1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
|
#include "ace/CDR_Base.h"
#if !defined (__ACE_INLINE__)
# include "ace/CDR_Base.inl"
#endif /* ! __ACE_INLINE__ */
#include "ace/Message_Block.h"
#include "ace/OS_Memory.h"
#include "ace/OS_NS_string.h"
ACE_RCSID (ace,
CDR_Base,
"$Id$")
ACE_BEGIN_VERSIONED_NAMESPACE_DECL
#if defined (NONNATIVE_LONGDOUBLE)
static const ACE_INT16 max_eleven_bit = 0x3ff;
static const ACE_INT16 max_fifteen_bit = 0x3fff;
#endif /* NONNATIVE_LONGDOUBLE */
//
// See comments in CDR_Base.inl about optimization cases for swap_XX_array.
//
void
ACE_CDR::swap_2_array (char const * orig, char* target, size_t n)
{
// ACE_ASSERT(n > 0); The caller checks that n > 0
// We pretend that AMD64/GNU G++ systems have a Pentium CPU to
// take advantage of the inline assembly implementation.
// Later, we try to read in 32 or 64 bit chunks,
// so make sure we don't do that for unaligned addresses.
#if ACE_SIZEOF_LONG == 8 && \
!((defined(__amd64__) || defined (__x86_64__)) && defined(__GNUG__))
char const * const o8 = ACE_ptr_align_binary (orig, 8);
while (orig < o8 && n > 0)
{
ACE_CDR::swap_2 (orig, target);
orig += 2;
target += 2;
--n;
}
#else
char const * const o4 = ACE_ptr_align_binary (orig, 4);
// this is an _if_, not a _while_. The mistmatch can only be by 2.
if (orig != o4)
{
ACE_CDR::swap_2 (orig, target);
orig += 2;
target += 2;
--n;
}
#endif
if (n == 0)
return;
//
// Loop unrolling. Here be dragons.
//
// (n & (~3)) is the greatest multiple of 4 not bigger than n.
// In the while loop ahead, orig will move over the array by 8 byte
// increments (4 elements of 2 bytes).
// end marks our barrier for not falling outside.
char const * const end = orig + 2 * (n & (~3));
// See if we're aligned for writting in 64 or 32 bit chunks...
#if ACE_SIZEOF_LONG == 8 && \
!((defined(__amd64__) || defined (__x86_64__)) && defined(__GNUG__))
if (target == ACE_ptr_align_binary (target, 8))
#else
if (target == ACE_ptr_align_binary (target, 4))
#endif
{
while (orig < end)
{
#if defined (ACE_HAS_INTEL_ASSEMBLY)
unsigned int a =
* reinterpret_cast<const unsigned int*> (orig);
unsigned int b =
* reinterpret_cast<const unsigned int*> (orig + 4);
asm ( "bswap %1" : "=r" (a) : "0" (a) );
asm ( "bswap %1" : "=r" (b) : "0" (b) );
asm ( "rol $16, %1" : "=r" (a) : "0" (a) );
asm ( "rol $16, %1" : "=r" (b) : "0" (b) );
* reinterpret_cast<unsigned int*> (target) = a;
* reinterpret_cast<unsigned int*> (target + 4) = b;
#elif defined(ACE_HAS_PENTIUM) \
&& (defined(_MSC_VER) || defined(__BORLANDC__)) \
&& !defined(ACE_LACKS_INLINE_ASSEMBLY)
__asm mov ecx, orig;
__asm mov edx, target;
__asm mov eax, [ecx];
__asm mov ebx, 4[ecx];
__asm bswap eax;
__asm bswap ebx;
__asm rol eax, 16;
__asm rol ebx, 16;
__asm mov [edx], eax;
__asm mov 4[edx], ebx;
#elif ACE_SIZEOF_LONG == 8
// 64 bit architecture.
