summaryrefslogtreecommitdiff
path: root/TAO/tao/giop.cpp
blob: 2009b8133639d6020472f84201b1a74db8b163e0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
// @(#)giop.cpp	1.10 95/09/21
// Copyright 1994-1995 by Sun Microsystems Inc.
// All Rights Reserved
//
// GIOP:	Utility routines for sending, receiving GIOP messages
//
// Note that the Internet IOP is just the TCP-specific mapping of the
// General IOP.  Areas where other protocols may map differently
// include use of record streams (TCP has none), orderly disconnect
// (TCP has it), endpoint addressing (TCP uses host + port), security
// (Internet security should be leveraged by IIOP) and more.
//
// NOTE: There are a few places where this code knows that it's really
// talking IIOP instead of GIOP.  No rush to fix this so long as we
// are really not running atop multiple connection protocols.
//
// THREADING NOTE: currently, the connection manager eliminates tricky
// threading issues by providing this code with the same programming
// model both in threaded and unthreaded environments.  Since the GIOP
// APIs were all designed to be reentrant, this makes threading rather
// simple!
//
// That threading model is that the thread making (or handling) a call
// is given exclusive access to a connection for the duration of a
// call, so that no multiplexing or demultiplexing is needed.  That
// is, locking is at the "connection level" rather than "message
// level".
//
// The down side of this simple threading model is that utilization of
// system resources (mostly connections, but to some extent network
// I/O) in some kinds of environments can be inefficient.  However,
// simpler threading models are much easier to get properly debugged,
// and often perform better.  Also, such environments haven't been
// seen to be any kind of problem; the model can be changed later if
// needed, it's just an internal implementation detail.  Any portable
// ORB client is not allowed to rely on semantic implications of such
// a model.
//
// XXX there is lots of unverified I/O here.  In all cases, if an
// error is detected when marshaling or unmarshaling, it should be
// reported.

#include "tao/corba.h"

// Apart from the length word, headers are specified to be arrays of
// bytes.  They're dealt with as such, rather than using CDR routines,
// to speed up the critical paths for message read and write.

static inline CORBA::Boolean
start_message (TAO_GIOP_MsgType type,
	       CDR &msg)
{
  msg.next = msg.buffer;		// for reused streams
  msg.remaining = msg.length;

  if (msg.bytes_remaining () < TAO_GIOP_HEADER_LEN)
    return CORBA::B_FALSE;

  msg.next [0] = 'G';
  msg.next [1] = 'I';
  msg.next [2] = 'O';
  msg.next [3] = 'P';

  msg.next [4] = MY_MAJOR;
  msg.next [5] = MY_MINOR;
  msg.next [6] = TAO_ENCAP_BYTE_ORDER;
  msg.next [7] = (u_char) type;

  msg.skip_bytes (TAO_GIOP_HEADER_LEN);
  return CORBA::B_TRUE;
}

static const char digits [] = "0123456789ABCD";
static const char *names [] =
{
  "Request",
  "Reply",
  "CancelRequest",
  "LocateRequest",
  "LocateReply",
  "CloseConnection",
  "MessageError",
  "EndOfFile"
};

static void
dump_msg (const char *label,
	  const u_char *ptr,
	  size_t len)
{
  if (TAO_debug_level >= 2)
    {
      ACE_DEBUG ((LM_DEBUG, "%s GIOP v%c.%c msg, %d data bytes, %s endian, %s\n",
                  label, digits[ptr[4]], digits[ptr[5]],
                  len - TAO_GIOP_HEADER_LEN,
                  (ptr[6] == TAO_ENCAP_BYTE_ORDER) ? "my" : "other",
                  (ptr[7] <= TAO_GIOP_MessageError) ? names [ptr[7]] : "UNKNOWN TYPE"));

      if (TAO_debug_level >= 4)
        ACE_HEX_DUMP ((LM_DEBUG, (const char*)ptr, len, "(%P|%t) data bytes\n"));
    }
}

CORBA::Boolean
TAO_GIOP::send_request (TAO_SVC_HANDLER *&handler,
                        CDR &stream)
{
  char *buf = (char *) stream.buffer;
  size_t buflen = stream.next - stream.buffer;

  assert (buflen == (stream.length - stream.remaining));

  // Patch the message length in the GIOP header; it's always at the
  // same eight byte offset into the message.
  //
  // NOTE: Here would also be a fine place to calculate a digital
  // signature for the message and place it into a preallocated slot
  // in the "ServiceContext".  Similarly, this is a good spot to
  // encrypt messages (or just the message bodies) if that's needed in
  // this particular environment and that isn't handled by the
  // networking infrastructure (e.g. IPSEC).

  *(CORBA::Long *) (stream.buffer + 8) =
      (CORBA::Long) (buflen - TAO_GIOP_HEADER_LEN);

  // Strictly speaking, should not need to loop here because the
  // socket never gets set to a nonblocking mode ... some Linux
  // versions seem to need it though.  Leaving it costs little.

  dump_msg ("send", stream.buffer, buflen);

  ACE_SOCK_Stream &peer = handler->peer ();

  while (buflen > 0)
    {
      if (buflen > stream.length)
	{
	  ACE_DEBUG ((LM_DEBUG, "(%P|%t) ?? writebuf, buflen %u > length %u\n",
                      buflen, stream.length));
	  return CORBA::B_FALSE;
	}

      ssize_t writelen = peer.send ((char _FAR *) buf, buflen);

