// $Id$ // ============================================================================ // // = LIBRARY // tests // // = FILENAME // INET_Addr_Test.cpp // // = DESCRIPTION // Performs several tests on the ACE_INET_Addr class. It creates several // IPv4 and IPv6 addresses and checks that the address formed by the // class is valid. // // = AUTHOR // John Aughey (jha@aughey.com) // // ============================================================================ #include "test_config.h" #include "ace/OS_NS_string.h" #include "ace/INET_Addr.h" #include "ace/Log_Msg.h" #include "ace/OS_NS_arpa_inet.h" // Make sure that ACE_Addr::addr_type_ is the same // as the family of the inet_addr_. int check_type_consistency (const ACE_INET_Addr &addr) { int family = -1; if (addr.get_type () == AF_INET) { struct sockaddr_in *sa4 = (struct sockaddr_in *)addr.get_addr(); family = sa4->sin_family; } #if defined (ACE_HAS_IPV6) else if (addr.get_type () == AF_INET6) { struct sockaddr_in6 *sa6 = (struct sockaddr_in6 *)addr.get_addr(); family = sa6->sin6_family; } #endif if (addr.get_type () != family) { ACE_ERROR ((LM_ERROR, ACE_TEXT ("Inconsistency between ACE_SOCK::addr_type_ (%d) ") ACE_TEXT ("and the sockaddr family (%d)\n"), addr.get_type (), family)); return 1; } return 0; } int run_main (int argc, ACE_TCHAR *argv[]) { ACE_UNUSED_ARG (argc); ACE_UNUSED_ARG (argv); ACE_START_TEST (ACE_TEXT ("INET_Addr_Test")); int status = 0; // Innocent until proven guilty const char *ipv4_addresses[] = { "127.0.0.1", "138.38.180.251", "64.219.54.121", "192.0.0.1", "10.0.0.1", 0 }; ACE_INET_Addr addr; status |= check_type_consistency (addr); char hostaddr[1024]; for (int i=0; ipv4_addresses[i] != 0; i++) { struct in_addr addrv4; ACE_UINT32 addr32; ACE_OS::inet_pton (AF_INET, ipv4_addresses[i], &addrv4); ACE_OS::memcpy (&addr32, &addrv4, sizeof (addr32)); addr.set (80, ipv4_addresses[i]); status |= check_type_consistency (addr); /* ** Now check to make sure get_ip_address matches and get_host_addr ** matches. */ if (addr.get_ip_address () != ACE_HTONL (addr32)) { ACE_ERROR ((LM_ERROR, ACE_TEXT ("Error: %s failed get_ip_address() check\n") ACE_TEXT ("0x%x != 0x%x\n"), ipv4_addresses[i], addr.get_ip_address (), addr32)); status = 1; } if (0 != ACE_OS::strcmp (addr.get_host_addr(), ipv4_addresses[i])) { ACE_ERROR ((LM_ERROR, ACE_TEXT ("%s failed get_host_addr() check\n") ACE_TEXT ("%s != %s\n"), ipv4_addresses[i], addr.get_host_addr (), ipv4_addresses[i])); status = 1; } // Now we check the operation of get_host_addr(char*,int) const char* haddr = addr.get_host_addr (&hostaddr[0], sizeof(hostaddr)); if (0 != ACE_OS::strcmp (&hostaddr[0], haddr)) { ACE_ERROR ((LM_ERROR, ACE_TEXT ("%s failed get_host_addr(char* buf,int) check\n") ACE_TEXT ("buf ['%s'] != return value ['%s']\n"), ipv4_addresses[i], &hostaddr[0], haddr)); status = 1; } if (0 != ACE_OS::strcmp (&hostaddr[0], ipv4_addresses[i])) { ACE_ERROR ((LM_ERROR, ACE_TEXT ("%s failed get_host_addr(char*,int) check\n") ACE_TEXT ("buf ['%s'] != expected value ['%s']\n"), ipv4_addresses[i], &hostaddr[0], ipv4_addresses[i])); status = 1; } // Clear out the address by setting it to 1 and check addr.set (0, ACE_UINT32 (1), 1); status |= check_type_consistency (addr); if (addr.get_ip_address () != 1) { ACE_ERROR ((LM_ERROR, ACE_TEXT ("Failed to set address to 1\n"))); status = 1; } // Now set the address using a 32 bit number and check that we get // the right string out of get_host_addr(). addr.set (80, addr32, 0); // addr32 is already in network byte order status |= check_type_consistency(addr); if (0 != ACE_OS::strcmp (addr.get_host_addr (), ipv4_addresses[i])) { ACE_ERROR ((LM_ERROR, ACE_TEXT ("%s failed second get_host_addr() check\n") ACE_TEXT ("return value ['%s'] != expected value ['%s']\n"), ipv4_addresses[i], addr.get_host_addr (), ipv4_addresses[i])); status = 1; } // Test for ACE_INET_Addr::set_addr(). struct sockaddr_in sa4; sa4.sin_family = AF_INET; sa4.sin_addr = addrv4; sa4.sin_port = ACE_HTONS (8080); addr.set (0, ACE_UINT32 (1), 1); addr.set_addr (&sa4, sizeof(sa4)); status |= check_type_consistency (addr); if (addr.get_port_number () != 8080) { ACE_ERROR ((LM_ERROR, ACE_TEXT ("ACE_INET_Addr::set_addr() ") ACE_TEXT ("failed to update port number.\n"))); status = 1; } if (addr.get_ip_address () != ACE_HTONL (addr32)) { ACE_ERROR ((LM_ERROR, ACE_TEXT ("ACE_INET_Addr::set_addr() ") ACE_TEXT ("failed to update address.\n"))); status = 1; } } #if defined (ACE_HAS_IPV6) if (ACE::ipv6_enabled ()) { const char *ipv6_addresses[] = { "1080::8:800:200c:417a", // unicast address "ff01::101", // multicast address "::1", // loopback address "::", // unspecified addresses 0 }; for (int i=0; ipv6_addresses[i] != 0; i++) { ACE_INET_Addr addr (80, ipv6_addresses[i]); status |= check_type_consistency (addr); if (0 != ACE_OS::strcmp (addr.get_host_addr (), ipv6_addresses[i])) { ACE_ERROR ((LM_ERROR, ACE_TEXT ("IPv6 get_host_addr failed: %s != %s\n"), addr.get_host_addr (), ipv6_addresses[i])); status = 1; } } } #endif ACE_END_TEST; return status; }