register unsigned long a =
* reinterpret_cast<const unsigned long*> (orig);
register unsigned long a1 = (a & 0x00ff00ff00ff00ffUL) << 8;
register unsigned long a2 = (a & 0xff00ff00ff00ff00UL) >> 8;
a = (a1 | a2);
* reinterpret_cast<unsigned long*> (target) = a;
#else
register ACE_UINT32 a =
* reinterpret_cast<const ACE_UINT32*> (orig);
register ACE_UINT32 b =
* reinterpret_cast<const ACE_UINT32*> (orig + 4);
register ACE_UINT32 a1 = (a & 0x00ff00ffU) << 8;
register ACE_UINT32 b1 = (b & 0x00ff00ffU) << 8;
register ACE_UINT32 a2 = (a & 0xff00ff00U) >> 8;
register ACE_UINT32 b2 = (b & 0xff00ff00U) >> 8;
a = (a1 | a2);
b = (b1 | b2);
* reinterpret_cast<ACE_UINT32*> (target) = a;
* reinterpret_cast<ACE_UINT32*> (target + 4) = b;
#endif
orig += 8;
target += 8;
}
}
else
{
// We're out of luck. We have to write in 2 byte chunks.
while (orig < end)
{
#if defined (ACE_HAS_INTEL_ASSEMBLY)
unsigned int a =
* reinterpret_cast<const unsigned int*> (orig);
unsigned int b =
* reinterpret_cast<const unsigned int*> (orig + 4);
asm ( "bswap %1" : "=r" (a) : "0" (a) );
asm ( "bswap %1" : "=r" (b) : "0" (b) );
// We're little endian.
* reinterpret_cast<unsigned short*> (target + 2)
= (unsigned short) (a & 0xffff);
* reinterpret_cast<unsigned short*> (target + 6)
= (unsigned short) (b & 0xffff);
asm ( "shrl $16, %1" : "=r" (a) : "0" (a) );
asm ( "shrl $16, %1" : "=r" (b) : "0" (b) );
* reinterpret_cast<unsigned short*> (target + 0)
= (unsigned short) (a & 0xffff);
* reinterpret_cast<unsigned short*> (target + 4)
= (unsigned short) (b & 0xffff);
#elif defined (ACE_HAS_PENTIUM) \
&& (defined (_MSC_VER) || defined (__BORLANDC__)) \
&& !defined (ACE_LACKS_INLINE_ASSEMBLY)
__asm mov ecx, orig;
__asm mov edx, target;
__asm mov eax, [ecx];
__asm mov ebx, 4[ecx];
__asm bswap eax;
__asm bswap ebx;
// We're little endian.
__asm mov 2[edx], ax;
__asm mov 6[edx], bx;
__asm shr eax, 16;
__asm shr ebx, 16;
__asm mov 0[edx], ax;
__asm mov 4[edx], bx;
#elif ACE_SIZEOF_LONG == 8
// 64 bit architecture.
register unsigned long a =
* reinterpret_cast<const unsigned long*> (orig);
register unsigned long a1 = (a & 0x00ff00ff00ff00ffUL) << 8;
register unsigned long a2 = (a & 0xff00ff00ff00ff00UL) >> 8;
a = (a1 | a2);
ACE_UINT16 b1 = static_cast<ACE_UINT16> (a >> 48);
ACE_UINT16 b2 = static_cast<ACE_UINT16> ((a >> 32) & 0xffff);
ACE_UINT16 b3 = static_cast<ACE_UINT16> ((a >> 16) & 0xffff);
ACE_UINT16 b4 = static_cast<ACE_UINT16> (a & 0xffff);
#if defined(ACE_LITTLE_ENDIAN)
* reinterpret_cast<ACE_UINT16*> (target) = b4;
* reinterpret_cast<ACE_UINT16*> (target + 2) = b3;
* reinterpret_cast<ACE_UINT16*> (target + 4) = b2;
* reinterpret_cast<ACE_UINT16*> (target + 6) = b1;
#else
* reinterpret_cast<ACE_UINT16*> (target) = b1;
* reinterpret_cast<ACE_UINT16*> (target + 2) = b2;
* reinterpret_cast<ACE_UINT16*> (target + 4) = b3;
* reinterpret_cast<ACE_UINT16*> (target + 6) = b4;
#endif
#else
register ACE_UINT32 a =
* reinterpret_cast<const ACE_UINT32*> (orig);
register ACE_UINT32 b =
* reinterpret_cast<const ACE_UINT32*> (orig + 4);
register ACE_UINT32 a1 = (a & 0x00ff00ff) << 8;
