summaryrefslogtreecommitdiff
path: root/TAO/tao/Stub.h
blob: 5f422c10dd5fab29646ed90b2566b9313393d5a7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
// This may look like C, but it's really -*- C++ -*-
// $Id$

// ============================================================================
//
// = LIBRARY
//    TAO
//
// = FILENAME
//    Stub.h
//
// = DESCRIPTION
//
//    Data structures used by static and dynamic stubs, and to a
//    lesser degree by skeletons
//
//    Header file for Win32 C/C++/COM interface to one kind of CORBA
//    remote invocation framework.  This is for use by
//    compiler-generated code, not by portable applications!
//
//    These constitute the stub API to this "ORB Core".  Such
//    interfaces are not specified by OMG, and may differ between
//    different ORBs.  This one has the particular advantage that
//    stubs can be quite small.
//
// = AUTHOR
//     Copyright 1994-1995 by Sun Microsystems, Inc.
//
// ============================================================================

#if !defined (TAO_STUB_H)
#  define TAO_STUB_H

// Descriptions of parameters.

enum TAO_Param_Type
{
  // = TITLE
  //   TAO_Param_Type
  // =DESCRIPTION
  // Parameter mode of a given parameter.
  PARAM_IN,
  PARAM_OUT,
  PARAM_INOUT,
  PARAM_RETURN  // = PARAM_OUT
};

struct TAO_Param_Data
{
  // = TITLE
  //   TAO_Param_Data
  //
  // = DESCRIPTION
  //   Description of a single parameter.
  //
  //   If value_size is nonzero for OUT, INOUT, or RETURN parameters,
  //   it's (a) an indicator that the ORB returns a pointer-to-value
  //   for this parameter, and also (b) is the size of the top-level
  //   of the value that's returned (e.g. ignoring nested sequence
  //   buffers).  That is, it moves CPU cycles from runtime -- some
  //   calls to tc->size() -- to compile time where they're
  //   cheap/free.
  //
  //   It _must_ only be set for cases where the ORB allocates the
  //   return value, which must then be ORB::free()d ... e.g. where
  //   the value is a pointer to data such as a struct, sequence, or
  //   union.  (The CORBA C++ mapping doesn't require that for all
  //   "out" structs; only those of "variable size".)  If this value
  //   is nonzero, the value passed to do_static_call() must be the address
  //   of a pointer.

  CORBA::TypeCode_ptr tc;
  // TypeCode for the parameter

  TAO_Param_Type mode;
  // Its mode.

  size_t value_size;
  // zero or tc->size (). For SII, we always know its size since it is the IDL
  // compiler which generates the stub code.
};

// Function pointer returning a pointer to CORBA::Exception. This is used to
// describe the allocator for user-defined exceptions that are used internally
// by the interpreter.
typedef CORBA::Exception* (*TAO_Exception_Alloc) (void);

struct TAO_Exception_Data
{
  // = TITLE
  //   TAO_Exception_Data
  //
  // = DESCRIPTION
  //   Description of a single exception
  //
  //   The interpreter needs a way to allocate memory to hold the exception
  //   that was raised by the stub. This data structure provides the typecode
  //   for the exception as well as a static function pointer that does the job
  //   of memory allocation.

  CORBA::TypeCode_ptr tc;
  // typecode describing the exception

  TAO_Exception_Alloc alloc;
  // the allocator for this exception
};

struct TAO_Call_Data
{
  // = TITLE
  //   TAO_Call_Data
  //
  // = DESCRIPTION
  //   Descriptions of operations, as used by the stub interpreter.
  //   Only interpretive marshaling/unmarshaling is used, and the
  //   stubs don't know what particular on-the-wire protocol is being
  //   used.
  //
  //   When using C++ exceptions, many C++ compilers will require the
  //   use of compiled code throw the exception.  As binary standards
  //   for exception throwing evolve, it may become practical to
  //   interpretively throw exceptions.

  const char *opname;
  // Operation name.

  CORBA::Boolean is_roundtrip;
  // !oneway

  // When constructing tables of parameters, put them in the same
  // order they appear in the IDL spec: return value, then parameters
  // left to right.  Other orders may produce illegal IIOP protocol
  // messages.

  u_int param_count;
  // # parameters.

  const TAO_Param_Data *params;
  // Their descriptions.

  // The exceptions allowed by this operation can be listed in any
  // order, and need not include the system exceptions which may be
  // returned by OMG-IDL operations.  If an operation tries to return
  // any exception not allowed by its type signature, this causes a a
  // system exception to be reported.

  u_int except_count;
  // # exceptions.