#if defined (DEBUG)
      //      dmsg_filter (6, "wrote %d bytes to connection %d",
      //	   writelen, connection);
      dmsg_filter (6, "wrote %d bytes", writelen);
#endif	/* DEBUG */

      assert ((writelen >= 0
	       && ((size_t)writelen) <= buflen) || writelen == -1);

      // On error or EOF, report the fault, close the connection, and
      // mark it as unusable/defunct.
      //
      // XXX on client side write errors, we may hit the case that the
      // server did a clean shutdown but we've not yet read the
      // GIOP::CloseConnection message.  If we get an error, we need
      // to see if there is such a message waiting for us, and if so
      // we should cause (full) rebinding to take place.

      if (writelen == -1)
	{
	  ACE_DEBUG ((LM_ERROR,
		      "(%P|%t) %p\n", "OutgoingMessage::writebuf ()"));
	  ACE_DEBUG ((LM_DEBUG,
		      "(%P|%t) closing conn %d after fault\n", peer.get_handle ()));
          handler->close ();
          handler = 0;
	  return CORBA::B_FALSE;
	}
      else if (writelen == 0)
	{
	  ACE_DEBUG ((LM_DEBUG,
		      "(%P|%t) OutgoingMessage::writebuf () ... EOF, closing conn %d\n",
		      peer.get_handle ()));
          handler->close ();
          handler = 0;
	  return CORBA::B_FALSE;
	}
      if ((buflen -= writelen) != 0)
	buf += writelen;

#if defined (DEBUG)
      //
      // NOTE:  this should never be seen.  However, on Linux
      // it's been seen with UNIX domain sockets.
      //
      if (buflen)
	dmsg_filter (8, "%u more bytes to write...\n", buflen);
#endif /* DEBUG */
    }
  return CORBA::B_TRUE;
}

// Server sends an "I'm shutting down now, any requests you've sent me
// can be retried" message to the server.  The message is prefab, for
// simplicity.
//
// NOTE: this is IIOP-specific though it doesn't look like it is.  It
// relies on a TCP-ism: orderly disconnect, which doesn't exist in all
// transport protocols.  Versions of GIOP atop some transport that's
// lacking orderly disconnect must define some transport-specific
// handshaking (e.g. the XNS/SPP handshake convention) in order to
// know that the same transport semantics are provided when shutdown
// is begun with messages "in flight". (IIOP doesn't report false
// errors in the case of "clean shutdown", because it relies on
// orderly disconnect as provided by TCP.  This quality of service is
// required to write robust distributed systems.)

static const char
close_message [TAO_GIOP_HEADER_LEN] =
{
  'G', 'I', 'O', 'P',
  MY_MAJOR,
  MY_MINOR,
  TAO_ENCAP_BYTE_ORDER,
  TAO_GIOP_CloseConnection,
  0, 0, 0, 0
};

void
TAO_GIOP::close_connection (TAO_Client_Connection_Handler *&handler,
                            void *)
{
  // It's important that we use a reliable shutdown after we send this
  // message, so we know it's received.
  //
  // XXX should recv and discard queued data for portability; note
  // that this won't block (long) since we never set SO_LINGER

  dump_msg ("send", (const u_char *) close_message, TAO_GIOP_HEADER_LEN);

  handler->peer ().send (close_message, TAO_GIOP_HEADER_LEN);
  ACE_HANDLE which = handler->peer ().get_handle ();
  handler->close ();
  handler = 0;
  ACE_DEBUG ((LM_DEBUG,
	      "(%P|%t) shut down socket %d\n", which));
}


// Send an "I can't understand you" message -- again, the message is
// prefabricated for simplicity.  This implies abortive disconnect (at
// the application level, if not at the level of TCP).
//
// NOTE that IIOP will still benefit from TCP's orderly disconnect.

static const char
error_message [TAO_GIOP_HEADER_LEN] =
{
  'G', 'I', 'O', 'P',
  MY_MAJOR,
  MY_MINOR,
  TAO_ENCAP_BYTE_ORDER,
  TAO_GIOP_MessageError,
  0, 0, 0, 0
};

static inline void
send_error (TAO_Client_Connection_Handler *&handler)
{
  dump_msg ("send", (const u_char *) error_message, TAO_GIOP_HEADER_LEN);
  handler->peer ().send (error_message, TAO_GIOP_HEADER_LEN);
  ACE_HANDLE which = handler->peer ().get_handle ();
  handler->close ();
  handler = 0;
  ACE_DEBUG ((LM_DEBUG, "(%P|%t) aborted socket %d\n", which));
}

// @@ Can't we remove this stuff and replace it with recv_n () on the
// <peer>?

// Loop on data read ... this is required with some implementations of
// sockets (e.g. winsock, HP/UX) since even when async mode is not
// set, recv () won't block until the requested amount of data is
// available.

static int
read_buffer (ACE_SOCK_Stream &peer,
	     char *buf,
	     size_t len)
{
  int bytes_read = 0;
  bytes_read = peer.recv_n (buf, len);
  return bytes_read;
}

// Read the message header, plus any data part of the message, setting
// stuff up so that CDR byteswaps data as appropriate.  Errors are
// reported to be MessageError messages.
//
// NOTE: this code is structured to issue two read () calls for each
// incoming message.  Alternative structures (e.g. with a user-space
// buffer per connection, or networking code handing off entire GIOP
// messages) can reduce the overhead of these calls to the networking
// code; correctness and simplicity drove this implementation more
// than efficiency.
//
// NOTE: as always, counting system calls associated with I/O gives
// you a good basic understanding of the tuning issues.  On the server
// side, there is normally select/read/read/write per invocation.  The
// call to select () can be omitted by allocating a thread to each
// connection; in some cases, that alone has almost doubled
// performance.  The two read () calls can be made into one by fancy
// buffering.  How fast could it be with both optimizations applied?

