summaryrefslogtreecommitdiff
path: root/ACE/ace/Timer_Queue_T.cpp
blob: d0de6d0c68a1c9edab7d5f46e21211e573321eba (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
// $Id$

#ifndef ACE_TIMER_QUEUE_T_CPP
#define ACE_TIMER_QUEUE_T_CPP

#include "ace/config-all.h"

#if !defined (ACE_LACKS_PRAGMA_ONCE)
# pragma once
#endif /* ACE_LACKS_PRAGMA_ONCE */

/*
 * Hook to specialize to add includes
 */
//@@ REACTOR_SPL_INCLUDE_FORWARD_DECL_ADD_HOOK

#include "ace/Timer_Queue_T.h"
#include "ace/Guard_T.h"
#include "ace/Reverse_Lock_T.h"
#include "ace/Log_Msg.h"
#include "ace/Null_Mutex.h"
#include "ace/OS_NS_sys_time.h"
#include "ace/Functor.h"

#if !defined (__ACE_INLINE__)
#include "ace/Timer_Queue_T.inl"
#endif /* __ACE_INLINE__ */

ACE_BEGIN_VERSIONED_NAMESPACE_DECL

// This fudge factor can be overriden for timers that need it, such as on
// Solaris, by defining the ACE_TIMER_SKEW symbol in the appropriate config
// header.
#if !defined (ACE_TIMER_SKEW)
#  define ACE_TIMER_SKEW 0
#endif /* ACE_TIMER_SKEW */

template <class TYPE, class FUNCTOR> ACE_INLINE
ACE_Timer_Queue_Upcall_Base<TYPE, FUNCTOR>::ACE_Timer_Queue_Upcall_Base (FUNCTOR * upcall_functor)
  : ACE_Abstract_Timer_Queue<TYPE>()
  , ACE_Copy_Disabled()
  , upcall_functor_(upcall_functor)
  , delete_upcall_functor_ (upcall_functor == 0)
{
  ACE_TRACE ("ACE_Timer_Queue_Upcall_Base::ACE_Timer_Queue_Upcall_Base");

  if (upcall_functor != 0)
    {
      return;
    }

  ACE_NEW (upcall_functor_, FUNCTOR);
}

template <class TYPE, class FUNCTOR> ACE_INLINE
ACE_Timer_Queue_Upcall_Base<TYPE, FUNCTOR>::~ACE_Timer_Queue_Upcall_Base ()
{
  ACE_TRACE ("ACE_Timer_Queue_Upcall_Base::~ACE_Timer_Queue_Upcall_Base");
  if (this->delete_upcall_functor_)
    {
      delete this->upcall_functor_;
    }
}

template <class TYPE, class FUNCTOR, class ACE_LOCK, typename TIME_POLICY> ACE_Time_Value
ACE_Timer_Queue_T<TYPE, FUNCTOR, ACE_LOCK, TIME_POLICY>::gettimeofday()
{
  return this->gettimeofday_static();
}

template <class TYPE, class FUNCTOR, class ACE_LOCK, typename TIME_POLICY> void
ACE_Timer_Queue_T<TYPE, FUNCTOR, ACE_LOCK, TIME_POLICY>::gettimeofday (ACE_Time_Value (*gettimeofday)(void))
{
  this->time_policy_.set_gettimeofday (gettimeofday);
}

template <class TYPE, class FUNCTOR, class ACE_LOCK, typename TIME_POLICY> ACE_Time_Value *
ACE_Timer_Queue_T<TYPE, FUNCTOR, ACE_LOCK, TIME_POLICY>::calculate_timeout (ACE_Time_Value *max_wait_time)
{
  ACE_TRACE ("ACE_Timer_Queue_T::calculate_timeout");
  ACE_MT (ACE_GUARD_RETURN (ACE_LOCK, ace_mon, this->mutex_, max_wait_time));

  if (this->is_empty ())
    // Nothing on the Timer_Queue, so use whatever the caller gave us.
    return max_wait_time;
  else
    {
      ACE_Time_Value const cur_time = this->gettimeofday_static ();

      if (this->earliest_time () > cur_time)
        {
          // The earliest item on the Timer_Queue is still in the
          // future.  Therefore, use the smaller of (1) caller's wait
          // time or (2) the delta time between now and the earliest
          // time on the Timer_Queue.

