summaryrefslogtreecommitdiff
path: root/ace/Asynch_IO.cpp
blob: 5b1ab0deb77bc4e7366e1cda1e494149599adba8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
// $Id$

#define ACE_BUILD_DLL
#include "ace/Asynch_IO.h"

ACE_RCSID(ace, Asynch_IO, "$Id$")

#if (defined (ACE_WIN32) && !defined (ACE_HAS_WINCE)) || (defined (ACE_HAS_AIO_CALLS))
// This only works on Win32 platforms

#include "ace/Proactor.h"
#include "ace/Message_Block.h"
#include "ace/Service_Config.h"
#include "ace/INET_Addr.h"
#include "ace/Task_T.h"

#if !defined (__ACE_INLINE__)
#include "ace/Asynch_IO.i"
#endif /* __ACE_INLINE__ */

#if defined (ACE_HAS_AIO_CALLS)
class ACE_Export ACE_Asynch_Accept_Handler : public ACE_Event_Handler
{
  // = TITLE
  //     For the POSIX implementation, this class takes care of doing
  //     Asynch_Accept. 
  // 
  // = DESCRIPTION
  //      
public:
  ACE_Asynch_Accept_Handler (ACE_Reactor* reactor);
  // Constructor.
  
  ~ACE_Asynch_Accept_Handler (void);
  // Destructor.
  
  int register_accept_call (ACE_Asynch_Accept::Result* result);
  // Register this <accept> call with the local handler. 
  
  virtual int handle_input (ACE_HANDLE fd = ACE_INVALID_HANDLE); 
  // Called when accept event comes up on the <listen_handle>.

private:
  ACE_Asynch_Accept::Result* deregister_accept_call (void);
  // Undo the things done when registering.
  
  ACE_Unbounded_Queue<ACE_Asynch_Accept::Result*> result_queue_;
  // Queue of Result pointers that correspond to all the <accept>'s
  // pending. 
  
  ACE_Reactor* reactor_;
  // Reactor used by the Asynch_Accept. We need this here to enable
  // and disable the <handle> now and then, depending on whether any
  // <accept> is pending or no. 

  ACE_Thread_Mutex lock_;
  // The lock to protect the  result queue which is shared. The queue
  // is updated by main thread in the register function call and
  // through the auxillary thread  in the deregister fun. So let us
  // mutex it. 

  ACE_Asynch_Accept_Handler (void);
  // Default constructor shouldn't be called. Without a reactor, this
  // class wont make sense. 
};
#endif /* ACE_HAS_AIO_CALLS*/

#if defined (ACE_HAS_AIO_CALLS)
class ACE_Export ACE_Asynch_Transmit_Handler : public ACE_Handler
{
  // = TITLE
  //     Auxillary handler for doing <Asynch_Transmit_File> in
  //     Unix. <ACE_Asynch_Transmit_File> internally uses this.
  //
  // = DESCRIPTION
  //     This is a helper class for implementing
  //     <ACE_Asynch_Transmit_File> in Unix systems.
public:
  ACE_Asynch_Transmit_Handler (ACE_Asynch_Transmit_File::Result *result,
                               ACE_Proactor *proactor);
  // Constructor. Result pointer will have all the information to do
  // the file transmission (socket, file, application handler, bytes
  // to write....)  and the the <proactor> pointer tells this class
  // the <proactor> that is being used by the
  // Asynch_Transmit_Operation and the application.
  
  virtual ~ACE_Asynch_Transmit_Handler (void);
  // Destructor.

  int transmit (void);
  // Do the transmission. All the info to do the transmission is in
  // the <result> member.

protected:
  virtual void handle_write_stream (const ACE_Asynch_Write_Stream::Result &result);
  // This is called when asynchronous writes from the socket complete.

  virtual void handle_read_file (const ACE_Asynch_Read_File::Result &result);
  // This is called when asynchronous reads from the file complete.
private:
  int initiate_read_file (void);
  // Issue asynch read from  the file.

  ACE_Asynch_Transmit_File::Result *result_;
  // The asynch result pointer made from the initial transmit file
  // request.

  ACE_Proactor *proactor_;
  // The Proactor that is being used by the application handler and
  // so the Asynch_Transmit_File.
  
  ACE_Asynch_Read_File rf_;
  // To read from the file to be transmitted.

  ACE_Asynch_Write_Stream ws_;
  // Write stream to write the header, trailer and the data.

  ACE_Message_Block *mb_;
  // Message bloack used to do the txn.

  enum ACT
  {
    HEADER_ACT  = 1,
    DATA_ACT    = 2,
    TRAILER_ACT = 3
  };

  ACT header_act_;
  ACT data_act_;
  ACT trailer_act_;
  // ACT to transmit header, data and trailer.

  size_t file_offset_;
  // Current offset of the file being transmitted.

  size_t file_size_;
  // Total size of the file.

  size_t bytes_transferred_;
  // Number of bytes transferred on the stream.
  
  size_t transmit_file_done_;
  // Flag to indicate that the transmitting is over.
};
#endif /* ACE_HAS_AIO_CALLS */

ACE_Asynch_Result::ACE_Asynch_Result (ACE_Handler &handler,
                                      const void* act,
                                      ACE_HANDLE event,
                                      u_long offset,
                                      u_long offset_high)
  : handler_ (handler),
    act_ (act),
    bytes_transferred_ (0),
    success_ (0),
    completion_key_ (0),
    error_ (0)
{
  // Set the ACE_OVERLAPPED structure
  this->Internal = 0;
  this->InternalHigh = 0;
  this->Offset = offset;
  this->OffsetHigh = offset_high;
  this->hEvent = event;

#if defined (ACE_HAS_AIO_CALLS)
  ACE_NEW (this->aiocb_ptr_, aiocb);
#endif /* ACE_HAS_AIO_CALLS */
}

ACE_Asynch_Result::~ACE_Asynch_Result (void)
{
#if defined (ACE_HAS_AIO_CALLS)
  delete this->aiocb_ptr_;
#endif /* ACE_HAS_AIO_CALLS */
}

u_long
ACE_Asynch_Result::bytes_transferred (void) const
{
  return this->bytes_transferred_;
}

const void *
ACE_Asynch_Result::act (void) const
{
  return this->act_;
}

int
ACE_Asynch_Result::success (void) const
{
  return this->success_;
}

const void *
ACE_Asynch_Result::completion_key (void) const
{
  return this->completion_key_;
}

u_long
ACE_Asynch_Result::error (void) const
{
  return this->error_;
}

u_long
ACE_Asynch_Result::offset (void) const
{
  return this->Offset;
}

u_long
ACE_Asynch_Result::offset_high (void) const
{
  return this->OffsetHigh;
}

ACE_HANDLE
ACE_Asynch_Result::event (void) const
{
  return this->hEvent;
}

#if defined (ACE_HAS_AIO_CALLS)
aiocb *
ACE_Asynch_Result::aiocb_ptr (void)
{
  return aiocb_ptr_;
}
#endif /* ACE_HAS_AIO_CALLS */

ACE_Asynch_Operation::ACE_Asynch_Operation (void)
  : handler_ (0),
    handle_ (ACE_INVALID_HANDLE)
{
}

int
ACE_Asynch_Operation::open (ACE_Handler &handler,
                            ACE_HANDLE handle,
                            const void *completion_key,
                            ACE_Proactor *proactor)
{
  this->proactor_ = proactor;
  this->handler_ = &handler;
  this->handle_ = handle;

  // Grab the handle from the <handler> if <handle> is invalid
  if (this->handle_ == ACE_INVALID_HANDLE)
    this->handle_ = this->handler_->handle ();
  if (this->handle_ == ACE_INVALID_HANDLE)
    return -1;

  // If no proactor was passed
  if (this->proactor_ == 0)
    {
      // Grab the proactor from the <Service_Config> if
      // <handler->proactor> is zero
      this->proactor_ = this->handler_->proactor ();
      if (this->proactor_ == 0)
        this->proactor_ = ACE_Proactor::instance();
    }