TAO_GIOP_MsgType
TAO_GIOP::recv_request (TAO_SVC_HANDLER *&handler,
                        CDR &msg,
                        CORBA::Environment &env)
{
  TAO_GIOP_MsgType	retval;
  CORBA::ULong message_size;
  ACE_SOCK_Stream &connection = handler->peer ();

  // Read the message header off the wire.
  //
  // THREADING NOTE: the connection manager handed us this connection
  // for exclusive use, so we need not worry about having two threads
  // interleave reads of partial messages.  This model is excellent
  // for "lightly threaded" systems (as will be the majority in the
  // near future) but makes less effective use of connection resources
  // as the "duty factor" goes down because of either long calls or
  // bursty contention during numerous short calls to the same server.

  assert (msg.length > TAO_GIOP_HEADER_LEN);

  msg.next = msg.buffer;
  msg.remaining = TAO_GIOP_HEADER_LEN;

  char *bufptr = (char _FAR *) msg.buffer;
  ssize_t len = read_buffer (connection, bufptr, TAO_GIOP_HEADER_LEN);
  // Read the header into the buffer.

  if (len != TAO_GIOP_HEADER_LEN)
    {
      switch (len)
        {
        case 0:
          ACE_DEBUG ((LM_DEBUG,
                      "(%P|%t) Header EOF ... peer probably aborted connection %d\n",
                      connection.get_handle ()));
          return TAO_GIOP_EndOfFile;
          // XXX should probably find some way to report this without
          // an exception, since for most servers it's not an error.
          // Is it _never_ an error?  Not sure ...
          /* NOTREACHED */
        case -1: // error
          ACE_DEBUG ((LM_ERROR,
                      "(%P|%t) GIOP::recv_request header socket error %p\n",
                      "read_buffer"));
          break;
          /* NOTREACHED */
        default:
          ACE_DEBUG ((LM_ERROR,
                      "(%P|%t) GIOP::recv_request header read failed, only %d of %d bytes\n",
                      len, TAO_GIOP_HEADER_LEN));
          break;
          /* NOTREACHED */
        }

      env.exception (new CORBA::COMM_FAILURE (CORBA::COMPLETED_MAYBE));
      return TAO_GIOP_MessageError;
    }

  // NOTE: if message headers, or whome messages, get encrypted in
  // application software (rather than by the network infrastructure)
  // they should be decrypted here ...

  // First make sure it's a GIOP message of any version.

  if (!(msg.buffer [0] == 'G'
	&& msg.buffer [1] == 'I'
	&& msg.buffer [2] == 'O'
	&& msg.buffer [3] == 'P'))
    {
      env.exception (new CORBA::MARSHAL (CORBA::COMPLETED_MAYBE));	// header
      ACE_DEBUG ((LM_DEBUG, "bad header, magic word\n"));
      return TAO_GIOP_MessageError;
    }

  // Then make sure the major version is ours, and the minor version
  // is one that we understand.

  if (!(msg.buffer [4] == MY_MAJOR && msg.buffer [5] <= MY_MINOR))
    {
      env.exception (new CORBA::MARSHAL (CORBA::COMPLETED_MAYBE));	// header
      ACE_DEBUG ((LM_DEBUG, "bad header, version\n"));
      return TAO_GIOP_MessageError;
    }

  // Get the message type out and adjust the buffer's records to record
  // that we've read everything except the length.

  retval = (TAO_GIOP_MsgType) msg.buffer[7];
  msg.skip_bytes (8);

  // Make sure byteswapping is done if needed, and then read the
  // message size (appropriately byteswapped).

  msg.do_byteswap = (msg.buffer [6] != TAO_ENCAP_BYTE_ORDER);
  msg.get_ulong (message_size);

  // Make sure we have the full length in memory, growing the buffer
  // if needed.
  //
  // NOTE: We could overwrite these few bytes of header... they're
  // left around for now as a debugging aid.

  assert (message_size <= UINT_MAX);

  if ((TAO_GIOP_HEADER_LEN + message_size) > msg.length)
    msg.grow ((size_t) (TAO_GIOP_HEADER_LEN + message_size));

  msg.remaining = (size_t) message_size;
  bufptr = (char *) & msg.buffer [TAO_GIOP_HEADER_LEN];

  // Read the rest of this message into the buffer.

  len = read_buffer (connection, bufptr, (size_t) message_size);

  if (len != (ssize_t) message_size)
    {
      switch (len)
        {
        case 0:
          ACE_DEBUG ((LM_DEBUG,
                      "(%P|%t) TAO_GIOP::recv_request body, EOF on handle %d\n",
                      connection.get_handle ()));
          break;
          /* NOTREACHED */
        case -1:
          ACE_DEBUG ((LM_ERROR,
                      "(%P|%t) TAO_GIOP::recv_request () body %p\n",
                      "read_buffer"));
          break;
          /* NOTREACHED */
        default:
          ACE_DEBUG ((LM_ERROR,
                      "(%P|%t) short read, only %d of %d bytes\n", len, message_size));
          break;
          /* NOTREACHED */
        }