          this->timeout_ = this->earliest_time () - cur_time;
          if (max_wait_time == 0 || *max_wait_time > timeout_)
            return &this->timeout_;
          else
            return max_wait_time;
        }
      else
        {
          // The earliest item on the Timer_Queue is now in the past.
          // Therefore, we've got to "poll" the Reactor, i.e., it must
          // just check the descriptors and then dispatch timers, etc.
          this->timeout_ = ACE_Time_Value::zero;
          return &this->timeout_;
        }
    }
}

template <class TYPE, class FUNCTOR, class ACE_LOCK, typename TIME_POLICY> ACE_Time_Value *
ACE_Timer_Queue_T<TYPE, FUNCTOR, ACE_LOCK, TIME_POLICY>::calculate_timeout (ACE_Time_Value *max_wait_time,
                                                               ACE_Time_Value *the_timeout)
{
  ACE_TRACE ("ACE_Timer_Queue_T::calculate_timeout");

  if (the_timeout == 0)
    return 0;

  if (this->is_empty ())
    {
      // Nothing on the Timer_Queue, so use whatever the caller gave us.
      if (max_wait_time)
        *the_timeout = *max_wait_time;
      else
        return 0;
    }
  else
    {
      ACE_Time_Value cur_time = this->gettimeofday_static ();

      if (this->earliest_time () > cur_time)
        {
          // The earliest item on the Timer_Queue is still in the
          // future.  Therefore, use the smaller of (1) caller's wait
          // time or (2) the delta time between now and the earliest
          // time on the Timer_Queue.

          *the_timeout = this->earliest_time () - cur_time;
          if (!(max_wait_time == 0 || *max_wait_time > *the_timeout))
            *the_timeout = *max_wait_time;
        }
      else
        {
          // The earliest item on the Timer_Queue is now in the past.
          // Therefore, we've got to "poll" the Reactor, i.e., it must
          // just check the descriptors and then dispatch timers, etc.
          *the_timeout = ACE_Time_Value::zero;
        }
    }
  return the_timeout;
}

template <class TYPE, class FUNCTOR, class ACE_LOCK, typename TIME_POLICY> ACE_Time_Value
ACE_Timer_Queue_T<TYPE, FUNCTOR, ACE_LOCK, TIME_POLICY>::current_time()
{
  ACE_Time_Value tv = this->gettimeofday_static ();
  tv += this->timer_skew();
  return tv;
}

template <class TYPE, class FUNCTOR, class ACE_LOCK, typename TIME_POLICY> void
ACE_Timer_Queue_T<TYPE, FUNCTOR, ACE_LOCK, TIME_POLICY>::dump (void) const
{
#if defined (ACE_HAS_DUMP)
  ACE_TRACE ("ACE_Timer_Queue_T::dump");
  ACE_DEBUG ((LM_DEBUG, ACE_BEGIN_DUMP, this));
  this->timeout_.dump ();
  this->timer_skew_.dump ();
  ACE_DEBUG ((LM_DEBUG, ACE_END_DUMP));
#endif /* ACE_HAS_DUMP */
}

template <class TYPE, class FUNCTOR, class ACE_LOCK, typename TIME_POLICY>
ACE_Timer_Queue_T<TYPE, FUNCTOR, ACE_LOCK, TIME_POLICY>::ACE_Timer_Queue_T (FUNCTOR *upcall_functor,
                                                               ACE_Free_List<ACE_Timer_Node_T <TYPE> > *freelist,
									    TIME_POLICY const & time_policy)
  : ACE_Timer_Queue_Upcall_Base<TYPE,FUNCTOR>(upcall_functor),
    time_policy_ (time_policy),
    delete_free_list_ (freelist == 0),
    timer_skew_ (0, ACE_TIMER_SKEW)
{
  ACE_TRACE ("ACE_Timer_Queue_T::ACE_Timer_Queue_T");

  if (!freelist)
    ACE_NEW (free_list_,
             (ACE_Locked_Free_List<ACE_Timer_Node_T<TYPE>,ACE_Null_Mutex>));
  else
    free_list_ = freelist;
}

template <class TYPE, class FUNCTOR, class ACE_LOCK, typename TIME_POLICY>
ACE_Timer_Queue_T<TYPE, FUNCTOR, ACE_LOCK, TIME_POLICY>::~ACE_Timer_Queue_T (void)
{
  ACE_TRACE ("ACE_Timer_Queue_T::~ACE_Timer_Queue_T");

