blob: dc4379b772032c492351c1154258db94a19ef14e (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
|
// $Id$
// ============================================================================
//
// = LIBRARY
// tests
//
// = FILENAME
// Unbounded_Set_Test.cpp
//
// = DESCRIPTION
// This test illustrates the use of ACE_Unbounded_Set.
// No command line arguments are needed to run the test.
//
// = AUTHOR
// Rudolf Weber <rfweber@tesionmail.de>,
// ace/tests integration <Oliver.Kellogg@sysde.eads.net>
//
// ============================================================================
#include "test_config.h"
#include <ace/Unbounded_Set.h>
#include <ace/Auto_Ptr.h>
#include <ace/SString.h>
ACE_RCSID(tests, Unbounded_Set_Test, "$Id$")
struct MyNode
{
unsigned k;
MyNode () : k (0) {}
MyNode (int pk) : k (pk) {}
MyNode (const MyNode& o) : k (o.k) {}
bool operator== (const MyNode& o) { return (k == o.k); }
};
size_t count_const_set (const ACE_Unbounded_Set<MyNode>& cubs)
{
size_t number_of_elements = 0;
for (ACE_Unbounded_Set<MyNode>::const_iterator ci (cubs); !ci.done(); ci++)
number_of_elements++;
return number_of_elements;
}
int
run_main (int, ACE_TCHAR *[])
{
int r;
unsigned k;
MyNode node (1);
ACE_START_TEST (ACE_TEXT ("Unbounded_Set_Test"));
ACE_Unbounded_Set<MyNode> ubs;
ACE_ASSERT (ubs.size () == 0);
// Insert a value. Immediately remove it.
r = ubs.insert (node);
ACE_ASSERT (r == 0);
ACE_ASSERT (ubs.size () == 1);
r = ubs.remove (node);
ACE_ASSERT (r == 0);
ACE_ASSERT (ubs.size () == 0);
// Insert several different values.
for (node.k = 1; node.k <= 5; node.k++)
{
r = ubs.insert (node);
ACE_ASSERT (r == 0);
ACE_ASSERT (ubs.size () == node.k);
}
// Test assigment of sets.
// To do that, we also test some of the iterator methods.
typedef ACE_Unbounded_Set<MyNode> MySet;
MySet ubs2 = ubs; // Test a typedef of a set.
ACE_ASSERT (ubs2.size() == ubs.size());
{
MySet::ITERATOR it1 (ubs);
MySet::iterator it2 (ubs2);
for (k = 1; k <= 5; k++)
{
ACE_ASSERT (! it1.done ());
ACE_ASSERT (! it2.done ());
MyNode n1 = *it1;
MyNode n2 = *it2;
ACE_ASSERT (n1 == n2);
it1.advance ();
it2.advance ();
}
ACE_ASSERT (it1.done ());
ACE_ASSERT (it2.done ());
// Verify that a set may be emptied while an iterator on the set is
// in-scope but inactive:
ubs.reset ();
// Restore original set from ubs2
ubs = ubs2;
}
// Selective deletion of elements and element retrieval.
{
MySet::iterator it (ubs2);
int deleted = 0;
while (! it.done ())
{
MyNode n = *it;
it.advance (); /* Being friendly here: Move the iterator on
so that element removal does not interfere
with the current iterator position.
The less friendly case, removal under the
current iterator position, is below. */
if (n.k % 2 == 1)
{
r = ubs2.remove (n);
deleted++;
}
}
ACE_ASSERT (ubs2.size () + deleted == ubs.size());
MyNode node2 (2);
ACE_ASSERT (ubs2.find (node2) == 0);
MyNode node3 (3);
ACE_ASSERT (ubs2.find (node3) != 0);
ubs2.insert (node3);
}
size_t s = count_const_set (ubs);
ACE_ASSERT (s == ubs.size ());
ACE_END_TEST;
return 0;
}
|