1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
|
/* -*- C++ -*- */
// $Id$
// ============================================================================
//
// = LIBRARY
// ace
//
// = FILENAME
// Containers.h
//
// = AUTHOR
// Doug Schmidt
//
// ============================================================================
#ifndef ACE_CONTAINERS_T_H
#define ACE_CONTAINERS_T_H
#include "ace/ACE.h"
#if !defined (ACE_LACKS_PRAGMA_ONCE)
# pragma once
#endif /* ACE_LACKS_PRAGMA_ONCE */
// Need by ACE_DLList_Node.
#include "ace/Containers.h"
class ACE_Allocator;
template <class T>
class ACE_Bounded_Stack
{
// = TITLE
// Implement a generic LIFO abstract data type.
//
// = DESCRIPTION
// This implementation of a Stack uses a bounded array
// that is allocated dynamically.
public:
// = Initialization, assignemnt, and termination methods.
ACE_Bounded_Stack (size_t size);
// Initialize a new stack so that it is empty.
ACE_Bounded_Stack (const ACE_Bounded_Stack<T> &s);
// The copy constructor (performs initialization).
void operator= (const ACE_Bounded_Stack<T> &s);
// Assignment operator (performs assignment).
~ACE_Bounded_Stack (void);
// Perform actions needed when stack goes out of scope.
// = Classic Stack operations.
int push (const T &new_item);
// Place a new item on top of the stack. Returns -1 if the stack
// is already full, 0 if the stack is not already full, and -1 if
// failure occurs.
int pop (T &item);
// Remove and return the top stack item. Returns -1 if the stack is
// already empty, 0 if the stack is not already empty, and -1 if
// failure occurs.
int top (T &item) const;
// Return top stack item without removing it. Returns -1 if the
// stack is already empty, 0 if the stack is not already empty, and
// -1 if failure occurs.
// = Check boundary conditions.
int is_empty (void) const;
// Returns 1 if the container is empty, otherwise returns 0.
int is_full (void) const;
// Returns 1 if the container is full, otherwise returns 0.
size_t size (void) const;
// The number of items in the stack.
void dump (void) const;
// Dump the state of an object.
ACE_ALLOC_HOOK_DECLARE;
// Declare the dynamic allocation hooks.
private:
size_t size_;
// Size of the dynamically allocated data.
size_t top_;
// Keeps track of the current top of stack.
T *stack_;
// Holds the stack's contents.
};
//----------------------------------------
template <class T, size_t ACE_SIZE>
class ACE_Fixed_Stack
{
// = TITLE
// Implement a generic LIFO abstract data type.
//
// = DESCRIPTION
// This implementation of a Stack uses a fixed array
// with the size fixed at instantiation time.
public:
// = Initialization, assignemnt, and termination methods.
ACE_Fixed_Stack (void);
// Initialize a new stack so that it is empty.
ACE_Fixed_Stack (const ACE_Fixed_Stack<T, ACE_SIZE> &s);
// The copy constructor (performs initialization).
void operator= (const ACE_Fixed_Stack<T, ACE_SIZE> &s);
// Assignment operator (performs assignment).
~ACE_Fixed_Stack (void);
// Perform actions needed when stack goes out of scope.
// = Classic Stack operations.
int push (const T &new_item);
// Place a new item on top of the stack. Returns -1 if the stack
// is already full, 0 if the stack is not already full, and -1 if
// failure occurs.
int pop (T &item);
// Remove and return the top stack item. Returns -1 if the stack is
// already empty, 0 if the stack is not already empty, and -1 if
// failure occurs.
int top (T &item) const;
// Return top stack item without removing it. Returns -1 if the
// stack is already empty, 0 if the stack is not already empty, and
// -1 if failure occurs.
// = Check boundary conditions.
int is_empty (void) const;
// Returns 1 if the container is empty, otherwise returns 0.
int is_full (void) const;
// Returns 1 if the container is full, otherwise returns 0.
size_t size (void) const;
// The number of items in the stack.
void dump (void) const;
// Dump the state of an object.
ACE_ALLOC_HOOK_DECLARE;
// Declare the dynamic allocation hooks.
private:
size_t size_;
// Size of the allocated data.
size_t top_;
// Keeps track of the current top of stack.
