summaryrefslogtreecommitdiff
path: root/ACE/ace/Stats.cpp
blob: 3763b9e26320abb4b33ea7c195571f83e82b84aa (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
// $Id$

#include "ace/Stats.h"

#if !defined (__ACE_INLINE__)
# include "ace/Stats.inl"
#endif /* __ACE_INLINE__ */

#include "ace/OS_NS_stdio.h"
#include "ace/OS_NS_string.h"



ACE_BEGIN_VERSIONED_NAMESPACE_DECL

ACE_UINT32
ACE_Stats_Value::fractional_field (void) const
{
  if (precision () == 0)
    {
      return 1;
    }
  else
    {
      ACE_UINT32 field = 10;
      for (u_int i = 0; i < precision () - 1; ++i)
        {
          field *= 10;
        }

      return field;
    }
}

int
ACE_Stats::sample (const ACE_INT32 value)
{
  if (samples_.enqueue_tail (value) == 0)
    {
      ++number_of_samples_;
      if (number_of_samples_ == 0)
        {
          // That's a lot of samples :-)
          overflow_ = EFAULT;
          return -1;
        }

      if (value < min_)
        min_ = value;

      if (value > max_)
        max_ = value;

      return 0;
    }
  else
    {
      // Probably failed due to running out of memory when trying to
      // enqueue the new value.
      overflow_ = errno;
      return -1;
    }
}

void
ACE_Stats::mean (ACE_Stats_Value &m,
                 const ACE_UINT32 scale_factor)
{
  if (number_of_samples_ > 0)
    {
      const ACE_UINT64 ACE_STATS_INTERNAL_OFFSET =
        ACE_UINT64_LITERAL (0x100000000);

      ACE_UINT64 sum = ACE_STATS_INTERNAL_OFFSET;
      ACE_Unbounded_Queue_Iterator<ACE_INT32> i (samples_);
      while (! i.done ())
        {
          ACE_INT32 *sample;
          if (i.next (sample))
            {
              sum += *sample;
              i.advance ();
            }
        }

      // sum_ was initialized with ACE_STATS_INTERNAL_OFFSET, so
      // subtract that off here.
      quotient (sum - ACE_STATS_INTERNAL_OFFSET,
                number_of_samples_ * scale_factor,
                m);
    }
  else
    {
      m.whole (0);
      m.fractional (0);
    }
}

int
ACE_Stats::std_dev (ACE_Stats_Value &std_dev,
                    const ACE_UINT32 scale_factor)
{
  if (number_of_samples_ <= 1)
    {
      std_dev.whole (0);
      std_dev.fractional (0);
    }
  else
    {
      const ACE_UINT32 field = std_dev.fractional_field ();

      // The sample standard deviation is:
      //
      // sqrt (sum (sample_i - mean)^2 / (number_of_samples_ - 1))

      ACE_UINT64 mean_scaled;
      // Calculate the mean, scaled, so that we don't lose its
      // precision.
      ACE_Stats_Value avg (std_dev.precision ());
      mean (avg, 1u);
      avg.scaled_value (mean_scaled);

      // Calculate the summation term, of squared differences from the
      // mean.
      ACE_UINT64 sum_of_squares = 0;
      ACE_Unbounded_Queue_Iterator<ACE_INT32> i (samples_);
      while (! i.done ())
        {
          ACE_INT32 *sample;
          if (i.next (sample))
            {
              const ACE_UINT64 original_sum_of_squares = sum_of_squares;

              // Scale up by field width so that we don't lose the
              // precision of the mean.  Carefully . . .
              const ACE_UINT64 product (*sample * field);

              ACE_UINT64 difference;
              // NOTE: please do not reformat this code!  It //
              // works with the Diab compiler the way it is! //
              if  (product >= mean_scaled)                   //
                {                                            //
                  difference = product - mean_scaled;        //
                }                                            //
              else                                           //
                {                                            //
                  difference = mean_scaled - product;        //
                }                                            //
              // NOTE: please do not reformat this code!  It //
              // works with the Diab compiler the way it is! //