      // clean up, and ...
      env.exception (new CORBA::COMM_FAILURE (CORBA::COMPLETED_MAYBE));	// body
      ACE_DEBUG ((LM_DEBUG, "couldn't read rest of message\n"));
      return TAO_GIOP_MessageError;
    }

  dump_msg ("recv", msg.buffer, (size_t) (message_size + TAO_GIOP_HEADER_LEN));
  return retval;
}

// Normal invocations don't involve any heap allocation; messages are
// constructed into stack-based buffers and are read into those
// buffers too.  Larger buffers are heap-allocated as needed.
//
// The constraint on request IDs is that no two requests from the same
// client with the same ID are outstanding at the same time.  In
// single threaded environments, this is met by any number whatever.
// When multiple threads are used, we eliminate the need for any
// locked state by using the thread ID as the request ID, since any
// given thread has at most one request outstanding at a time.
//
// NOTE: this means that if "deferred synchronous" calls get
// supported, it's done by creating a thread internally to make the
// call.  That is less disruptive (and error prone) in general than
// restructuring an ORB core in terms of asynchrony.

TAO_GIOP_Invocation::TAO_GIOP_Invocation (IIOP_Object *data,
                                          const char *operation,
                                          CORBA::Boolean is_roundtrip)
  : data_ (data),
    opname_ (operation),
    do_rsvp_ (is_roundtrip),
    my_request_id_ (0),
    stream_ (&buffer [0], sizeof buffer),
    handler_ (0)
{
  // The assumption that thread ids are ints is false and horribly
  // implementation-dependent, so this code just sucks.  But, at least
  // it will compile on multiple platforms through the magic of ACE
  // :-/

  //assert (sizeof (CORBA::ULong) == sizeof (ACE_thread_t));
  ACE_thread_t me = ACE_OS::thr_self ();

  // Copy in only as many bytes are valid, or only as many as we have
  // room for, whichever is less.  -------> What a friggin' HACK!?!?!
  ACE_OS::memcpy (&this->my_request_id_,
                  &me,
                  ACE_MIN (sizeof (me), sizeof (this->my_request_id_)));
}

TAO_GIOP_Invocation::~TAO_GIOP_Invocation (void)
{
  if (this->handler_ != 0)
    this->handler_->idle ();
}

// Octet codes for the parameters of the "Opaque" (sequence of octet)
// data type used various places internally ... a CDR encapsulation
// holding two parameters (like all sequence TypeCodes).
//
// NOTE: this **MUST** be longword aligned, which is why it's coded as
// a longword array not an octet array.  Just sticking a long in for
// padding won't work with compilers that optimize unused data out of
// existence.

static const CORBA::Long _oc_opaque [] =
{	// CDR typecode octets
  TAO_ENCAP_BYTE_ORDER,				// native endian + padding; "tricky"
  10,				// ... (sequence of) octets
  0				// ... unbounded
};

CORBA::TypeCode
TC_opaque (CORBA::tk_sequence,
           sizeof _oc_opaque,
           (u_char *) &_oc_opaque,
           CORBA::B_FALSE);

// Octet codes for the parameters of the ServiceContextList TypeCode
// ...  this is a CDR encapsulation holding two parameters (like all
// sequences): a TypeCode, and the bounds of the sequence (zero in
// this case).
//
// This is complicated since the Typecode for the data type for the
// sequence members is complex, a structure that nests two further
// typecodes (one is a sequence).
//
// NOTE:  this must be longword aligned!

static const CORBA::Long _oc_svc_ctx_list [] =
{
  // START bytes of encapsulation 0
  TAO_ENCAP_BYTE_ORDER, // native endian + padding; "tricky"

  //
  // FIRST sequence param:  typecode for struct is complex,
  // and so uses a nested encapsulation.
  //
  CORBA::tk_struct,
  72, // length of encapsulation 1

  // START bytes of encapsulation 1 (struct params)
  1, // native endian + padding; "tricky"
  1, 0, // type ID omitted:  null string
  1, 0, // name omitted "ServiceContext"

  2, // two struct elements

  // First structure element:  name, typecode for ULong
  //
  // NOTE:  to be more strictly correct this could be a CORBA::tk_alias
  // typecode ...

  1, 0, // name omitted:  "context_id"
  CORBA::tk_long,

  // Second structure element: name, typecode for sequence of octet;
  // the typecode for sequence of octet is complex, there's a second
  // level of nested encapuslation here.

  1, 0, // name omitted:  "context_data"
  CORBA::tk_sequence,	// sequence typecode
  16, // length of encapsulation 2

  // START bytes of encapsulation 2 (sequence params)
  1, // native endian + padding; "tricky"
  1, 0, // type ID omitted:  null string
  CORBA::tk_octet, // (sequence of) octet
  0, // ... unbounded length
  // END bytes of encapsulation 2 (sequence params)

  // END bytes of encapsulation 1 (struct params)

  // SECOND sequence param:  bound of sequence (none)
  0 // unbounded seq of ServiceContext
  // END bytes of encapsulation 0 (sequence params)
};

CORBA::TypeCode
TC_ServiceContextList (CORBA::tk_sequence,
                       sizeof _oc_svc_ctx_list,
                       (u_char *) &_oc_svc_ctx_list,
                       CORBA::B_FALSE);

// The public API involves creating an invocation, starting it, filling
// in request parameters, actually performing the invocation, getting
// response parameters, and then cleaning up.  Sometimes they must be
// restarted (e.g. request forwarding).  This is the start/restart entry.

void
TAO_GIOP_Invocation::start (CORBA::Environment &env)
{
  const TAO_opaque *key;