#if defined (ACE_HAS_AIO_CALLS)

  // AIO stuff is present. So no registering.
  // @@ But something has to be done to associate completion key with
  // the handle provided. How about a HashTable of size "the number of
  // file descriptors that are possible in the system".
  ACE_UNUSED_ARG (completion_key);
  return 0;

#else /* ACE_HAS_AIO_CALLS */

  // Register with the <proactor>.
  return this->proactor_->register_handle (this->handle_,
                                           completion_key);
#endif /* ACE_HAS_AIO_CALLS */
}

int
ACE_Asynch_Operation::cancel (void)
{
#if defined (ACE_HAS_AIO_CALLS)

  // @@ <aio_cancel> will come here soon.
  return 0;

#elif (defined (ACE_HAS_WINNT4) && (ACE_HAS_WINNT4 != 0)) && (defined (_MSC_VER) && (_MSC_VER > 1020))
  // All I/O operations that are canceled will complete with the error
  // ERROR_OPERATION_ABORTED. All completion notifications for the I/O
  // operations will occur normally.

  return (int) ::CancelIo (this->handle_);

#else /* Not ACE_HAS_WINNT4 && ACE_HAS_WINNT4!=0 && _MSC... */
  ACE_NOTSUP_RETURN (-1);
#endif /* ACE_HAS_AIO_CALLS */
}

#if defined (ACE_HAS_AIO_CALLS)
// If the ptr is o, just check whether there is any slot free and
// return 0 if yes, else return -1. If a valid ptr is passed, keep it
// in a free slot.
int
ACE_Asynch_Operation::register_aio_with_proactor (aiocb *aiocb_ptr)
{
  if (aiocb_ptr == 0)
    {
      ACE_DEBUG ((LM_DEBUG,
                  "Status check max %d cur %d\n",
                  this->proactor_->aiocb_list_max_size_,
                  this->proactor_->aiocb_list_cur_size_));

      // Just check the status of the list.
      if (this->proactor_->aiocb_list_cur_size_ >=
          this->proactor_->aiocb_list_max_size_)
        return -1;
      else
        return 0;
    }
  
  // Non-zero ptr. Find a free slot and store.

  // Make sure again.
  if (this->proactor_->aiocb_list_cur_size_ >=
      this->proactor_->aiocb_list_max_size_)
    ACE_ERROR_RETURN ((LM_ERROR,
                       "Error:Asynch_Operation: No space to store the <aio> info.\n"),
                      -1);

  // Slot(s) available. Find a free one.
  size_t ai;
  for (ai = 0;
       ai < this->proactor_->aiocb_list_max_size_;
       ai++)
    if (this->proactor_->aiocb_list_[ai] == 0)
      break;
  
  // Sanity check.
  if (ai == this->proactor_->aiocb_list_max_size_)
    ACE_ERROR_RETURN ((LM_ERROR,
                       "Error:Asynch_Operation: No space to store the <aio> info.\n"),
                      -1);

  // Store the pointers.
  this->proactor_->aiocb_list_[ai] = aiocb_ptr;
  this->proactor_->aiocb_list_cur_size_ ++;
  return 0;
}
#endif /* ACE_HAS_AIO_CALLS */

ACE_Proactor *
ACE_Asynch_Operation::proactor (void)
{
  return this->proactor_;
}

// ************************************************************

ACE_Asynch_Read_Stream::ACE_Asynch_Read_Stream (void)
{
}

int
ACE_Asynch_Read_Stream::read (ACE_Message_Block &message_block,
                              u_long bytes_to_read,
                              const void *act)
{
  // Create the Asynch_Result.
  Result *result = 0;
  ACE_NEW_RETURN (result,
		  Result (*this->handler_,
			  this->handle_,
			  message_block,
			  bytes_to_read,
			  act,
			  this->proactor_->get_handle ()),
		  -1);

  ssize_t return_val = this->shared_read (result);
  if (return_val == -1)
    delete result;
  return return_val;
}

int
ACE_Asynch_Read_Stream::shared_read (ACE_Asynch_Read_Stream::Result *result)
{
#if defined (ACE_HAS_AIO_CALLS)
  // Act according to the completion strategy that is set in the 
  // proactor.
  
  // Using RT Signals to notify the completion.
  if (this->proactor ()->posix_completion_strategy () ==
      ACE_Proactor::RT_SIGNALS)
    {
      // Setup AIOCB.
      // @@ Priority always 0?
      result->aiocb_ptr ()->aio_fildes = result->handle ();
      result->aiocb_ptr ()->aio_offset = result->Offset;
      result->aiocb_ptr ()->aio_buf = result->message_block ().wr_ptr ();
      result->aiocb_ptr ()->aio_nbytes = result->bytes_to_read ();
      result->aiocb_ptr ()->aio_reqprio = 0;
      result->aiocb_ptr ()->aio_sigevent.sigev_notify = SIGEV_SIGNAL;
      result->aiocb_ptr ()->aio_sigevent.sigev_signo = ACE_SIG_AIO;
      result->aiocb_ptr ()->aio_sigevent.sigev_value.sival_ptr =
        (void *) result;

      // Fire off the aio write.
      if (aio_read (result->aiocb_ptr ()) == -1)
        // Queueing failed.
        ACE_ERROR_RETURN ((LM_ERROR,
                           "Erro:%p:Asynch_Read_Stream: aio_read queueing failed\n"),
                          -1);
    }
  else
    {
      // AIO_CONTROL_BLOCKS strategy.
      
      // Make a new AIOCB and issue aio_read, if queueing is possible
      // store this with the Proactor, so that that can be used for
      // <aio_return> and <aio_error>.
      
      // Allocate aiocb block.
      aiocb *aiocb_ptr = 0;
      ACE_NEW_RETURN (aiocb_ptr,
                      aiocb,
                      -1);

      // Make sure there is space in the aiocb list.
      if (this->register_aio_with_proactor (0) == -1)
        {
          // Clean up the memory allocated.
          delete aiocb_ptr;
          
          // @@ Set errno to EAGAIN so that applications will know this as
          // a queueing failure and try again this aio_read it they want.
          errno = EAGAIN;
          
          return -1;
        }

      // Setup AIOCB.
      // @@ Priority always 0?
      // @@ Signal no, always?
      aiocb_ptr->aio_fildes = result->handle ();
      aiocb_ptr->aio_offset = result->Offset;
      aiocb_ptr->aio_buf = result->message_block ().wr_ptr ();
      aiocb_ptr->aio_nbytes = result->bytes_to_read ();
      aiocb_ptr->aio_reqprio = 0;
      aiocb_ptr->aio_sigevent.sigev_notify = SIGEV_NONE;
      //this->this->aiocb_.aio_sigevent.sigev_signo = SIGRTMAX;
      aiocb_ptr->aio_sigevent.sigev_value.sival_ptr =
        (void *) result;

      // Fire off the aio write.
      if (aio_read (aiocb_ptr) == -1)
        {
          // Queueing failed.
          ACE_ERROR ((LM_ERROR,
                      "Error:%p:Asynch_Read_Stream: aio_read queueing failed\n"));

          // Clean up the memory allocated.
          delete aiocb_ptr;

          return -1;
        }

      // Success. Store the aiocb_ptr with Proactor.
      if (this->register_aio_with_proactor (aiocb_ptr) == -1)
        {
          // Clean up the memory allocated.
          delete aiocb_ptr;

          return -1;
        }
    }
  // Aio successfully issued and ptr stored.
  return 0;

#else /* ACE_HAS_AIO_CALLS */
  u_long bytes_read;

  // Initiate the read
  int initiate_result = ::ReadFile (result->handle (),
                                    result->message_block ().wr_ptr (),
                                    result->bytes_to_read (),
                                    &bytes_read,
                                    result);
  if (initiate_result == 1)
    // Immediate success: the OVERLAPPED will still get queued.
    return 1;

  // If initiate failed, check for a bad error.
  errno = ::GetLastError ();
  switch (errno)
    {
    case ERROR_IO_PENDING:
      // The IO will complete proactively: the OVERLAPPED will still
      // get queued.
      return 0;

    default:
      // Something else went wrong: the OVERLAPPED will not get
      // queued.