              // Square using 64-bit arithmetic.
              sum_of_squares += difference * ACE_U64_TO_U32 (difference);
              i.advance ();

              if (sum_of_squares < original_sum_of_squares)
                {
                  overflow_ = ENOSPC;
                  return -1;
                }
            }
        }

      // Divide the summation by (number_of_samples_ - 1), to get the
      // variance.  In addition, scale the variance down to undo the
      // mean scaling above.  Otherwise, it can get too big.
      ACE_Stats_Value variance (std_dev.precision ());
      quotient (sum_of_squares,
                (number_of_samples_ - 1) * field * field,
                variance);

      // Take the square root of the variance to get the standard
      // deviation.  First, scale up . . .
      ACE_UINT64 scaled_variance;
      variance.scaled_value (scaled_variance);

      // And scale up, once more, because we'll be taking the square
      // root.
      scaled_variance *= field;
      ACE_Stats_Value unscaled_standard_deviation (std_dev.precision ());
      square_root (scaled_variance,
                   unscaled_standard_deviation);

      // Unscale.
      quotient (unscaled_standard_deviation,
                scale_factor * field,
                std_dev);
    }

  return 0;
}


void
ACE_Stats::reset (void)
{
  overflow_ = 0u;
  number_of_samples_ = 0u;
  min_ = 0x7FFFFFFF;
  max_ = -0x8000 * 0x10000;
  samples_.reset ();
}

int
ACE_Stats::print_summary (const u_int precision,
                          const ACE_UINT32 scale_factor,
                          FILE *file) const
{
  ACE_TCHAR mean_string [128];
  ACE_TCHAR std_dev_string [128];
  ACE_TCHAR min_string [128];
  ACE_TCHAR max_string [128];
  int success = 0;

  for (int tmp_precision = precision;
       ! overflow_  &&  ! success  &&  tmp_precision >= 0;
       --tmp_precision)
    {
      // Build a format string, in case the C library doesn't support %*u.
      ACE_TCHAR format[32];
      if (tmp_precision == 0)
        ACE_OS::sprintf (format, ACE_TEXT ("%%%d"), tmp_precision);
      else
        ACE_OS::sprintf (format, ACE_TEXT ("%%d.%%0%du"), tmp_precision);

      ACE_Stats_Value u (tmp_precision);
      ((ACE_Stats *) this)->mean (u, scale_factor);
      ACE_OS::sprintf (mean_string, format, u.whole (), u.fractional ());

      ACE_Stats_Value sd (tmp_precision);
      if (((ACE_Stats *) this)->std_dev (sd, scale_factor))
        {
          success = 0;
          continue;
        }
      else
        {
          success = 1;
        }
      ACE_OS::sprintf (std_dev_string, format, sd.whole (), sd.fractional ());

      ACE_Stats_Value minimum (tmp_precision), maximum (tmp_precision);
      if (min_ != 0)
        {
          const ACE_UINT64 m (min_);
          quotient (m, scale_factor, minimum);
        }
      if (max_ != 0)
        {
          const ACE_UINT64 m (max_);
          quotient (m, scale_factor, maximum);
        }
      ACE_OS::sprintf (min_string, format,
                       minimum.whole (), minimum.fractional ());
      ACE_OS::sprintf (max_string, format,
                       maximum.whole (), maximum.fractional ());
    }

  if (success == 1)
    {
      ACE_OS::fprintf (file, ACE_TEXT ("samples: %u (%s - %s); mean: ")
                       ACE_TEXT ("%s; std dev: %s\n"),
                       samples (), min_string, max_string,
                       mean_string, std_dev_string);
      return 0;
    }
  else
    {
      ACE_OS::fprintf (file,
                       ACE_TEXT ("ACE_Stats::print_summary: OVERFLOW: %s\n"),
                       ACE_OS::strerror (overflow_));

      return -1;
    }
}

void
ACE_Stats::quotient (const ACE_UINT64 dividend,
                     const ACE_UINT32 divisor,
                     ACE_Stats_Value &quotient)
{
  // The whole part of the division comes from simple integer division.
  quotient.whole (static_cast<ACE_UINT32> (divisor == 0
                                           ?  0  :  dividend / divisor));

  if (quotient.precision () > 0  ||  divisor == 0)
    {
      const ACE_UINT32 field = quotient.fractional_field ();