  //  CORBA::TypeCode_ptr *excepts;
  TAO_Exception_Data *excepts;
  // Their descriptions.
};

struct TAO_Skel_Entry
{
  // = TITLE
  //   TAO_Skel_Entry
  //
  // = DESCRIPTION
  //   Skeletons map "ServerRequest" generic signatures to the static
  //   call signature required by the implementation's methods.  table
  //   of these per implementation
  //
  //   There are several optimizations that'd be desirable for use by
  //   "static skeletons", notably (a) passing of per-object data held
  //   by the OA so that the method doesn't need to look it up itself,
  //   (b) removing all mandatory heap allocation of data, and of
  //   course (c) handling all the built-in ORB calls like "is_a" and
  //   "get_implementation".  This code is currently set up only for
  //   Dynamic Skeletons and bridging, for which none of those are
  //   real issues.

  const TAO_Call_Data *op_descriptor;
  // pointer to the calldata structure that holds information about all the
  // parameters

  TAO_Skeleton impl_skeleton;
  // skeleton corresponding to the operation
};

class TAO_Export STUB_Object : public TAO_IUnknown
{
  // = TITLE
  //   STUB_Object
  //
  // = DESCRIPTION
  //   Per-objref data includes the (protocol-specific) Profile, which
  //   is handled by placing it into a subclass of this type along
  //   with data that may be used in protocol-specific caching
  //   schemes.
  //
  //   The type ID (the data specified by CORBA 2.0 that gets exposed
  //   "on the wire", and in stringified objrefs) is held by this
  //   module.
  //
  //   The stub and DII interpreter APIs are member functions of this
  //   type.
public:
  virtual void do_static_call (CORBA::Environment &env,
                               const TAO_Call_Data *info,
                               ...) = 0;
  // The "stub interpreter" method parameters are:
  //
  //    - env ... used for exception reporting
  //    - info ... describes the call
  //    - varargs parameters follow
  //
  // The varargs parameters are pointers to data instances as
  // described by info->params.  (If the value_size is nonzero, the
  // data instance is itself a pointer.)  The order on the call stack
  // must be exactly the order they're listed in info->params;
  // normally this is the order the values are listed in the OMG-IDL
  // operation specification.
  //
  // NOTE: This can be sped up by eliminating some parameter
  // shuffling.  The stub and "do_static_call" parameters are all but the
  // same, except that their order is different.

  virtual void do_dynamic_call (const char *opname,
                                CORBA::Boolean is_roundtrip,
                                CORBA::NVList_ptr args,
                                CORBA::NamedValue_ptr result,
                                CORBA::Flags flags,
                                CORBA::ExceptionList &exceptions,
                                CORBA::Environment &env) = 0;
  // Dynamic invocations use a more costly "varargs" calling
  // convention; it's got the same input data as the (static)
  // stub-oriented one, but the data is represented somewhat
  // differently.
  //
  // Operation-specific data isn't collected in a stack frame and into
  // a static/readonly "calldata" structure, but instead is collected
  // into these parameters, the majority of which are heap-allocated:
  //
  //    - opname ... the name of the operation
  //    - is_roundtrip ... true except for oneway operations, or ones where
  //      the client doesn't care about responses
  //    - args ... call parameters and their descriptions
  //    - result ... result and its description
  //    - flags ... only one DII flag is legal
  //    - exceptions ... list of legal user-defined exceptions
  //    - env ... used for exception reporting.

  CORBA::String_var type_id;
  // All objref representations carry around a type ID.

  virtual CORBA::ULong hash (CORBA::ULong maximum,
                             CORBA::Environment &env) = 0;
  // All objref representations know how to hash themselves and
  // compare themselves for equivalence to others.  It's easily
  // possible to have two objrefs that are distinct copies of data
  // that refers/points to the same remote object (i.e. are
  // equivalent).

  virtual CORBA::Boolean is_equivalent (CORBA::Object_ptr other_obj,
                                        CORBA::Environment &env) = 0;
  // check for equivalence

  STUB_Object (CORBA::String p = 0);
  // XXX All objref representations should know how to marshal
  // themselves.  That will involve ensuring that the IOR that gets
  // marshaled talks a specific protocol, otherwise the target of a
  // message would not be invoke using the objref it receives
  // (compromising functionality in a very basic and mysterious
  // manner).  So for example an objref might need to create a proxy
  // for itself rather than marshaling its own representation.  [ The
  // IIOP engine does not need to worry about such issues since it
  // only supports one protocol -- the problem won't show up.
  // "Multiprotocol ORBs" will need to solve that problem though.  ]

  virtual TAO_ObjectKey *key (CORBA::Environment &env) = 0;
  // Return the object key as an out parameter.  Caller should release
  // return value when finished with it.

protected:
  virtual ~STUB_Object (void);
  // XXX virtual inlines are evil.

  // COM operations ... provided by an implementation class which
  // inherits from this one.

private:
  // = Disallow copy constructor and assignment operator
  ACE_UNIMPLEMENTED_FUNC (STUB_Object (const STUB_Object &))
  ACE_UNIMPLEMENTED_FUNC (STUB_Object &operator = (const STUB_Object &))
};

#if defined (__ACE_INLINE__)
# include "tao/Stub.i"
#endif /* __ACE_INLINE__ */

#endif /* TAO_STUB_H */