      // Cleanup dynamically allocated Asynch_Result
      delete result;

      ACE_ERROR_RETURN ((LM_ERROR,  ASYS_TEXT ("%p\n"),  ASYS_TEXT ("ReadFile")), -1);
    }
#endif /* ACE_HAS_AIO_CALLS */
}

// ************************************************************

ACE_Asynch_Read_Stream::Result::Result (ACE_Handler &handler,
                                        ACE_HANDLE handle,
                                        ACE_Message_Block &message_block,
                                        u_long bytes_to_read,
                                        const void* act,
                                        ACE_HANDLE event)
  : ACE_Asynch_Result (handler, act, event),
    bytes_to_read_ (bytes_to_read),
    message_block_ (message_block),
    handle_ (handle)
{
}

u_long
ACE_Asynch_Read_Stream::Result::bytes_to_read (void) const
{
  return this->bytes_to_read_;
}

ACE_Message_Block &
ACE_Asynch_Read_Stream::Result::message_block (void) const
{
  return this->message_block_;
}

ACE_HANDLE
ACE_Asynch_Read_Stream::Result::handle (void) const
{
  return this->handle_;
}

void
ACE_Asynch_Read_Stream::Result::complete(u_long bytes_transferred,
                                          int success,
                                          const void *completion_key,
                                          u_long error)
{
  // Copy the data which was returned by GetQueuedCompletionStatus
  this->bytes_transferred_ = bytes_transferred;
  this->success_ = success;
  this->completion_key_ = completion_key;
  this->error_ = error;

  // Appropriately move the pointers in the message block.
  this->message_block_.wr_ptr (bytes_transferred);

  // Callback: notify <handler> of completion
  this->handler_.handle_read_stream (*this);
}

// ************************************************************

ACE_Asynch_Write_Stream::ACE_Asynch_Write_Stream (void)
{
}

int
ACE_Asynch_Write_Stream::write (ACE_Message_Block &message_block,
                                u_long bytes_to_write,
                                const void *act)
{
  Result *result = 0;
  ACE_NEW_RETURN (result,
		  Result (*this->handler_,
			  this->handle_,
			  message_block,
			  bytes_to_write,
			  act,
			  this->proactor_->get_handle ()),
		  -1);

  ssize_t return_val = this->shared_write (result);
  if (return_val == -1)
    delete result;
  return return_val;
}

int
ACE_Asynch_Write_Stream::shared_write (ACE_Asynch_Write_Stream::Result *result)
{
#if defined (ACE_HAS_AIO_CALLS)
  // Act according to the completion strategy that is set in the 
  // proactor.
  if (this->proactor ()->posix_completion_strategy () == 
      ACE_Proactor::RT_SIGNALS)
    {
      // Setup AIOCB.
      // @@ Priority always 0?
      result->aiocb_ptr ()->aio_fildes = result->handle ();
      result->aiocb_ptr ()->aio_offset = result->Offset;
      result->aiocb_ptr ()->aio_buf = result->message_block ().rd_ptr ();
      result->aiocb_ptr ()->aio_nbytes = result->bytes_to_write ();
      result->aiocb_ptr ()->aio_reqprio = 0;
      result->aiocb_ptr ()->aio_sigevent.sigev_notify = SIGEV_SIGNAL;
      result->aiocb_ptr ()->aio_sigevent.sigev_signo = ACE_SIG_AIO;
      result->aiocb_ptr ()->aio_sigevent.sigev_value.sival_ptr =
        (void *) result;
      
      // Fire off the aio write.
      if (aio_write (result->aiocb_ptr ()) == -1)
        // Queueing failed.
        ACE_ERROR_RETURN ((LM_ERROR,
                           "%p:Asynch_Write_Stream: aio_write queueing failed\n"),
                          -1);
    }
  else 
    {
      // AIO_CONTROL_BLOCKS strategy.
      
      // Make a new AIOCB and issue aio_write, if queueing is possible
      // store this with the Proactor, so that that can be used for
      // <aio_return> and <aio_error>.
      
      // Allocate aiocb block.
      aiocb *aiocb_ptr = 0;
      ACE_NEW_RETURN  (aiocb_ptr,
                       aiocb,
                       -1);

      // Make sure there is space in the aiocb list.
      if (this->register_aio_with_proactor (0) == -1)
        {
          // Clean up the memory allocated.
          delete aiocb_ptr;

          // @@ Set errno to EAGAIN so that applications will know this as
          // a queueing failure and try again this aio_read it they want.
          errno = EAGAIN;

          return -1;
        }

      // Setup AIOCB.
      // @@ Priority always 0?
      // @@ Signal no, always?
      aiocb_ptr->aio_fildes = result->handle ();
      aiocb_ptr->aio_offset = result->Offset;
      aiocb_ptr->aio_buf = result->message_block ().rd_ptr ();
      aiocb_ptr->aio_nbytes = result->bytes_to_write ();
      aiocb_ptr->aio_reqprio = 0;
      aiocb_ptr->aio_sigevent.sigev_notify = SIGEV_NONE;
      //this->this->aiocb_.aio_sigevent.sigev_signo = SIGRTMAX;
      aiocb_ptr->aio_sigevent.sigev_value.sival_ptr =
        (void *) result;

      // Fire off the aio write.
      if (aio_write (aiocb_ptr) == -1)
        {
          // Queueing failed.
          ACE_ERROR ((LM_ERROR,
                      "Error:%p:Asynch_Write_Stream: aio_write queueing failed\n"));

          // Clean up the memory allocated.
          delete aiocb_ptr;
          
          return -1;
        }
      
      // Success. Store the aiocb_ptr with Proactor.
      if (this->register_aio_with_proactor (aiocb_ptr) == -1)
        {
          // Clean up the memory allocated.
          delete aiocb_ptr;
          
          return -1;
        }
    }
  
  // Aio successfully issued.
  return 0;
  
#else /* ACE_HAS_AIO_CALLS */
  u_long bytes_written;

  // Initiate the write
  int initiate_result = ::WriteFile (result->handle (),
                                     result->message_block ().rd_ptr (),
                                     result->bytes_to_write (),
                                     &bytes_written,
                                     result);
  if (initiate_result == 1)
    // Immediate success: the OVERLAPPED will still get queued.
    return 1;

  // If initiate failed, check for a bad error.
  errno = ::GetLastError ();
  switch (errno)
    {
    case ERROR_IO_PENDING:
      // The IO will complete proactively: the OVERLAPPED will still
      // get queued.
      return 0;

    default:
      // Something else went wrong: the OVERLAPPED will not get
      // queued.