  // First try to bind to the appropriate address.  We do that here
  // since we may get forwarded to a different objref in the course of
  // any given call, with new start () call each time.  It's not
  // cached in the objref data since the connections change
  // asynchronously from objref invocations and this simplifies
  // connection management.
  //
  // THREADING NOTE: this connection is reserved to this call.  Also,
  // starting at this point in the call, new forwarding information
  // will not be used until/unless the call is reissued.  Correctness
  // is not affected, the call will just be forwarded later than it
  // might be in a more complex implementation.

  assert (data_ != 0);

  // @@ Why is this lock here, i.e., what is it protecting?  Can
  // we remove it?
  CORBA::Object_ptr obj = 0;

  // Get a CORBA::Object_ptr from _data using <QueryInterface>.
  (void) this->data_->QueryInterface (IID_CORBA_Object, (void **) &obj);

  // Get a pointer to the connector, which might be in thread-specific
  // storage, depending on the concurrency model.
  TAO_CONNECTOR *con = TAO_ORB_Core_instance ()->connector ();

  // Determine the object key and the address to which we'll need a
  // connection.
  ACE_INET_Addr *server_addr_p = 0;

  {
    // Begin a new scope so we keep this lock only as long as
    // necessary
#if 0 /* @@ don't delete this, chris */
    ACE_MT (ACE_GUARD (ACE_SYNCH_MUTEX, guard, data_->fwd_profile_lock ()));
#endif
    if (data_->fwd_profile_i () != 0)
      {
        key = &data_->fwd_profile_i ()->object_key;
        server_addr_p = &data_->fwd_profile_i ()->get_object_addr ();
      }
    else
      {
        key = &data_->profile.object_key;
        server_addr_p = &data_->profile.get_object_addr ();
      }
  }

  if (server_addr_p == 0)
    {
      env.exception (new CORBA::COMM_FAILURE (CORBA::COMPLETED_NO));
      return;
    }

  this->handler_ = 0;
  // Must reset handler, otherwise, <ACE_Cached_Connect_Strategy> will
  // complain.

  // Establish the connection and get back a
  // <Client_Connection_Handler>.
  if (con->connect (this->handler_,
                    *server_addr_p) == -1)
    {
      // @@ Need to figure out which exception to set...this one is
      // pretty vague.
      env.exception (new CORBA::COMM_FAILURE (CORBA::COMPLETED_NO));
      return;
    }

  // Use the ACE_SOCK_Stream from the Client_Connection_Handler for
  // communication inplace of the endpoint used below.

  // POLICY DECISION: If the client expects most agents to forward,
  // then it could try to make sure that it's been forwarded at least
  // once by eliciting it with a LocateRequest message. (Further
  // hinting in the IIOP::ProfileData could help!)
  //
  // That scenario does not match an "Inter" ORB Protocol well, since
  // bridges chain calls rather than forwarding them.  It does match
  // some kinds of "Intra" ORB scenarios well, with many agents that
  // spawn new processes talking to their clients across the net.
  //
  // At this time, the policy noted above is followed in the sense
  // that this software does NOT expect most agents to forward, so it
  // doesn't bother to probe.  Correctness is not affected; this is
  // only a quality-of-service policy.  It affects mostly performance,
  // but the "best efforts" semantics for "oneway" messages would also
  // be impacted in that some (by definition, buggy!) code which used
  // only "oneway" messages might not work at all.

  // Build the outgoing message, starting with generic GIOP header.

  CORBA::Boolean bt = start_message (TAO_GIOP_Request, this->stream_);

  if (bt != CORBA::B_TRUE)
    {
      env.exception (new CORBA::MARSHAL (CORBA::COMPLETED_NO));
      return;
    }

  // Then fill in the rest of the RequestHeader
  //
  // The first element of header is service context list;
  // transactional context would be acquired here using the
  // transaction service APIs.  Other kinds of context are as yet
  // undefined.
  //
  // Last element of request header is the principal; no portable way
  // to get it, we just pass empty principal (convention: indicates
  // "anybody").  Steps upward in security include passing an
  // unverified user ID, and then verifying the message (i.e. a dummy
  // service context entry is set up to hold a digital signature for
  // this message, then patched shortly before it's sent).

  static CORBA::Principal_ptr anybody = 0;
  static TAO_GIOP_ServiceContextList svc_ctx;	// all zeroes

  if (this->stream_.encode (&TC_ServiceContextList, 0, &svc_ctx, env)
      != CORBA::TypeCode::TRAVERSE_CONTINUE)
    return;

  if (!this->stream_.put_ulong (this->my_request_id_)
      || !this->stream_.put_boolean (this->do_rsvp_))
    {
      env.exception (new CORBA::MARSHAL (CORBA::COMPLETED_NO));
      return;
    }

  if (this->stream_.encode (&TC_opaque,
                            key,
                            0,
                            env) != CORBA::TypeCode::TRAVERSE_CONTINUE
      || this->stream_.encode (CORBA::_tc_string,
                               &opname_,
                               0,
                               env) != CORBA::TypeCode::TRAVERSE_CONTINUE
      || this->stream_.encode (CORBA::_tc_Principal,
                               &anybody,
                               0,
                               env) != CORBA::TypeCode::TRAVERSE_CONTINUE)
    return; // right after fault
  else
    return; // no fault reported
}

extern CORBA::ExceptionList __system_exceptions;

// Send request, block until any reply comes back, and unmarshal reply
// parameters as appropriate.