register ACE_UINT32 b1 = (b & 0x00ff00ff) << 8;
register ACE_UINT32 a2 = (a & 0xff00ff00) >> 8;
register ACE_UINT32 b2 = (b & 0xff00ff00) >> 8;
a = (a1 | a2);
b = (b1 | b2);
ACE_UINT32 c1 = static_cast<ACE_UINT16> (a >> 16);
ACE_UINT32 c2 = static_cast<ACE_UINT16> (a & 0xffff);
ACE_UINT32 c3 = static_cast<ACE_UINT16> (b >> 16);
ACE_UINT32 c4 = static_cast<ACE_UINT16> (b & 0xffff);
#if defined(ACE_LITTLE_ENDIAN)
* reinterpret_cast<ACE_UINT16*> (target) = c2;
* reinterpret_cast<ACE_UINT16*> (target + 2) = c1;
* reinterpret_cast<ACE_UINT16*> (target + 4) = c4;
* reinterpret_cast<ACE_UINT16*> (target + 6) = c3;
#else
* reinterpret_cast<ACE_UINT16*> (target) = c1;
* reinterpret_cast<ACE_UINT16*> (target + 2) = c2;
* reinterpret_cast<ACE_UINT16*> (target + 4) = c3;
* reinterpret_cast<ACE_UINT16*> (target + 6) = c4;
#endif
#endif
orig += 8;
target += 8;
}
}
// (n & 3) == (n % 4).
switch (n&3) {
case 3:
ACE_CDR::swap_2 (orig, target);
orig += 2;
target += 2;
case 2:
ACE_CDR::swap_2 (orig, target);
orig += 2;
target += 2;
case 1:
ACE_CDR::swap_2 (orig, target);
}
}
void
ACE_CDR::swap_4_array (char const * orig, char* target, size_t n)
{
// ACE_ASSERT (n > 0); The caller checks that n > 0
#if ACE_SIZEOF_LONG == 8
// Later, we read from *orig in 64 bit chunks,
// so make sure we don't generate unaligned readings.
char const * const o8 = ACE_ptr_align_binary (orig, 8);
// The mismatch can only be by 4.
if (orig != o8)
{
ACE_CDR::swap_4 (orig, target);
orig += 4;
target += 4;
--n;
}
#endif /* ACE_SIZEOF_LONG == 8 */
if (n == 0)
return;
//
// Loop unrolling. Here be dragons.
//
// (n & (~3)) is the greatest multiple of 4 not bigger than n.
// In the while loop, orig will move over the array by 16 byte
// increments (4 elements of 4 bytes).
// ends marks our barrier for not falling outside.
char const * const end = orig + 4 * (n & (~3));
#if ACE_SIZEOF_LONG == 8
// 64 bits architecture.
// See if we can write in 8 byte chunks.
if (target == ACE_ptr_align_binary (target, 8))
{
while (orig < end)
{
register unsigned long a =
* reinterpret_cast<const long*> (orig);
register unsigned long b =
* reinterpret_cast<const long*> (orig + 8);
#if defined(ACE_HAS_INTEL_ASSEMBLY)
asm ("bswapq %1" : "=r" (a) : "0" (a));
asm ("bswapq %1" : "=r" (b) : "0" (b));
asm ("rol $32, %1" : "=r" (a) : "0" (a));
asm ("rol $32, %1" : "=r" (b) : "0" (b));
#else
register unsigned long a84 = (a & 0x000000ff000000ffL) << 24;
register unsigned long b84 = (b & 0x000000ff000000ffL) << 24;
register unsigned long a73 = (a & 0x0000ff000000ff00L) << 8;
register unsigned long b73 = (b & 0x0000ff000000ff00L) << 8;
register unsigned long a62 = (a & 0x00ff000000ff0000L) >> 8;
register unsigned long b62 = (b & 0x00ff000000ff0000L) >> 8;
register unsigned long a51 = (a & 0xff000000ff000000L) >> 24;
register unsigned long b51 = (b & 0xff000000ff000000L) >> 24;
a = (a84 | a73 | a62 | a51);
b = (b84 | b73 | b62 | b51);
#endif
* reinterpret_cast<long*> (target) = a;
* reinterpret_cast<long*> (target + 8) = b;
orig += 16;
target += 16;
}
}
else
{
// We are out of luck, we have to write in 4 byte chunks.