      // Fractional = (dividend % divisor) * 10^precision / divisor

      // It would be nice to add round-up term:
      // Fractional = (dividend % divisor) * 10^precision / divisor  +
      //                10^precision/2 / 10^precision
      //            = ((dividend % divisor) * 10^precision  +  divisor) /
      //                divisor
      quotient.fractional (static_cast<ACE_UINT32> (
                             dividend % divisor * field / divisor));
    }
  else
    {
      // No fractional portion is requested, so don't bother
      // calculating it.
      quotient.fractional (0);
    }
}

void
ACE_Stats::quotient (const ACE_Stats_Value &dividend,
                     const ACE_UINT32 divisor,
                     ACE_Stats_Value &quotient)
{
  // The whole part of the division comes from simple integer division.
  quotient.whole (divisor == 0  ?  0  :  dividend.whole () / divisor);

  if (quotient.precision () > 0  ||  divisor == 0)
    {
      const ACE_UINT32 field = quotient.fractional_field ();

      // Fractional = (dividend % divisor) * 10^precision / divisor.
      quotient.fractional (dividend.whole () % divisor * field / divisor  +
                           dividend.fractional () / divisor);
    }
  else
    {
      // No fractional portion is requested, so don't bother
      // calculating it.
      quotient.fractional (0);
    }
}

void
ACE_Stats::square_root (const ACE_UINT64 n,
                        ACE_Stats_Value &square_root)
{
  ACE_UINT32 floor = 0;
  ACE_UINT32 ceiling = 0xFFFFFFFFu;
  ACE_UINT32 mid = 0;
  u_int i;

  // The maximum number of iterations is log_2 (2^64) == 64.
  for (i = 0; i < 64; ++i)
    {
      mid = (ceiling - floor) / 2  +  floor;
      if (floor == mid)
        // Can't divide the interval any further.
        break;
      else
        {
          // Multiply carefully to avoid overflow.
          ACE_UINT64 mid_squared = mid; mid_squared *= mid;
          if (mid_squared == n)
            break;
          else if (mid_squared < n)
            floor = mid;
          else
            ceiling = mid;
        }
    }

  square_root.whole (mid);
  ACE_UINT64 mid_squared = mid; mid_squared *= mid;

  if (square_root.precision ()  &&  mid_squared < n)
    {
      // (mid * 10^precision + fractional)^2 ==
      //   n^2 * 10^(precision * 2)

      const ACE_UINT32 field = square_root.fractional_field ();

      floor = 0;
      ceiling = field;
      mid = 0;

      // Do the 64-bit arithmetic carefully to avoid overflow.
      ACE_UINT64 target = n;
      target *= field;
      target *= field;

      ACE_UINT64 difference = 0;

      for (i = 0; i < square_root.precision (); ++i)
        {
          mid = (ceiling - floor) / 2 + floor;

          ACE_UINT64 current = square_root.whole () * field  +  mid;
          current *= square_root.whole () * field  +  mid;

          if (floor == mid)
            {
              difference = target - current;
              break;
            }
          else if (current <= target)
            floor = mid;
          else
            ceiling = mid;
        }

      // Check to see if the fractional part should be one greater.
      ACE_UINT64 next = square_root.whole () * field  +  mid + 1;
      next *= square_root.whole () * field  +  mid + 1;

      square_root.fractional (next - target < difference  ?  mid + 1  :  mid);
    }
  else
    {
      // No fractional portion is requested, so don't bother
      // calculating it.
      square_root.fractional (0);
    }
}

ACE_END_VERSIONED_NAMESPACE_DECL