TAO_GIOP_ReplyStatusType
TAO_GIOP_Invocation::invoke (CORBA::ExceptionList &exceptions,
                             CORBA::Environment &env)
{
  // Send Request, return on error or if we're done

  TAO_SVC_HANDLER *handler = this->handler_;

  if (TAO_GIOP::send_request (handler, this->stream_) == 0)
    {
      // send_request () closed the connection; we just release it here.
      //
      // XXX highly desirable to know whether we wrote _any_ data; if
      // we wrote none, then there's no chance the call completed and
      // applications don't have to deal with those nasty
      // indeterminate states where they can't immediatly tell if
      // what's safe to do.
      //
      // XXX also, there might have been a GIOP::CloseConnection
      // message in the input queue.  If so, this request should be
      // treated as a (full) "rebind" case.  Can't do that from this
      // point in the code however!  Some minor restructuring needs to
      // happen.
      //
      env.exception (new CORBA::COMM_FAILURE (CORBA::COMPLETED_MAYBE));
      return TAO_GIOP_SYSTEM_EXCEPTION;
    }
  if (!this->do_rsvp_)
    return TAO_GIOP_NO_EXCEPTION;

  // This blocks until the response is read.  In the current version,
  // there is only one client thread that ever uses this connection,
  // so most response messages are illegal.
  //
  // THREADING NOTE: to make more efficient use of connection
  // resources, we'd multiplex I/O on connections.  For example, one
  // thread would write its GIOP::Request (or GIOP::LocateRequest etc)
  // message and block for the response, then another would do the
  // same thing.  When a response came back, it would be handed to the
  // thread which requested it.
  //
  // Currently the connection manager doesn't support such fine
  // grained connection locking, and also this server implementation
  // wouldn't take advantage of that potential concurrency in requests
  // either.  There are often performance losses coming from
  // fine-grained locks being used inappropriately; there's some
  // evidence that locking at the level of requests loses on at least
  // some platforms.
  //
  // XXX In all MT environments, there's a cancellation point lurking
  // here; need to investigate.  Client threads would frequently be
  // canceled sometime during recv_request ... the correct action to
  // take on being canceled is to issue a CancelRequest message to the
  // server and then imediately let other client-side cancellation
  // handlers do their jobs.
  //
  // In C++, that basically means to unwind the stack using almost
  // normal procedures: all destructors should fire, and some "catch"
  // blocks should probably be able to handle things like releasing
  // pointers. (Without unwinding the C++ stack, resources that must
  // be freed by thread cancellation won't be freed, and the process
  // won't continue to function correctly.)  The tricky part is that
  // according to POSIX, all C stack frames must also have their
  // (explicitly coded) handlers called.  We assume a POSIX.1c/C/C++
  // environment.

  switch (TAO_GIOP::recv_request (handler, this->stream_, env))
    {
    case TAO_GIOP_Reply:
      // handle reply ... must be right one etc
      break;

    case TAO_GIOP_CloseConnection:
      // Special case of forwarding -- server was closing the
      // connection, which just indicates resource constraints, not an
      // error.  The client is effectively "forwarded" to the same
      // server!
      //
      // However, we must reinitialize the forwarding chain, since the
      // resource being reclaimed might also have been the process,
      // not just the connection.  Without reinitializing, we'd give
      // false error reports to applications.
      {
#if 0 /* @@ don't delete this, chris */
	ACE_MT (ACE_GUARD_RETURN (ACE_SYNCH_MUTEX, guard, data_->fwd_profile_lock (), TAO_GIOP_SYSTEM_EXCEPTION));
#endif

        IIOP::Profile *old = data_->fwd_profile_i (0);
	delete old;

        this->handler_->close ();
        this->handler_ = 0;
	return TAO_GIOP_LOCATION_FORWARD;
      }

    case TAO_GIOP_Request:
    case TAO_GIOP_CancelRequest:
    case TAO_GIOP_LocateRequest:
    case TAO_GIOP_LocateReply:
    default:
      // These are all illegal messages to find.  If found, they could
      // be indicative of client bugs (lost track of input stream) or
      // server bugs; maybe the request was acted on, maybe not, we
      // can't tell.
      ACE_DEBUG ((LM_DEBUG, "(%P|%t) illegal message in response to my Request!\n"));
      env.exception (new CORBA::COMM_FAILURE (CORBA::COMPLETED_MAYBE));
      // FALLTHROUGH ...

    case TAO_GIOP_MessageError:
      // Couldn't read it for some reason ... exception's set already,
      // so just tell the other end about the trouble (closing the
      // connection) and return.
      send_error (this->handler_);
      return TAO_GIOP_SYSTEM_EXCEPTION;
    }

  // Process reply message.  Again, due to the single threading in
  // this code, only the reply to this request is allowed to be coming
  // back.
  //
  // NOTE: if the response really _isn't_ for this thread, it's now
  // treated as an error in which synchronization can't be recovered.
  // There might be cases where it _could_ be recovered ... e.g. maybe
  // for some reason the previous call couldn't pick up its response.
  // It'd be worth investigating (and handling) any such cases.
  //
  // NOTE: since this implementation supports no ORB services
  // (notably, the transaction service, which is the only one that's
  // currently defined), the reply context is discarded.  Normally
  // it'd be fed, component at a time, to the relevant services.
  //
  // NOTE: As security support kicks in, this is the right place to
  // verify a digital signature, if that is required in this
  // particular runtime security environment.  How to know if that's
  // the case?  It's likely that standard Internet IPSEC
  // infrastructure (RFC 1825 through 1827, and successors) will be
  // used to enforce many security policies; integrity and privacy
  // guarantees may be provided by the network, and need no support
  // here.