      // Cleanup dynamically allocated Asynch_Result
      delete result;

      ACE_ERROR_RETURN ((LM_ERROR,  ASYS_TEXT ("%p\n"),  ASYS_TEXT ("WriteFile")), -1);
    }
#endif /* ACE_HAS_AIO_CALLS */
}

// ************************************************************

ACE_Asynch_Write_Stream::Result::Result (ACE_Handler &handler,
                                         ACE_HANDLE handle,
                                         ACE_Message_Block &message_block,
                                         u_long bytes_to_write,
                                         const void* act,
                                         ACE_HANDLE event)
  : ACE_Asynch_Result (handler, act, event),
    bytes_to_write_ (bytes_to_write),
    message_block_ (message_block),
    handle_ (handle)
{
}

u_long
ACE_Asynch_Write_Stream::Result::bytes_to_write (void) const
{
  return this->bytes_to_write_;
}

ACE_Message_Block &
ACE_Asynch_Write_Stream::Result::message_block (void) const
{
  return this->message_block_;
}

ACE_HANDLE
ACE_Asynch_Write_Stream::Result::handle (void) const
{
  return this->handle_;
}

void
ACE_Asynch_Write_Stream::Result::complete (u_long bytes_transferred,
                                           int success,
                                           const void *completion_key,
                                           u_long error)
{
  // Copy the data which was returned by GetQueuedCompletionStatus
  this->bytes_transferred_ = bytes_transferred;
  this->success_ = success;
  this->completion_key_ = completion_key;
  this->error_ = error;

  // Appropriately move the pointers in the message block.
  this->message_block_.rd_ptr (bytes_transferred);

  // Callback: notify <handler> of completion
  this->handler_.handle_write_stream (*this);
}

// ************************************************************

int
ACE_Asynch_Read_File::read (ACE_Message_Block &message_block,
                            u_long bytes_to_read,
                            u_long offset,
                            u_long offset_high,
                            const void *act)
{
  Result *result = 0;
  ACE_NEW_RETURN (result,
                  Result (*this->handler_,
                          this->handle_,
                          message_block,
                          bytes_to_read,
                          act,
                          offset,
                          offset_high,
                          this->proactor_->get_handle ()),
                  -1);

  return this->shared_read (result);
}

// ************************************************************

ACE_Asynch_Read_File::Result::Result (ACE_Handler &handler,
                                      ACE_HANDLE handle,
                                      ACE_Message_Block &message_block,
                                      u_long bytes_to_read,
                                      const void* act,
                                      u_long offset,
                                      u_long offset_high,
                                      ACE_HANDLE event)
  : ACE_Asynch_Read_Stream::Result (handler, handle, message_block, bytes_to_read, act, event)
{
  this->Offset = offset;
  this->OffsetHigh = offset_high;
}

void
ACE_Asynch_Read_File::Result::complete (u_long bytes_transferred,
                                        int success,
                                        const void *completion_key,
                                        u_long error)
{
  // Copy the data which was returned by GetQueuedCompletionStatus.
  this->bytes_transferred_ = bytes_transferred;
  this->success_ = success;
  this->completion_key_ = completion_key;
  this->error_ = error;

  // Appropriately move the pointers in the message block.
  this->message_block_.wr_ptr (bytes_transferred);

  // Callback: notify <handler> of completion.
  this->handler_.handle_read_file (*this);
}

// ************************************************************

int
ACE_Asynch_Write_File::write (ACE_Message_Block &message_block,
                              u_long bytes_to_write,
                              u_long offset,
                              u_long offset_high,
                              const void *act)
{
  Result *result = 0;
  ACE_NEW_RETURN (result,
                  Result (*this->handler_,
                          this->handle_,
                          message_block,
                          bytes_to_write,
                          act,
                          offset,
                          offset_high,
                          this->proactor_->get_handle ()),
                  -1);

  return this->shared_write (result);
}

// ************************************************************

ACE_Asynch_Write_File::Result::Result (ACE_Handler &handler,
                                       ACE_HANDLE handle,
                                       ACE_Message_Block &message_block,
                                       u_long bytes_to_write,
                                       const void* act,
                                       u_long offset,
                                       u_long offset_high,
                                       ACE_HANDLE event)
  : ACE_Asynch_Write_Stream::Result (handler, handle, message_block, bytes_to_write, act, event)
{
  this->Offset = offset;
  this->OffsetHigh = offset_high;
}

void
ACE_Asynch_Write_File::Result::complete (u_long bytes_transferred,
                                         int success,
                                         const void *completion_key,
                                         u_long error)
{
  // Copy the data which was returned by GetQueuedCompletionStatus
  this->bytes_transferred_ = bytes_transferred;
  this->success_ = success;
  this->completion_key_ = completion_key;
  this->error_ = error;

  // Appropriately move the pointers in the message block.
  this->message_block_.rd_ptr (bytes_transferred);

  // Callback: notify <handler> of completion
  this->handler_.handle_write_file (*this);
}

// ************************************************************

#if defined (ACE_HAS_AIO_CALLS)
// We need accept handlers here. 
ACE_Asynch_Accept::ACE_Asynch_Accept (void)
  : accept_handler_ (0)
{
  ACE_NEW (this->accept_handler_,
           ACE_Asynch_Accept_Handler (&this->reactor_));
}
#else /* Not ACE_HAS_AIO_CALLS */
ACE_Asynch_Accept::ACE_Asynch_Accept (void)
{
}
#endif /* ACE_HAS_AIO_CALLS */

#if defined (ACE_HAS_AIO_CALLS)
int
ACE_Asynch_Accept::open(ACE_Handler &handler,
                         ACE_HANDLE handle,
                         const void *completion_key,
                         ACE_Proactor *proactor)
{

  ACE_DEBUG ((LM_DEBUG, "ACE_Asynch_Accept::open called\n"));
  
  // Common things to register for any Asynch Operation. We need to 
  // call the base class' <open>  method.
  int result_open = this->ACE_Asynch_Operation::open (handler, 
                                                      handle,
                                                      completion_key,
                                                      proactor);
  if (result_open < 0)
    return result_open;
 
  // Register the handle with the reactor.
  this->reactor_.register_handler (this->handle_,
                                   this->accept_handler_,
                                   ACE_Event_Handler::ACCEPT_MASK);
  
  // Suspend the <handle> now. Enable only when the <accept> is issued
  // by the application.
  this->reactor_.suspend_handlers ();
  
  // Spawn the thread. It is the only thread we are going to have. It
  // will do the <handle_events> on the reactor.
  ACE_Thread_Manager::instance ()->spawn (ACE_Asynch_Accept::thread_function,
                                          (void *)&this->reactor_);
}
#endif /* ACE_HAS_AIO_CALLS */

int
ACE_Asynch_Accept::accept (ACE_Message_Block &message_block,
                           u_long bytes_to_read,
                           ACE_HANDLE accept_handle,
                           const void *act)
{
#if (defined (ACE_HAS_WINNT4) && (ACE_HAS_WINNT4 != 0)) || (defined (ACE_HAS_WINSOCK2) && (ACE_HAS_WINSOCK2 != 0)) || (defined (ACE_HAS_AIO_CALLS))
 
  // @@ Debugging. 
  ACE_DEBUG ((LM_DEBUG, "ACE_Asynch_Accept::accept called\n"));
  
  // Common code for both WIN and POSIX.
  
  // Sanity check: make sure that enough space has been allocated by
  // the caller. 
  size_t address_size = sizeof (sockaddr_in) + sizeof (sockaddr);
  size_t space_in_use = message_block.wr_ptr () - message_block.base ();
  size_t total_size = message_block.size ();
  size_t available_space = total_size - space_in_use;
  size_t space_needed = bytes_to_read + 2 * address_size;
  if (available_space < space_needed)
    ACE_ERROR_RETURN ((LM_ERROR, ASYS_TEXT ("Buffer too small\n")), -1);

#if !defined (ACE_HAS_AIO_CALLS)
  // WIN Specific.
  
  int close_accept_handle = 0;
  // If the <accept_handle> is invalid, we will create a new socket.
  if (accept_handle == ACE_INVALID_HANDLE)
    {
      accept_handle = ACE_OS::socket (PF_INET,
                                      SOCK_STREAM,
                                      0);
      if (accept_handle == ACE_INVALID_HANDLE)
        ACE_ERROR_RETURN ((LM_ERROR,
                           ASYS_TEXT ("%p\n"),
                           ASYS_TEXT ("ACE_OS::socket")), -1);
      else
        // Remember to close the socket down if failures occur.
        close_accept_handle = 1;
    }
#endif /* Not ACE_HAS_AIO_CALLS */

  // Common code for both WIN and POSIX.
  Result *result = 0;
  ACE_NEW_RETURN (result,
                  Result (*this->handler_,
                          this->handle_,
                          accept_handle,
                          message_block,
                          bytes_to_read,
                          act,
                          this->proactor_->get_handle ()),
                  -1);

#if defined (ACE_HAS_AIO_CALLS)
  // Code specific to the POSIX Implementation.
  