  // Cleanup the free_list on the way out
  if (this->delete_free_list_)
    delete this->free_list_;
}

template <class TYPE, class FUNCTOR, class ACE_LOCK, typename TIME_POLICY> ACE_Timer_Node_T<TYPE> *
ACE_Timer_Queue_T<TYPE, FUNCTOR, ACE_LOCK, TIME_POLICY>::alloc_node (void)
{
  return this->free_list_->remove ();
}

template <class TYPE, class FUNCTOR, class ACE_LOCK, typename TIME_POLICY> void
ACE_Timer_Queue_T<TYPE, FUNCTOR, ACE_LOCK, TIME_POLICY>::free_node (ACE_Timer_Node_T<TYPE> *node)
{
  this->free_list_->add (node);
}

template <class TYPE, class FUNCTOR, class ACE_LOCK, typename TIME_POLICY> ACE_LOCK &
ACE_Timer_Queue_T<TYPE, FUNCTOR, ACE_LOCK, TIME_POLICY>::mutex (void)
{
  return this->mutex_;
}

template <class TYPE, class FUNCTOR, class ACE_LOCK, typename TIME_POLICY> long
ACE_Timer_Queue_T<TYPE, FUNCTOR, ACE_LOCK, TIME_POLICY>::schedule (const TYPE &type,
                                                      const void *act,
                                                      const ACE_Time_Value &future_time,
                                                      const ACE_Time_Value &interval)
{
  ACE_MT (ACE_GUARD_RETURN (ACE_LOCK, ace_mon, this->mutex_, -1));

  // Schedule the timer.
  long const result =
    this->schedule_i (type,
                      act,
                      future_time,
                      interval);

  // Return on failure.
  if (result == -1)
    return result;

  // Inform upcall functor of successful registration.
  this->upcall_functor ().registration (*this,
                                        type,
                                        act);

  // Return result;
  return result;
}

// Run the <handle_timeout> method for all Timers whose values are <=
// <cur_time>.
template <class TYPE, class FUNCTOR, class ACE_LOCK, typename TIME_POLICY> int
ACE_Timer_Queue_T<TYPE, FUNCTOR, ACE_LOCK, TIME_POLICY>::expire (const ACE_Time_Value &cur_time)
{
  ACE_TRACE ("ACE_Timer_Queue_T::expire");
  ACE_MT (ACE_GUARD_RETURN (ACE_LOCK, ace_mon, this->mutex_, -1));

  // Keep looping while there are timers remaining and the earliest
  // timer is <= the <cur_time> passed in to the method.

  if (this->is_empty ())
    return 0;

  int number_of_timers_expired = 0;
  int result = 0;

  ACE_Timer_Node_Dispatch_Info_T<TYPE> info;

  while ((result = this->dispatch_info_i (cur_time, info)) != 0)
    {
      ACE_MT (ACE_Reverse_Lock<ACE_LOCK> rev_lk(this->mutex_));
      ACE_MT (ACE_GUARD_RETURN (ACE_Reverse_Lock<ACE_LOCK>, rmon, rev_lk, -1));

      const void *upcall_act = 0;

      this->preinvoke (info, cur_time, upcall_act);

      this->upcall (info, cur_time);

      this->postinvoke (info, cur_time, upcall_act);

      ++number_of_timers_expired;

    }

  ACE_UNUSED_ARG (result);
  return number_of_timers_expired;
}

template <class TYPE, class FUNCTOR, class ACE_LOCK, typename TIME_POLICY> void
ACE_Timer_Queue_T<TYPE, FUNCTOR, ACE_LOCK, TIME_POLICY>::recompute_next_abs_interval_time
    (ACE_Timer_Node_T<TYPE> *expired,
     const ACE_Time_Value &cur_time)
{
  if ( expired->get_timer_value () <= cur_time )
    {
      /*
       * Somehow the current time is past when this time was
       * supposed to expire (e.g., timer took too long,
       * somebody changed system time, etc.).  There used to
       * be a simple loop here that skipped ahead one timer
       * interval at a time, but that was horribly inefficient
       * (an O(n) algorithm) when the timer duration was small
       * relative to the amount of time skipped.
       *
       * So, we replace the loop with a simple computation,
       * which also happens to be O(1).  All times get
       * normalized in the computation to microseconds.
       *
       * For reference, the loop looked like this:
       *
       *   do
       *     expired->set_timer_value (expired->get_timer_value () +
       *                               expired->get_interval ());
       *   while (expired->get_timer_value () <= cur_time);
       *
       */