  TAO_GIOP_ServiceContextList reply_ctx;
  CORBA::ULong request_id;
  CORBA::ULong reply_status;		// TAO_GIOP_ReplyStatusType

  if (this->stream_.decode (&TC_ServiceContextList, &reply_ctx, 0, env)
      != CORBA::TypeCode::TRAVERSE_CONTINUE)
    {
      send_error (this->handler_);
      return TAO_GIOP_SYSTEM_EXCEPTION;
    }

  delete [] reply_ctx.buffer;

  if (!this->stream_.get_ulong (request_id)
      || request_id != this->my_request_id_
      || !this->stream_.get_ulong (reply_status)
      || reply_status > TAO_GIOP_LOCATION_FORWARD)
    {
      send_error (this->handler_);
      env.exception (new CORBA::COMM_FAILURE (CORBA::COMPLETED_MAYBE));
      ACE_DEBUG ((LM_DEBUG, "(%P|%t) bad Response header\n"));
      return TAO_GIOP_SYSTEM_EXCEPTION;
    }

  // If there was no exception, let the caller parse the normal
  // response.  Otherwise parse and handle the response; we always
  // know how to deal with the standard exceptions, and the caller
  // provides a list of allowed user-defined exceptions so that we
  // know how to unmarshal those too (without IFR consultation).
  //
  // When requests are forwarded, we just store the revised profile
  // data in this objref structure.  The expectation is that the call
  // will be reissued until someone gives up on a forwarding chain,
  // and that other calls will reap the benefit of the forwarding work
  // by this thread.
  //
  // NOTE: should ensure that from here on, all system exceptions
  // return COMPLETED_YES status ... even ones reported by code which
  // we call.

  switch (reply_status)
    {
    case TAO_GIOP_NO_EXCEPTION:
      break;

    case TAO_GIOP_USER_EXCEPTION:
    case TAO_GIOP_SYSTEM_EXCEPTION:
      {
	CORBA::String exception_id;

	// Pull the exception ID out of the marshaling buffer.
	{
	  CORBA::ULong len;

	  //
	  // Read "length" field of string, so "next" points
	  // right at the null-terminated ID.  Then get the ID.
	  //
	  if (this->stream_.get_ulong (len) != CORBA::B_TRUE
	      || len > this->stream_.remaining)
	    {
	      send_error (this->handler_);
	      env.exception (new CORBA::MARSHAL (CORBA::COMPLETED_YES));
	      return TAO_GIOP_SYSTEM_EXCEPTION;
	    }
	  exception_id = (CORBA::String) this->stream_.next;
	  this->stream_.skip_bytes (len);
	}

	// User and system exceptions differ only in what table of
	// exception typecodes is searched.
	CORBA::ExceptionList *xlist;

	if (reply_status == TAO_GIOP_USER_EXCEPTION)
	  xlist = &exceptions;
	else
	  xlist = &__system_exceptions;

	// Find it in the operation description and then use that to get
	// the typecode.  Use it to unmarshal the exception's value; if
	// that exception is not allowed by this operation, fail (next).

	u_int i;
	CORBA::TypeCode_ptr *tcp;

	for (i = 0, tcp = xlist->buffer;
	     i < xlist->length;
	     i++, tcp++)
	  {
	    CORBA::String xid;

	    xid = (*tcp)->id (env);
	    if (env.exception () != 0)
	      {
		dexc (env, "invoke (), get exception ID");
		send_error (this->handler_);
		return TAO_GIOP_SYSTEM_EXCEPTION;
	      }

	    if (ACE_OS::strcmp ((char *)exception_id, (char *)xid) == 0)
	      {
		size_t size;
		CORBA::Exception *exception;

		size = (*tcp)->size (env);
		if (env.exception () != 0)
		  {
		    dexc (env, "invoke (), get exception size");
		    send_error (this->handler_);
		    return TAO_GIOP_SYSTEM_EXCEPTION;
		  }

		// Create the exception, fill in the generic parts
		// such as vtable, typecode ptr, refcount ... we need
		// to clean them all up together, in case of errors
		// unmarshaling.

		exception = new (new char [size]) CORBA::Exception (*tcp);

		if (this->stream_.decode (*tcp, exception, 0, env)
		    != CORBA::TypeCode::TRAVERSE_CONTINUE)
		  {
		    delete exception;
		    ACE_DEBUG ((LM_ERROR, "(%P|%t) invoke, unmarshal %s exception %s\n",
				(reply_status == TAO_GIOP_USER_EXCEPTION) ? "user" : "system",
                               exception_id));
		    send_error (this->handler_);
		    return TAO_GIOP_SYSTEM_EXCEPTION;
		  }
		env.exception (exception);
		return (TAO_GIOP_ReplyStatusType) reply_status;
	      }
	  }

	// If we couldn't find this exception's typecode, report it as
	// an OA error since the skeleton passed an exception that was
	// not allowed by the operation's IDL definition.  In the case
	// of a dynamic skeleton it's actually an implementation bug.
	//
	// It's known to be _very_ misleading to try reporting this as
	// any kind of marshaling error (unless minor codes are made
	// to be _very_ useful) ... folk try to find/fix ORB bugs that
	// don't exist, not bugs in/near the implementation code.