  // Register this <accept> call with the local handler. 
  this->accept_handler_->register_accept_call (result);
  
  return 0;
#else /* Not ACE_HAS_AIO_CALLS */
  // Code specific to WIN platforms.
  
  u_long bytes_read;
  
  // Initiate the accept.
  int initiate_result = ::AcceptEx ((SOCKET) result->listen_handle (),
                                    (SOCKET) result->accept_handle (),
                                    result->message_block ().wr_ptr (),
                                    result->bytes_to_read (),
                                    address_size,
                                    address_size,
                                    &bytes_read,
                                    result);
  if (initiate_result == 1)
    // Immediate success: the OVERLAPPED will still get queued.
    return 1;

  // If initiate failed, check for a bad error.
  errno = ::GetLastError ();
  switch (errno)
    {
    case ERROR_IO_PENDING:
      // The IO will complete proactively: the OVERLAPPED will still
      // get queued.
      return 0;

    default:
      // Something else went wrong: the OVERLAPPED will not get
      // queued.

      if (close_accept_handle == 1)
        // Close the newly created socket
        ACE_OS::closesocket (accept_handle);

      // Cleanup dynamically allocated Asynch_Result.
      delete result;

      ACE_ERROR_RETURN ((LM_ERROR,  ASYS_TEXT ("%p\n"),  ASYS_TEXT ("ReadFile")), -1);
    }
#endif /* ACE_HAS_AIO_CALLS */

#else /* ACE_HAS_WINNT4 .......|| ACE_HAS_AIO_CALLS */
  ACE_NOTSUP_RETURN (-1);
#endif /* (defined (ACE_HAS_WINNT4) && (ACE_HAS_WINNT4 != 0)) || (defined (ACE_HAS_WINSOCK2) && (ACE_HAS_WINSOCK2 != 0)) || (defined (ACE_HAS_AIO_CALLS) */
}

#if defined (ACE_HAS_AIO_CALLS)
void*
ACE_Asynch_Accept::thread_function (void* arg_reactor)
{
  ACE_DEBUG ((LM_DEBUG, "ACE_Asynch_Accept::thread_function called\n")); 
 
  // Retrieve the reactor pointer from the argument.
  ACE_Reactor* reactor = (ACE_Reactor *) arg_reactor;
  
  // For this reactor, this thread is the owner. 
  reactor->owner (ACE_OS::thr_self ());
  
  // Handle events.
  int result = 0;
  while (result != -1)
    {
      result = reactor->handle_events ();
      ACE_DEBUG ((LM_DEBUG,
                  "ACE_Asynch_Accept::Thread_Function : handle_events : result = [%d]\n",
                  result));
    }
  
  ACE_DEBUG ((LM_DEBUG, "Exiting ACE_Asynch_Accept::thread_function \n"));
  return 0;
}
#endif /* ACE_HAS_AIO_CALLS */

// ************************************************************

u_long
ACE_Asynch_Accept::Result::bytes_to_read (void) const
{
  return this->bytes_to_read_;
}

ACE_Message_Block &
ACE_Asynch_Accept::Result::message_block (void) const
{
  return this->message_block_;
}

ACE_HANDLE
ACE_Asynch_Accept::Result::listen_handle (void) const
{
  return this->listen_handle_;
}

ACE_HANDLE
ACE_Asynch_Accept::Result::accept_handle (void) const
{
  return this->accept_handle_;
}

ACE_Asynch_Accept::Result::Result (ACE_Handler &handler,
                                   ACE_HANDLE listen_handle,
                                   ACE_HANDLE accept_handle,
                                   ACE_Message_Block &message_block,
                                   u_long bytes_to_read,
                                   const void* act,
                                   ACE_HANDLE event)
  : ACE_Asynch_Result (handler, act, event),
    bytes_to_read_ (bytes_to_read),
    message_block_ (message_block),
    listen_handle_ (listen_handle),
    accept_handle_ (accept_handle)
{
}

void
ACE_Asynch_Accept::Result::complete (u_long bytes_transferred,
                                     int success,
                                     const void *completion_key,
                                     u_long error)
{
  // Copy the data which was returned by GetQueuedCompletionStatus
  this->bytes_transferred_ = bytes_transferred;
  this->success_ = success;
  this->completion_key_ = completion_key;
  this->error_ = error;

  // Appropriately move the pointers in the message block.
  this->message_block_.wr_ptr (bytes_transferred);

  // Callback: notify <handler> of completion.
  this->handler_.handle_accept (*this);
}

// ************************************************************

#if defined (ACE_HAS_AIO_CALLS)
ACE_Asynch_Accept_Handler::ACE_Asynch_Accept_Handler (ACE_Reactor* reactor)
  : reactor_ (reactor)
{
}  

ACE_Asynch_Accept_Handler::~ACE_Asynch_Accept_Handler (void)
{
}

ACE_Asynch_Accept_Handler::ACE_Asynch_Accept_Handler (void)
{
}

int
ACE_Asynch_Accept_Handler::register_accept_call (ACE_Asynch_Accept::Result* result)
{
  ACE_DEBUG ((LM_DEBUG, "ACE_Asynch_Accept_Handler::register_accept_call called\n"));

  // The queue is updated by main thread in the register function call and
  // thru the auxillary thread  in the deregister fun. So let us mutex
  // it.
  ACE_GUARD_RETURN (ACE_Thread_Mutex, ace_mon, this->lock_, -1);
  
  // Insert this result to the queue.
  int insert_result = this->result_queue_.enqueue_tail (result);
  if (insert_result == -1)
    ACE_ERROR_RETURN ((LM_ERROR,
                       "%N:%l:ACE_Asynch_Accept_Handler::register_accept_call failed\n"),
                      -1); 
  
  // If this is the only item, then it means there the set was empty
  // before. So enable the <handle> in the reactor.
  if (this->result_queue_.size () == 1)
    this->reactor_->resume_handlers ();
}

ACE_Asynch_Accept::Result* 
ACE_Asynch_Accept_Handler::deregister_accept_call (void)
{
  // The queue is updated by main thread in the register function call and
  // thru the auxillary thread  in the deregister fun. So let us mutex
  // it.
  ACE_GUARD_RETURN (ACE_Thread_Mutex, ace_mon, this->lock_, 0);
  
  // Get the first item (result ptr) from the Queue.
  ACE_Asynch_Accept::Result* result = 0;
  int return_dequeue = this->result_queue_.dequeue_head (result);
  if (return_dequeue == -1)
    return 0;
  // Sanity check.
  if (result == 0)
    return 0;
  
  // Disable the <handle> in the reactor if no <accept>'s are
  // pending. 
  if (this->result_queue_.size () == 0)
    this->reactor_->suspend_handlers ();

  // Return the result pointer.
  return result;
}

int
ACE_Asynch_Accept_Handler::handle_input (ACE_HANDLE fd)
{
  // An <accept> has been sensed on the <listen_handle>. We should be
  // able to just go ahead and do the <accept> now on this <fd>. This
  // should be the same as the <listen_handle>. 

  // @@ Debugging.
  ACE_DEBUG ((LM_DEBUG, "ACE_Asynch_Accept_Handler::handle_input called\n"));
  
  // Deregister this info pertaining to this <accept> call. 
  ACE_Asynch_Accept::Result* result = this->deregister_accept_call ();
  
  // @@ Debugging.
  ACE_DEBUG ((LM_DEBUG,
              "(%t):ACE_Asynch_Accept_Handler::handle_input : fd = [%d], Result->listen_handle = [%d]\n",
              fd,
              result->listen_handle ()));

  // There is not going to be any data read. So we can use the
  // <message_block> itself to take the <remote_address> as well as
  // the size of that address.
  