while (orig < end)
{
register unsigned long a =
* reinterpret_cast<const long*> (orig);
register unsigned long b =
* reinterpret_cast<const long*> (orig + 8);
#if defined(ACE_HAS_INTEL_ASSEMBLY)
asm ("bswapq %1" : "=r" (a) : "0" (a));
asm ("bswapq %1" : "=r" (b) : "0" (b));
asm ("rol $32, %1" : "=r" (a) : "0" (a));
asm ("rol $32, %1" : "=r" (b) : "0" (b));
#else
register unsigned long a84 = (a & 0x000000ff000000ffL) << 24;
register unsigned long b84 = (b & 0x000000ff000000ffL) << 24;
register unsigned long a73 = (a & 0x0000ff000000ff00L) << 8;
register unsigned long b73 = (b & 0x0000ff000000ff00L) << 8;
register unsigned long a62 = (a & 0x00ff000000ff0000L) >> 8;
register unsigned long b62 = (b & 0x00ff000000ff0000L) >> 8;
register unsigned long a51 = (a & 0xff000000ff000000L) >> 24;
register unsigned long b51 = (b & 0xff000000ff000000L) >> 24;
a = (a84 | a73 | a62 | a51);
b = (b84 | b73 | b62 | b51);
#endif
ACE_UINT32 c1 = static_cast<ACE_UINT32> (a >> 32);
ACE_UINT32 c2 = static_cast<ACE_UINT32> (a & 0xffffffff);
ACE_UINT32 c3 = static_cast<ACE_UINT32> (b >> 32);
ACE_UINT32 c4 = static_cast<ACE_UINT32> (b & 0xffffffff);
#if defined (ACE_LITTLE_ENDIAN)
* reinterpret_cast<ACE_UINT32*> (target + 0) = c2;
* reinterpret_cast<ACE_UINT32*> (target + 4) = c1;
* reinterpret_cast<ACE_UINT32*> (target + 8) = c4;
* reinterpret_cast<ACE_UINT32*> (target + 12) = c3;
#else
* reinterpret_cast<ACE_UINT32*> (target + 0) = c1;
* reinterpret_cast<ACE_UINT32*> (target + 4) = c2;
* reinterpret_cast<ACE_UINT32*> (target + 8) = c3;
* reinterpret_cast<ACE_UINT32*> (target + 12) = c4;
#endif
orig += 16;
target += 16;
}
}
#else /* ACE_SIZEOF_LONG != 8 */
while (orig < end)
{
#if defined (ACE_HAS_PENTIUM) && defined (__GNUG__)
register unsigned int a =
*reinterpret_cast<const unsigned int*> (orig);
register unsigned int b =
*reinterpret_cast<const unsigned int*> (orig + 4);
register unsigned int c =
*reinterpret_cast<const unsigned int*> (orig + 8);
register unsigned int d =
*reinterpret_cast<const unsigned int*> (orig + 12);
asm ("bswap %1" : "=r" (a) : "0" (a));
asm ("bswap %1" : "=r" (b) : "0" (b));
asm ("bswap %1" : "=r" (c) : "0" (c));
asm ("bswap %1" : "=r" (d) : "0" (d));
*reinterpret_cast<unsigned int*> (target) = a;
*reinterpret_cast<unsigned int*> (target + 4) = b;
*reinterpret_cast<unsigned int*> (target + 8) = c;
*reinterpret_cast<unsigned int*> (target + 12) = d;
#elif defined (ACE_HAS_PENTIUM) \
&& (defined (_MSC_VER) || defined (__BORLANDC__)) \
&& !defined (ACE_LACKS_INLINE_ASSEMBLY)
__asm mov eax, orig
__asm mov esi, target
__asm mov edx, [eax]
__asm mov ecx, 4[eax]
__asm mov ebx, 8[eax]
__asm mov eax, 12[eax]
__asm bswap edx
__asm bswap ecx
__asm bswap ebx
__asm bswap eax
__asm mov [esi], edx
__asm mov 4[esi], ecx
__asm mov 8[esi], ebx
__asm mov 12[esi], eax
#else
register ACE_UINT32 a =
* reinterpret_cast<const ACE_UINT32*> (orig);
register ACE_UINT32 b =
* reinterpret_cast<const ACE_UINT32*> (orig + 4);
register ACE_UINT32 c =
* reinterpret_cast<const ACE_UINT32*> (orig + 8);
register ACE_UINT32 d =
* reinterpret_cast<const ACE_UINT32*> (orig + 12);
// Expect the optimizer reordering this A LOT.