      // Compute the duration of the timer's interval
      ACE_UINT64 interval_usec;
      expired->get_interval ().to_usec (interval_usec);

      // Compute the span between the current time and when
      // the timer would have expired in the past (and
      // normalize to microseconds).
      ACE_Time_Value old_diff = cur_time - expired->get_timer_value ();
      ACE_UINT64 old_diff_usec;
      old_diff.to_usec (old_diff_usec);

      // Compute the delta time in the future when the timer
      // should fire as if it had advanced incrementally.  The
      // modulo arithmetic accomodates the likely case that
      // the current time doesn't fall precisely on a timer
      // firing interval.
      ACE_UINT64 new_timer_usec =
        interval_usec - (old_diff_usec % interval_usec);

      // Compute the absolute time in the future when this
      // interval timer should expire.
      ACE_Time_Value new_timer_value
        (cur_time.sec ()
         + static_cast<time_t>(new_timer_usec / ACE_ONE_SECOND_IN_USECS),
         cur_time.usec ()
         + static_cast<suseconds_t>(new_timer_usec % ACE_ONE_SECOND_IN_USECS));

      expired->set_timer_value (new_timer_value);
    }
}

template <class TYPE, class FUNCTOR, class ACE_LOCK, typename TIME_POLICY> int
ACE_Timer_Queue_T<TYPE, FUNCTOR, ACE_LOCK, TIME_POLICY>::expire_single (
    ACE_Command_Base & pre_dispatch_command)
{
  ACE_TRACE ("ACE_Timer_Queue_T::expire_single");
  ACE_Timer_Node_Dispatch_Info_T<TYPE> info;
  ACE_Time_Value cur_time;
  {
    // Create a scope for the lock ...
    ACE_MT (ACE_GUARD_RETURN (ACE_LOCK, ace_mon, this->mutex_, -1));

    if (this->is_empty ())
      return 0;

    // Get the current time
    cur_time = this->gettimeofday_static () + this->timer_skew ();

    // Look for a node in the timer queue whose timer <= the present
    // time.
    if (!this->dispatch_info_i (cur_time, info))
      {
	return 0;
      }
  }
  // We do not need the lock anymore, all these operations take place
  // with local variables.
  const void *upcall_act = 0;

  // Preinvoke (handles refcount if needed, etc.)
  this->preinvoke (info, cur_time, upcall_act);

  // Release the token before expiration upcall.
  pre_dispatch_command.execute();

  // call the functor
  this->upcall (info, cur_time);

  // Postinvoke (undo refcount if needed, etc.)
  this->postinvoke (info, cur_time, upcall_act);

  // We have dispatched a timer
  return 1;
}

template <class TYPE, class FUNCTOR, class ACE_LOCK, typename TIME_POLICY> int
ACE_Timer_Queue_T<TYPE, FUNCTOR, ACE_LOCK, TIME_POLICY>::dispatch_info_i (const ACE_Time_Value &cur_time,
                                                             ACE_Timer_Node_Dispatch_Info_T<TYPE> &info)
{
  ACE_TRACE ("ACE_Timer_Queue_T::dispatch_info_i");

  if (this->is_empty ())
    return 0;

  ACE_Timer_Node_T<TYPE> *expired = 0;

  if (this->earliest_time () <= cur_time)
    {
      expired = this->remove_first ();

      // Get the dispatch info
      expired->get_dispatch_info (info);

      // Check if this is an interval timer.
      if (expired->get_interval () > ACE_Time_Value::zero)
        {
          // Make sure that we skip past values that have already
          // "expired".
          this->recompute_next_abs_interval_time (expired, cur_time);

          // Since this is an interval timer, we need to reschedule
          // it.
          this->reschedule (expired);
        }
      else
        {
          // Call the factory method to free up the node.
          this->free_node (expired);
        }

      return 1;
    }

  return 0;
}

template <class TYPE, class FUNCTOR, class ACE_LOCK, typename TIME_POLICY> void
ACE_Timer_Queue_T<TYPE, FUNCTOR, ACE_LOCK, TIME_POLICY>::return_node (ACE_Timer_Node_T<TYPE> *node)
{
  ACE_MT (ACE_GUARD (ACE_LOCK, ace_mon, this->mutex_));
  this->free_node (node);
}

ACE_END_VERSIONED_NAMESPACE_DECL

#endif /* ACE_TIMER_QUEUE_T_CPP */