  // We will have atleast 2 * (sizeof (sockaddr_in) + sizeof (sockaddr)).
  size_t buffer_size = sizeof (sockaddr_in) + sizeof (sockaddr);
  
  // Parameters for the <accept> call.
  int *address_size = (int *)result->message_block ().wr_ptr ();
  *address_size = buffer_size;
  
  // Increment the wr_ptr.
  result->message_block ().wr_ptr (sizeof (int));
  
  // Issue <accept> now.
  // @@ We shouldnt block here since we have already done poll/select
  // thru reactor. But are we sure?
  ACE_HANDLE new_handle = ACE_OS::accept (result->listen_handle (),
                                          (struct sockaddr *) result->message_block ().wr_ptr (),
                                          address_size);
  if (new_handle == ACE_INVALID_HANDLE)
    ACE_ERROR_RETURN ((LM_ERROR,
                       "Error:(%P | %t):%p:\n",
                       "<accept> system call failed"),
                      -1);
  
  // Accept has completed.

  // Update the <wr_ptr> for the <message block>.
  result->message_block ().wr_ptr (*address_size);
  
  // @@ Just debugging.
  ACE_DEBUG ((LM_DEBUG,
              "%N:%l:Address_size = [%d], New_handle = [%d]\n",
              *address_size, new_handle)); 
  
  // Store the new handle.
  result->accept_handle_ = new_handle;
  
  // Signal the main process about this completion.
  
  // Get this process id.
  pid_t pid = ACE_OS::getpid ();
  if (pid == (pid_t) -1)
    ACE_ERROR_RETURN ((LM_ERROR, 
                       "Error:(%P | %t):%p\n",
                       "<getpid> failed."),
                      -1);
  
  // Set the signal information.
  sigval value;
  value.sival_ptr = (void *) result;
  
  // Queue the signal.
  if (sigqueue (pid, ACE_SIG_AIO, value) == -1)
    ACE_ERROR_RETURN ((LM_ERROR, 
                       "Error:(%P | %t):%p:\n",
                       "<sigqueue> failed"),
                      -1);
  
  return 0;
}  
#endif /* ACE_HAS_AIO_CALLS */

// ************************************************************

ACE_Asynch_Transmit_File::ACE_Asynch_Transmit_File (void)
{
}

int
ACE_Asynch_Transmit_File::transmit_file (ACE_HANDLE file,
                                         Header_And_Trailer *header_and_trailer,
                                         u_long bytes_to_write,
                                         u_long offset,
                                         u_long offset_high,
                                         u_long bytes_per_send,
                                         u_long flags,
                                         const void *act)
{
#if defined (ACE_HAS_AIO_CALLS)
  // Adjust these parameters if there are default values specified.
  ssize_t file_size = ACE_OS::filesize (file);

  if (file_size == -1)
    ACE_ERROR_RETURN ((LM_ERROR,
                       "%p:Asynch_Transmit_File:Couldnt know the file size\n"),
                      -1);

  if (bytes_to_write == 0)
    bytes_to_write = file_size;

  if (offset > (size_t) file_size)
    ACE_ERROR_RETURN ((LM_ERROR,
                       "Asynch_Transmit_File:File size is less than offset\n"),
                      -1);

  if (offset != 0)
    bytes_to_write = file_size - offset + 1;

  if (bytes_per_send == 0)
    bytes_per_send = bytes_to_write;

  // Configure the result parameter.
  Result *result = 0;

  ACE_NEW_RETURN (result,
		  Result (*this->handler_,
			  this->handle_,
			  file,
			  header_and_trailer,
			  bytes_to_write,
			  offset,
			  offset_high,
			  bytes_per_send,
			  flags,
			  act,
			  this->proactor_->get_handle ()),
		  -1);

  // Make the auxillary handler and initiate transmit.
  ACE_Asynch_Transmit_Handler *transmit_handler = 0;

  ACE_NEW_RETURN (transmit_handler,
                  ::ACE_Asynch_Transmit_Handler (result,
                                                 this->proactor_), 
                  -1);

  ssize_t return_val = transmit_handler->transmit ();
  
  if (return_val == -1)
    // This deletes the <result> in it too.
    delete transmit_handler;
  
  return 0;
    
#elif (defined (ACE_HAS_WINNT4) && (ACE_HAS_WINNT4 != 0)) || (defined (ACE_HAS_WINSOCK2) && (ACE_HAS_WINSOCK2 != 0))
  Result *result = 0;
  ACE_NEW_RETURN (result,
                  Result (*this->handler_,
                          this->handle_,
                          file,
                          header_and_trailer,
                          bytes_to_write,
                          offset,
                          offset_high,
                          bytes_per_send,
                          flags,
                          act,
                          this->proactor_->get_handle ()),
                  -1);

  ACE_LPTRANSMIT_FILE_BUFFERS transmit_buffers = 0;
  if (result->header_and_trailer () != 0)
    transmit_buffers = result->header_and_trailer ()->transmit_buffers ();

  // Initiate the transmit file
  int initiate_result = ::TransmitFile ((SOCKET) result->socket (),
                                        result->file (),
                                        result->bytes_to_write (),
                                        result->bytes_per_send (),
                                        result,
                                        transmit_buffers,
                                        result->flags ());
  if (initiate_result == 1)
    // Immediate success: the OVERLAPPED will still get queued.
    return 1;

  // If initiate failed, check for a bad error.
  errno = ::GetLastError ();
  switch (errno)
    {
    case ERROR_IO_PENDING:
      // The IO will complete proactively: the OVERLAPPED will still
      // get queued.
      return 0;

    default:
      // Something else went wrong: the OVERLAPPED will not get
      // queued.

      // Cleanup dynamically allocated Asynch_Result
      delete result;

      ACE_ERROR_RETURN ((LM_ERROR,  ASYS_TEXT ("%p\n"),  ASYS_TEXT ("TransmitFile")), -1);
    }
#else /* (defined (ACE_HAS_WINNT4) && (ACE_HAS_WINNT4 != 0)) || (defined (ACE_HAS_WINSOCK2) && (ACE_HAS_WINSOCK2 != 0)) */
  ACE_NOTSUP_RETURN (-1);
#endif /* ACE_HAS_AIO_CALLS */
}

// ************************************************************

ACE_HANDLE
ACE_Asynch_Transmit_File::Result::socket (void) const
{
  return this->socket_;
}

ACE_HANDLE
ACE_Asynch_Transmit_File::Result::file (void) const
{
  return this->file_;
}

ACE_Asynch_Transmit_File::Header_And_Trailer *
ACE_Asynch_Transmit_File::Result::header_and_trailer (void) const
{
  return this->header_and_trailer_;
}

u_long
ACE_Asynch_Transmit_File::Result::bytes_to_write (void) const
{
  return this->bytes_to_write_;
}

u_long
ACE_Asynch_Transmit_File::Result::bytes_per_send (void) const
{
  return this->bytes_per_send_;
}

u_long
ACE_Asynch_Transmit_File::Result::flags (void) const
{
  return this->flags_;
}

ACE_Asynch_Transmit_File::Result::Result (ACE_Handler &handler,
                                          ACE_HANDLE socket,
                                          ACE_HANDLE file,
                                          Header_And_Trailer *header_and_trailer,
                                          u_long bytes_to_write,
                                          u_long offset,
                                          u_long offset_high,
                                          u_long bytes_per_send,
                                          u_long flags,
                                          const void *act,
                                          ACE_HANDLE event)
  : ACE_Asynch_Result (handler, act, event, offset, offset_high),
    socket_ (socket),
    file_ (file),
    header_and_trailer_ (header_and_trailer),
    bytes_to_write_ (bytes_to_write),
    bytes_per_send_ (bytes_per_send),
    flags_ (flags)
{
}

void
ACE_Asynch_Transmit_File::Result::complete (u_long bytes_transferred,
                                            int success,
                                            const void *completion_key,
                                            u_long error)
{
  // Copy the data which was returned by GetQueuedCompletionStatus
  this->bytes_transferred_ = bytes_transferred;
  this->success_ = success;
  this->completion_key_ = completion_key;
  this->error_ = error;