// We leave it this way for clarity.
a = (a << 24) | ((a & 0xff00) << 8) | ((a & 0xff0000) >> 8) | (a >> 24);
b = (b << 24) | ((b & 0xff00) << 8) | ((b & 0xff0000) >> 8) | (b >> 24);
c = (c << 24) | ((c & 0xff00) << 8) | ((c & 0xff0000) >> 8) | (c >> 24);
d = (d << 24) | ((d & 0xff00) << 8) | ((d & 0xff0000) >> 8) | (d >> 24);
* reinterpret_cast<ACE_UINT32*> (target) = a;
* reinterpret_cast<ACE_UINT32*> (target + 4) = b;
* reinterpret_cast<ACE_UINT32*> (target + 8) = c;
* reinterpret_cast<ACE_UINT32*> (target + 12) = d;
#endif
orig += 16;
target += 16;
}
#endif /* ACE_SIZEOF_LONG == 8 */
// (n & 3) == (n % 4).
switch (n & 3) {
case 3:
ACE_CDR::swap_4 (orig, target);
orig += 4;
target += 4;
case 2:
ACE_CDR::swap_4 (orig, target);
orig += 4;
target += 4;
case 1:
ACE_CDR::swap_4 (orig, target);
}
}
//
// We don't benefit from unrolling in swap_8_array and swap_16_array
// (swap_8 and swap_16 are big enough).
//
void
ACE_CDR::swap_8_array (char const * orig, char* target, size_t n)
{
// ACE_ASSERT(n > 0); The caller checks that n > 0
char const * const end = orig + 8*n;
while (orig < end)
{
swap_8 (orig, target);
orig += 8;
target += 8;
}
}
void
ACE_CDR::swap_16_array (char const * orig, char* target, size_t n)
{
// ACE_ASSERT(n > 0); The caller checks that n > 0
char const * const end = orig + 16*n;
while (orig < end)
{
swap_16 (orig, target);
orig += 16;
target += 16;
}
}
void
ACE_CDR::mb_align (ACE_Message_Block *mb)
{
#if !defined (ACE_CDR_IGNORE_ALIGNMENT)
char * const start = ACE_ptr_align_binary (mb->base (),
ACE_CDR::MAX_ALIGNMENT);
#else
char * const start = mb->base ();
#endif /* ACE_CDR_IGNORE_ALIGNMENT */
mb->rd_ptr (start);
mb->wr_ptr (start);
}
int
ACE_CDR::grow (ACE_Message_Block *mb, size_t minsize)
{
size_t newsize =
ACE_CDR::first_size (minsize + ACE_CDR::MAX_ALIGNMENT);
if (newsize <= mb->size ())
return 0;
ACE_Data_Block *db =
mb->data_block ()->clone_nocopy (0, newsize);
if (db == 0)
return -1;
// Do the equivalent of ACE_CDR::mb_align() here to avoid having
// to allocate an ACE_Message_Block on the stack thereby avoiding
// the manipulation of the data blocks reference count
size_t mb_len = mb->length ();
char *start = ACE_ptr_align_binary (db->base (),
ACE_CDR::MAX_ALIGNMENT);
ACE_OS::memcpy (start, mb->rd_ptr (), mb_len);
mb->data_block (db);
// Setting the data block on the mb resets the read and write
// pointers back to the beginning. We must set the rd_ptr to the
// aligned start and adjust the write pointer to the end
mb->rd_ptr (start);
mb->wr_ptr (start + mb_len);
// Remove the DONT_DELETE flags from mb
mb->clr_self_flags (ACE_Message_Block::DONT_DELETE);
return 0;
}
size_t
ACE_CDR::total_length (const ACE_Message_Block* begin,
const ACE_Message_Block* end)
{
size_t l = 0;
// Compute the total size.