	if (reply_status == TAO_GIOP_USER_EXCEPTION)
	  env.exception (new CORBA::OBJ_ADAPTER (CORBA::COMPLETED_YES));
	else
	  env.exception (new CORBA::INTERNAL (CORBA::COMPLETED_MAYBE));
	return TAO_GIOP_SYSTEM_EXCEPTION;
      }
    // NOTREACHED

    case TAO_GIOP_LOCATION_FORWARD:
      {
	CORBA::Object_ptr obj;
	IIOP_Object *obj2;

	// Unmarshal the object we _should_ be calling.  We know that
	// one of the facets of this object will be an IIOP invocation
	// profile.

	if (this->stream_.decode (CORBA::_tc_Object,
                                  &obj, 0,
                                  env) != CORBA::TypeCode::TRAVERSE_CONTINUE
	    || obj->QueryInterface (IID_IIOP_Object,
                                    (void **) &obj2) != NOERROR)
	  {
	    dexc (env, "invoke, location forward");
	    send_error (this->handler_);
	    return TAO_GIOP_SYSTEM_EXCEPTION;
	  }
	CORBA::release (obj);

	// Make a copy of the IIOP profile in the forwarded objref,
	// reusing memory where practical.  Then delete the forwarded
	// objref, retaining only its profile.
	//
	// XXX add and use a "forward count", to prevent loss of data
	// in forwarding chains during concurrent calls -- only a
	// forward that's a response to the current fwd_profile should
	// be recorded here. (This is just an optimization, and is not
	// related to correctness.)

#if 0 /* @@ don't delete this, chris */
	ACE_GUARD_RETURN (ACE_SYNCH_MUTEX, guard, data_->fwd_profile_lock (), TAO_GIOP_SYSTEM_EXCEPTION);
#endif

        IIOP::Profile *old = data_->fwd_profile_i (new IIOP::Profile (obj2->profile));
        delete old;

	obj2->Release ();

	env.clear ();

	// Make sure a new connection is used next time.
	this->handler_->close ();
	this->handler_ = 0; // @@ not sure this is correct!
        // @@ We shouldn't need to do this b/c TAO_GIOP_Invocations
        // get created on a per-call basis.  Must check on this.
      }
    break;
    }

  // All standard exceptions from here on in the call path know for
  // certain that the call "completed" ... except in the case of
  // system exceptions which say otherwise, and for
  // TAO_GIOP_LOCATION_FORWARD responses.

  return (TAO_GIOP_ReplyStatusType) reply_status;
}

void
TAO_GIOP::make_error (CDR &msg, ...)
{
  ACE_UNUSED_ARG (msg);  // just for now

  // This [static] method will be somewhat like send_error() except
  // that it won't actaully do any sending of data...it'll just stuff
  // things into the <msg> instance.
}

// Initialize the request header from <msg>, setting <env> for errors.

CORBA::Boolean
TAO_GIOP_RequestHeader::init (CDR &msg,
                              CORBA::Environment &env)
{
  CORBA::Boolean hdr_status;

  // Tear out the service context ... we currently ignore it, but it
  // should probably be passed to each ORB service as appropriate
  // (e.g. transactions, security).
  //
  // NOTE: As security support kicks in, this is a good place to
  // verify a digital signature, if that is required in this security
  // environment.  It may be required even when using IPSEC security
  // infrastructure.

  hdr_status = msg.decode (&TC_ServiceContextList,
                           &this->service_info,
                           0,
                           env);

  // Get the rest of the request header ...

  hdr_status = hdr_status && msg.get_ulong (this->request_id);
  hdr_status = hdr_status && msg.get_boolean (this->response_expected);
  hdr_status = hdr_status && msg.decode (&TC_opaque,
                                         &this->object_key,
                                         0,
                                         env);
  hdr_status = hdr_status && msg.decode (CORBA::_tc_string,
                                         &this->operation,
                                         0,
                                         env);
  hdr_status = hdr_status && msg.decode (CORBA::_tc_Principal,
                                         &this->requesting_principal,
                                         0,
                                         env);
  return hdr_status;
}

CORBA::Boolean
TAO_GIOP::start_message (TAO_GIOP_MsgType type, CDR &msg)
{
  msg.next = msg.buffer;		// for reused streams
  msg.remaining = msg.length;

  if (msg.bytes_remaining () < TAO_GIOP_HEADER_LEN)
    return CORBA::B_FALSE;

  msg.next [0] = 'G';
  msg.next [1] = 'I';
  msg.next [2] = 'O';
  msg.next [3] = 'P';

  msg.next [4] = MY_MAJOR;
  msg.next [5] = MY_MINOR;
  msg.next [6] = TAO_ENCAP_BYTE_ORDER;
  msg.next [7] = (u_char) type;

  msg.skip_bytes (TAO_GIOP_HEADER_LEN);
  return CORBA::B_TRUE;
}

#if defined (ACE_HAS_EXPLICIT_TEMPLATE_INSTANTIATION)
template class CORBA_SEQUENCE<TAO_GIOP_ServiceContext>;
template class CORBA_SEQUENCE<CORBA::Octet>;
template class CORBA_SEQUENCE<CORBA::TypeCode*>;
#elif defined (ACE_HAS_TEMPLATE_INSTANTIATION_PRAGMA)
#pragma instantiate CORBA_SEQUENCE<TAO_GIOP_ServiceContext>
#pragma instantiate CORBA_SEQUENCE<CORBA::Octet>
#pragma instantiate CORBA_SEQUENCE<CORBA::TypeCode*>
#endif /* ACE_HAS_EXPLICIT_TEMPLATE_INSTANTIATION */