  // We will not do this because (a) the header and trailer blocks may
  // be the same message_blocks and (b) in cases of failures we have
  // no idea how much of what (header, data, trailer) was sent.
  /*
    if (this->success_ && this->header_and_trailer_ != 0)
    {
    ACE_Message_Block *header = this->header_and_trailer_->header ();
    if (header != 0)
    header->rd_ptr (this->header_and_trailer_->header_bytes ());

    ACE_Message_Block *trailer = this->header_and_trailer_->trailer ();
    if (trailer != 0)
    trailer->rd_ptr (this->header_and_trailer_->trailer_bytes ());
    }
    */

  // Callback: notify <handler> of completion
  this->handler_.handle_transmit_file (*this);
}

// ************************************************************

ACE_Asynch_Transmit_File::Header_And_Trailer::Header_And_Trailer (ACE_Message_Block *header,
                                                                  u_long header_bytes,
                                                                  ACE_Message_Block *trailer,
                                                                  u_long trailer_bytes)
  : header_ (header),
    header_bytes_ (header_bytes),
    trailer_ (trailer),
    trailer_bytes_ (trailer_bytes)
{
}

void
ACE_Asynch_Transmit_File::Header_And_Trailer::header_and_trailer (ACE_Message_Block *header,
                                                                  u_long header_bytes,
                                                                  ACE_Message_Block *trailer,
                                                                  u_long trailer_bytes)
{
  this->header (header);
  this->header_bytes (header_bytes);
  this->trailer (trailer);
  this->trailer_bytes (trailer_bytes);
}

ACE_Message_Block *
ACE_Asynch_Transmit_File::Header_And_Trailer::header (void) const
{
  return this->header_;
}

void
ACE_Asynch_Transmit_File::Header_And_Trailer::header (ACE_Message_Block *message_block)
{
  this->header_ = message_block;
}

u_long
ACE_Asynch_Transmit_File::Header_And_Trailer::header_bytes (void) const
{
  return this->header_bytes_;
}

void
ACE_Asynch_Transmit_File::Header_And_Trailer::header_bytes (u_long bytes)
{
  this->header_bytes_ = bytes;
}

ACE_Message_Block *
ACE_Asynch_Transmit_File::Header_And_Trailer::trailer (void) const
{
  return this->trailer_;
}

void
ACE_Asynch_Transmit_File::Header_And_Trailer::trailer (ACE_Message_Block *message_block)
{
  this->trailer_ = message_block;
}

u_long
ACE_Asynch_Transmit_File::Header_And_Trailer::trailer_bytes (void) const
{
  return this->trailer_bytes_;
}

void
ACE_Asynch_Transmit_File::Header_And_Trailer::trailer_bytes (u_long bytes)
{
  this->trailer_bytes_ = bytes;
}

ACE_LPTRANSMIT_FILE_BUFFERS
ACE_Asynch_Transmit_File::Header_And_Trailer::transmit_buffers (void)
{
  // If both are zero, return zero
  if (this->header_ == 0 && this->trailer_ == 0)
    return 0;
  else
    {
      // Something is valid

      // If header is valid, set the fields
      if (this->header_ != 0)
	{
	  this->transmit_buffers_.Head = this->header_->rd_ptr ();
	  this->transmit_buffers_.HeadLength = this->header_bytes_;
	}
      else
	{
	  this->transmit_buffers_.Head = 0;
	  this->transmit_buffers_.HeadLength = 0;
	}

      // If trailer is valid, set the fields
      if (this->trailer_ != 0)
	{
	  this->transmit_buffers_.Tail = this->trailer_->rd_ptr ();
	  this->transmit_buffers_.TailLength = this->trailer_bytes_;
	}
      else
	{
	  this->transmit_buffers_.Tail = 0;
	  this->transmit_buffers_.TailLength = 0;
	}

      // Return the transmit buffers
      return &this->transmit_buffers_;
    }
}

#if defined (ACE_HAS_AIO_CALLS)
// Constructor.
ACE_Asynch_Transmit_Handler::ACE_Asynch_Transmit_Handler (ACE_Asynch_Transmit_File::Result *result,
                                                          ACE_Proactor *proactor)
  : result_ (result),
    proactor_ (proactor),
    mb_ (0),
    header_act_ (this->HEADER_ACT),
    data_act_ (this->DATA_ACT),
    trailer_act_ (this->TRAILER_ACT),
    file_offset_ (result->offset ()),
    file_size_ (0),
    bytes_transferred_ (0),
    transmit_file_done_ (0)
{
  // Allocate memory for the message block.
  ACE_NEW (this->mb_,
           ACE_Message_Block (this->result_->bytes_per_send ()
                              + 1));
  // Init the file size.
  file_size_ = ACE_OS::filesize (this->result_->file ());
}

// Destructor.
ACE_Asynch_Transmit_Handler::~ACE_Asynch_Transmit_Handler (void)
{
  delete result_;
  delete mb_;
}

// Do the transmission.
// Initiate transmitting the header. When that completes
// handle_write_stream will be called, there start transmitting the file.
int
ACE_Asynch_Transmit_Handler::transmit (void)
{
  // Open Asynch_Read_File.
  if (this->rf_.open (*this,
                      this->result_->file ()) == -1)
    ACE_ERROR_RETURN ((LM_ERROR,
                       "ACE_Asynch_Transmit_Handler:read_file open failed\n"),
                      -1);

  // Open Asynch_Write_Stream.
  if (this->ws_.open (*this,
                      this->result_->socket ()) == -1)
    ACE_ERROR_RETURN ((LM_ERROR,
                       "ACE_Asynch_Transmit_Handler:write_stream open failed\n"),
                      -1);
  
  // Transmit the header.
  if (this->ws_.write (*this->result_->header_and_trailer ()->header (),
                       this->result_->header_and_trailer ()->header_bytes (),
                       (void *) &this->header_act_) == -1)
    ACE_ERROR_RETURN ((LM_ERROR,
                       "Asynch_Transmit_Handler:transmitting header:write_stream failed\n"),
                      -1);
  
  // @@ We need to finish the transmitting, before returning to the
  // user code. Otherwise <transmit> may not be atmoic. User's other
  // <read> or <write> on the same socket might damage the order of
  // the current file transmission. 
  int error = 0;
  while (!error && !this->transmit_file_done_)
    error = this->proactor_->handle_events ();
  
  if (!error && this->transmit_file_done_)
    // No error, transmission done. 
    return 0;
  else 
    return -1;
}

void
ACE_Asynch_Transmit_Handler::handle_write_stream (const ACE_Asynch_Write_Stream::Result &result)
{
  // Update bytes transferred so far.
  this->bytes_transferred_ += result.bytes_transferred ();

  // Check the success parameter.
  if (result.success () == 0)
    {
      ACE_ERROR ((LM_ERROR,
                  "Asynch_Transmit_File failed.\n"));
      
      ACE_SEH_TRY
        {
          this->result_->complete (this->bytes_transferred_,
                                   0,      // Failure.
                                   0,      // @@ Completion key.
                                   0);     // @@ Error no.
        }
      ACE_SEH_FINALLY
        {
          // This is crucial to prevent memory leaks
          delete this;
        }
    }
  
  // Write stream successful.
  
  // Partial write to socket.
  int unsent_data = result.bytes_to_write () - result.bytes_transferred ();
  if (unsent_data != 0)
    {
      // Reset pointers.
      result.message_block ().rd_ptr (result.bytes_transferred ());
      
      // Duplicate the message block and retry remaining data
      if (this->ws_.write (*result.message_block ().duplicate (),
                           unsent_data,
                           result.act ()) == -1)
        {
          // @@ Handle this error.
          ACE_ERROR ((LM_ERROR,
                      "Asynch_Transmit_Handler:write_stream failed\n"));
          return;
        }

      // @@ Handling *partial write* to a socket.  Let us not continue
      // further before this write finishes. Because proceeding with
      // another read and then write might change the order of the
      // file transmission, because partial write to the stream is
      // always possible.
      return;
    }

  // Not a partial write.