for (const ACE_Message_Block *i = begin;
i != end;
i = i->cont ())
l += i->length ();
return l;
}
void
ACE_CDR::consolidate (ACE_Message_Block *dst,
const ACE_Message_Block *src)
{
if (src == 0)
return;
size_t newsize =
ACE_CDR::first_size (ACE_CDR::total_length (src, 0)
+ ACE_CDR::MAX_ALIGNMENT);
dst->size (newsize);
#if !defined (ACE_CDR_IGNORE_ALIGNMENT)
// We must copy the contents of <src> into the new buffer, but
// respecting the alignment.
ptrdiff_t srcalign =
ptrdiff_t(src->rd_ptr ()) % ACE_CDR::MAX_ALIGNMENT;
ptrdiff_t dstalign =
ptrdiff_t(dst->rd_ptr ()) % ACE_CDR::MAX_ALIGNMENT;
ptrdiff_t offset = srcalign - dstalign;
if (offset < 0)
offset += ACE_CDR::MAX_ALIGNMENT;
dst->rd_ptr (static_cast<size_t> (offset));
dst->wr_ptr (dst->rd_ptr ());
#endif /* ACE_CDR_IGNORE_ALIGNMENT */
for (const ACE_Message_Block* i = src;
i != 0;
i = i->cont ())
{
// If the destination and source are the same, do not
// attempt to copy the data. Just update the write pointer.
if (dst->wr_ptr () != i->rd_ptr ())
dst->copy (i->rd_ptr (), i->length ());
else
dst->wr_ptr (i->length ());
}
}
#if defined (NONNATIVE_LONGLONG)
bool
ACE_CDR::LongLong::operator== (const ACE_CDR::LongLong &rhs) const
{
return this->h == rhs.h && this->l == rhs.l;
}
bool
ACE_CDR::LongLong::operator!= (const ACE_CDR::LongLong &rhs) const
{
return this->l != rhs.l || this->h != rhs.h;
}
#endif /* NONNATIVE_LONGLONG */
#if defined (NONNATIVE_LONGDOUBLE)
ACE_CDR::LongDouble&
ACE_CDR::LongDouble::assign (const ACE_CDR::LongDouble::NativeImpl& rhs)
{
ACE_OS::memset (this->ld, 0, sizeof (this->ld));
if (sizeof (rhs) == 8)
{
#if defined (ACE_LITTLE_ENDIAN)
static const size_t byte_zero = 1;
static const size_t byte_one = 0;
char rhs_ptr[16];
ACE_CDR::swap_8 (reinterpret_cast<const char*> (&rhs), rhs_ptr);
#else
static const size_t byte_zero = 0;
static const size_t byte_one = 1;
const char* rhs_ptr = reinterpret_cast<const char*> (&rhs);
#endif
ACE_INT16 sign = static_cast<ACE_INT16> (
static_cast<signed char> (rhs_ptr[0])) & 0x8000;
ACE_INT16 exponent = ((rhs_ptr[0] & 0x7f) << 4) |
((rhs_ptr[1] >> 4) & 0xf);
const char* exp_ptr = reinterpret_cast<const char*> (&exponent);
// Infinity and NaN have an exponent of 0x7ff in 64-bit IEEE
if (exponent == 0x7ff)
{
exponent = 0x7fff;
}
else
{
exponent = (exponent - max_eleven_bit) + max_fifteen_bit;
}
exponent |= sign;
// Store the sign bit and exponent
this->ld[0] = exp_ptr[byte_zero];
this->ld[1] = exp_ptr[byte_one];
// Store the mantissa. In an 8 byte double, it is split by
// 4 bits (because of the 12 bits for sign and exponent), so
// we have to shift and or the rhs to get the right bytes.
