratorHome Executor
	32.2.4.10 Summary of the Code

	32.2.5 Deploying the Messenger Application
	32.2.5.1 Deployment and Configuration Specification
	32.2.5.2 Deployment Descriptors
	32.2.5.3 Deployment.xsd and XMI.xsd Files
	32.2.5.4 Deploying the Messenger Component
	32.2.5.5 Receiver Component Descriptors
	32.2.5.6 Administrator Component Descriptors
	32.2.5.7 Messenger Assembly Descriptors
	32.2.5.8 Application Descriptors

	32.2.6 Building the Messenger Application
	32.2.6.1 Setting Up Your Environment
	32.2.6.2 Creating the Messenger’s MPC File
	32.2.6.3 Creating the Administrator’s and Receiver’s MPC Files
	32.2.6.4 Running MPC
	32.2.6.5 Building

	32.2.7 Running the Messenger Application
	32.2.7.1 Setting Up Your Environment
	32.2.7.2 DAnCE Executables
	32.2.7.3 Deploying the Messenger with DAnCE
	32.2.7.4 Debugging

	32.3 Building CIAO
	32.3.1 Building CIAO with Visual C++
	32.3.2 Building CIAO on UNIX with GNU Make and gcc

	32.4 DAnCE Executable Reference
	32.4.1 Overview
	32.4.2 Node Manager and Node Application
	32.4.3 Execution Manager
	32.4.4 Repository Manager

	32.5 CIDL Compiler Reference
	32.5.1 CIDL Executables
	32.5.2 Output Files Generated
	32.5.3 Using CIDL Compiler Options
	32.5.4 Preprocessing Options
	32.5.5 General Options
	32.5.6 Servant File Options
	32.5.7 Local Executor File Options
	32.5.8 Starter Executor Implementation File Options
	32.5.9 Descriptor File Options

	32.6 IDL3-to-IDL2 Compiler Reference
	32.6.1 IDL3-to-IDL2 Source Code
	32.6.2 IDL3-to-IDL2 Executable
	32.6.3 Output Files Generated
	32.6.4 IDL3-to-IDL2 Compiler Options
	32.6.5 Preprocessing Options
	32.6.6 General Options

	32.7 Future Topics