  // Check ACT to see what was sent.
  ACT act = *(ACT *) result.act ();

  switch (act)
    {
    case TRAILER_ACT:
      // If it is the "trailer" that is just sent, then transmit file
      // is complete.
      ACE_SEH_TRY
        {
          this->result_->complete (this->bytes_transferred_,
                                   1,      // @@ Success.
                                   0,      // @@ Completion key.
                                   0);     // @@ Errno.
        }
      ACE_SEH_FINALLY
        {
          transmit_file_done_ = 1;
          delete this;
        }
      break;
      
    case HEADER_ACT:
    case DATA_ACT:
      // If header/data was sent, initiate the file data transmission.
      if (this->initiate_read_file () == -1)
        // @@ Handle this error.
        ACE_ERROR ((LM_ERROR,
                    "Error:Asynch_Transmit_Handler:read_file couldnt be initiated\n"));
      break;
      
    default:
      // @@ Handle this error.
      ACE_ERROR ((LM_ERROR,
                  "Error:ACE_Asynch_Transmit_Handler::handle_write_stream::Unexpected act\n"));
    }
}

void
ACE_Asynch_Transmit_Handler::handle_read_file (const ACE_Asynch_Read_File::Result &result)
{
  // Failure.
  if (result.success () == 0)
    {
      // 
      ACE_SEH_TRY
        {
          this->result_->complete (this->bytes_transferred_,
                                   0,      // Failure.
                                   0,      // @@ Completion key.
                                   errno); // Error no.
        }
      ACE_SEH_FINALLY
        {
          delete this;
        }
      return;
    }

  // Read successful.
  if (result.bytes_transferred () == 0)
    return;
  
  // Increment offset and write data to network.
  this->file_offset_ += result.bytes_transferred ();
  if (this->ws_.write (result.message_block (),
                       result.bytes_transferred (),
                       (void *)&this->data_act_) == -1)
    {
      // @@ Handle this error.
      ACE_ERROR ((LM_ERROR,
                  "Error:ACE_Asynch_Transmit_File : write to the stream failed\n"));
      return;
    }
}

int
ACE_Asynch_Transmit_Handler::initiate_read_file (void)
{
  // Is there something to read.
  if (this->file_offset_ >= this->file_size_)
    {
      // File is sent. Send the trailer.
      if (this->ws_.write (*this->result_->header_and_trailer ()->trailer (),
                           this->result_->header_and_trailer ()->trailer_bytes (),
                           (void *)&this->trailer_act_) == -1)
        ACE_ERROR_RETURN ((LM_ERROR,
                           "Error:Asynch_Transmit_Handler:write_stream writing trailer failed\n"),
                          -1);
      return 0;
    }
  else
    {
      // Inititiate an asynchronous read from the file.
      if (this->rf_.read (*this->mb_,
                          this->mb_->size () - 1,
                          this->file_offset_) == -1)
        ACE_ERROR_RETURN ((LM_ERROR,
                           "Error:Asynch_Transmit_Handler::read from file failed\n"),
                          -1);
      return 0;
    }
}
#endif /* ACE_HAS_AIO_CALLS */

// ************************************************************

ACE_Handler::~ACE_Handler (void)
{
}

ACE_Handler::ACE_Handler (void)
  : proactor_ (0)
{
}

ACE_Handler::ACE_Handler (ACE_Proactor *d)
  : proactor_ (d)
{
}

void
ACE_Handler::handle_read_stream (const ACE_Asynch_Read_Stream::Result &result)
{
  ACE_UNUSED_ARG (result);
}

void
ACE_Handler::handle_write_stream (const ACE_Asynch_Write_Stream::Result &result)
{
  ACE_UNUSED_ARG (result);
}

void
ACE_Handler::handle_accept (const ACE_Asynch_Accept::Result &result)
{
  ACE_UNUSED_ARG (result);
}

void
ACE_Handler::handle_transmit_file (const ACE_Asynch_Transmit_File::Result &result)
{
  ACE_UNUSED_ARG (result);
}

void
ACE_Handler::handle_read_file (const ACE_Asynch_Read_File::Result &result)
{
  ACE_UNUSED_ARG (result);
}

void
ACE_Handler::handle_write_file (const ACE_Asynch_Write_File::Result &result)
{
  ACE_UNUSED_ARG (result);
}

/*
void
ACE_Handler::handle_notify (const ACE_Asynch_Notify::Result &result)
{
  ACE_UNUSED_ARG (result);
}
*/

void
ACE_Handler::handle_time_out (const ACE_Time_Value &tv,
                              const void *act)
{
  ACE_UNUSED_ARG (tv);
  ACE_UNUSED_ARG (act);
}

ACE_Proactor *
ACE_Handler::proactor (void)
{
  return this->proactor_;
}

void
ACE_Handler::proactor (ACE_Proactor *p)
{
  this->proactor_ = p;
}

ACE_HANDLE
ACE_Handler::handle (void) const
{
  return ACE_INVALID_HANDLE;
}

// ************************************************************

ACE_Service_Handler::ACE_Service_Handler (void)
{
}

ACE_Service_Handler::~ACE_Service_Handler (void)
{
}

void
ACE_Service_Handler::addresses (const ACE_INET_Addr &remote_address,
                                const ACE_INET_Addr &local_address)
{
  // Default behavior is to print out the addresses.
  ASYS_TCHAR local_address_buf[BUFSIZ], remote_address_buf[BUFSIZ];
  if (local_address.addr_to_string (local_address_buf, sizeof local_address_buf) == -1)
    ACE_ERROR ((LM_ERROR,  ASYS_TEXT ("%p\n"),  ASYS_TEXT ("can't obtain local_address's address string")));

  if (remote_address.addr_to_string (remote_address_buf, sizeof remote_address_buf) == -1)
    ACE_ERROR ((LM_ERROR,  ASYS_TEXT ("%p\n"),  ASYS_TEXT ("can't obtain remote_address's address string")));

  ACE_DEBUG ((LM_DEBUG,  ASYS_TEXT ("On fd %d\n"), this->handle ()));
  ACE_DEBUG ((LM_DEBUG,  ASYS_TEXT ("local address %s\n"), local_address_buf));
  ACE_DEBUG ((LM_DEBUG,  ASYS_TEXT ("remote address %s\n"), remote_address_buf));
}

void
ACE_Service_Handler::open (ACE_HANDLE,
                           ACE_Message_Block &)
{
}

#if defined (ACE_HAS_AIO_CALLS)
#if defined (ACE_HAS_EXPLICIT_TEMPLATE_INSTANTIATION)
template class ACE_Unbounded_Queue<ACE_Asynch_Accept::Result*>;
template class ACE_Node<ACE_Asynch_Accept::Result*>;
template class ACE_Unbounded_Queue<ACE_Asynch_Accept::Result*>;
template class ACE_Unbounded_Queue_Iterator<ACE_Asynch_Accept::Result*>;
#elif  defined (ACE_HAS_TEMPLATE_INSTANTIATION_PRAGMA)
#pragma instantiate ACE_Unbounded_Queue<ACE_Asynch_Accept::Result*>
#pragma instantiate ACE_Node<ACE_Asynch_Accept::Result*>
#pragma instantiate ACE_Unbounded_Queue<ACE_Asynch_Accept::Result*>
#pragma instantiate ACE_Unbounded_Queue_Iterator<ACE_Asynch_Accept::Result*>
#endif /* ACE_HAS_EXPLICIT_TEMPLATE_INSTANTIATION */
#endif /* ACE_HAS_AIO_CALLS */

#endif /* ACE_WIN32 || ACE_HAS_AIO_CALLS*/