size_t li = 2;
bool direction = true;
for (size_t ri = 1; ri < sizeof (rhs);)
{
if (direction)
{
this->ld[li] |= ((rhs_ptr[ri] << 4) & 0xf0);
direction = false;
++ri;
}
else
{
this->ld[li] |= ((rhs_ptr[ri] >> 4) & 0xf);
direction = true;
++li;
}
}
#if defined (ACE_LITTLE_ENDIAN)
ACE_OS::memcpy (rhs_ptr, this->ld, sizeof (this->ld));
ACE_CDR::swap_16 (rhs_ptr, this->ld);
#endif
}
else
{
ACE_OS::memcpy(this->ld,
reinterpret_cast<const char*> (&rhs), sizeof (rhs));
}
return *this;
}
ACE_CDR::LongDouble&
ACE_CDR::LongDouble::assign (const ACE_CDR::LongDouble& rhs)
{
if (this != &rhs)
*this = rhs;
return *this;
}
bool
ACE_CDR::LongDouble::operator== (const ACE_CDR::LongDouble &rhs) const
{
return ACE_OS::memcmp (this->ld, rhs.ld, 16) == 0;
}
bool
ACE_CDR::LongDouble::operator!= (const ACE_CDR::LongDouble &rhs) const
{
return ACE_OS::memcmp (this->ld, rhs.ld, 16) != 0;
}
ACE_CDR::LongDouble::operator ACE_CDR::LongDouble::NativeImpl () const
{
ACE_CDR::LongDouble::NativeImpl ret = 0.0;
char* lhs_ptr = reinterpret_cast<char*> (&ret);
if (sizeof (ret) == 8)
{
#if defined (ACE_LITTLE_ENDIAN)
static const size_t byte_zero = 1;
static const size_t byte_one = 0;
char copy[16];
ACE_CDR::swap_16 (this->ld, copy);
#else
static const size_t byte_zero = 0;
static const size_t byte_one = 1;
const char* copy = this->ld;
#endif
ACE_INT16 exponent = 0;
char* exp_ptr = reinterpret_cast<char*> (&exponent);
exp_ptr[byte_zero] = copy[0];
exp_ptr[byte_one] = copy[1];
ACE_INT16 sign = (exponent & 0x8000);
exponent &= 0x7fff;
// Infinity and NaN have an exponent of 0x7fff in 128-bit IEEE
if (exponent == 0x7fff)
{
exponent = 0x7ff;
}
else
{
exponent = (exponent - max_fifteen_bit) + max_eleven_bit;
}
exponent = (exponent << 4) | sign;
// Store the sign and exponent
lhs_ptr[0] = exp_ptr[byte_zero];
lhs_ptr[1] = exp_ptr[byte_one];
// Store the mantissa. In an 8 byte double, it is split by
// 4 bits (because of the 12 bits for sign and exponent), so
// we have to shift and or the rhs to get the right bytes.
size_t li = 1;
bool direction = true;
for (size_t ri = 2; li < sizeof (ret);) {
if (direction)
{
lhs_ptr[li] |= ((copy[ri] >> 4) & 0xf);
direction = false;
++li;
}
else
{
lhs_ptr[li] |= ((copy[ri] & 0xf) << 4);
direction = true;
++ri;
}
}
#if defined (ACE_LITTLE_ENDIAN)
ACE_CDR::swap_8 (lhs_ptr, lhs_ptr);
#endif
}
else
{
ACE_OS::memcpy(lhs_ptr, this->ld, sizeof (ret));
}
// This bit of code is unnecessary. However, this code is
// necessary to work around a bug in the gcc 4.1.1 optimizer.
ACE_CDR::LongDouble tmp;
tmp.assign (ret);
return ret;
}
#endif /* NONNATIVE_LONGDOUBLE */
#if defined(_UNICOS) && !defined(_CRAYMPP)
// placeholders to get things compiling
ACE_CDR::Float::Float (void)
{
}
ACE_CDR::Float::Float (const float & /* init */)
{
}
ACE_CDR::Float &
ACE_CDR::Float::operator= (const float & /* rhs */)
{
return *this;
}
bool
ACE_CDR::Float::operator!= (const ACE_CDR::Float & /* rhs */) const
{
return false;
}
#endif /* _UNICOS */
ACE_END_VERSIONED_NAMESPACE_DECL
|