T stack_[ACE_SIZE];
// Holds the stack's contents.
};
//----------------------------------------
// Forward declarations.
template <class T> class ACE_Unbounded_Set;
template <class T> class ACE_Unbounded_Set_Iterator;
template <class T> class ACE_Unbounded_Queue;
template <class T> class ACE_Unbounded_Queue_Iterator;
template <class T> class ACE_Unbounded_Stack;
template <class T> class ACE_Unbounded_Stack_Iterator;
template <class T> class ACE_Ordered_MultiSet;
template <class T> class ACE_Ordered_MultiSet_Iterator;
template<class T>
class ACE_Node
{
// = TITLE
// Implementation element in a Queue, Set, and Stack.
public:
friend class ACE_Unbounded_Queue<T>;
friend class ACE_Unbounded_Queue_Iterator<T>;
friend class ACE_Unbounded_Set<T>;
friend class ACE_Unbounded_Set_Iterator<T>;
friend class ACE_Unbounded_Stack<T>;
friend class ACE_Unbounded_Stack_Iterator<T>;
# if ! defined (ACE_HAS_BROKEN_NOOP_DTORS)
~ACE_Node (void);
// This isn't necessary, but it keeps some compilers happy.
# endif /* ! defined (ACE_HAS_BROKEN_NOOP_DTORS) */
private:
// = Initialization methods
ACE_Node (const T &i, ACE_Node<T> *n);
ACE_Node (ACE_Node<T> *n = 0, int = 0);
ACE_Node (const ACE_Node<T> &n);
ACE_Node<T> *next_;
// Pointer to next element in the list of <ACE_Node>s.
T item_;
// Current value of the item in this node.
};
template<class T>
class ACE_DNode
{
// = TITLE
// Implementation element in a bilinked list.
friend class ACE_Ordered_MultiSet<T>;
friend class ACE_Ordered_MultiSet_Iterator<T>;
public:
# if ! defined (ACE_HAS_BROKEN_NOOP_DTORS)
~ACE_DNode (void);
// This isn't necessary, but it keeps some compilers happy.
# endif /* ! defined (ACE_HAS_BROKEN_NOOP_DTORS) */
private:
// = Initialization methods
ACE_DNode (const T &i, ACE_DNode<T> *n = 0, ACE_DNode<T> *p = 0);
ACE_DNode<T> *next_;
// Pointer to next element in the list of <ACE_DNode>s.
ACE_DNode<T> *prev_;
// Pointer to previous element in the list of <ACE_DNode>s.
T item_;
// Current value of the item in this node.
};
template <class T>
class ACE_Unbounded_Stack
{
// = TITLE
// Implement a generic LIFO abstract data type.
//
// = DESCRIPTION
// This implementation of an unbounded Stack uses a linked list.
// If you use the <insert> or <remove> methods you should keep
// in mind that duplicate entries aren't allowed. In general,
// therefore, you should avoid the use of these methods since
// they aren't really part of the ADT stack.
public:
friend class ACE_Unbounded_Stack_Iterator<T>;
// Trait definition.
typedef ACE_Unbounded_Stack_Iterator<T> ITERATOR;
// = Initialization, assignemnt, and termination methods.
ACE_Unbounded_Stack (ACE_Allocator *alloc = 0);
// Initialize a new stack so that it is empty. Use user defined
// allocation strategy if specified.
ACE_Unbounded_Stack (const ACE_Unbounded_Stack<T> &s);
// The copy constructor (performs initialization).
void operator= (const ACE_Unbounded_Stack<T> &s);
// Assignment operator (performs assignment).
~ACE_Unbounded_Stack (void);
// Perform actions needed when stack goes out of scope.
// = Classic Stack operations.
int push (const T &new_item);
// Place a new item on top of the stack. Returns -1 if the stack
// is already full, 0 if the stack is not already full, and -1 if
// failure occurs.
int pop (T &item);
// Remove and return the top stack item. Returns -1 if the stack is
// already empty, 0 if the stack is not already empty, and -1 if
// failure occurs.
int top (T &item) const;
// Return top stack item without removing it. Returns -1 if the
// stack is already empty, 0 if the stack is not already empty, and
// -1 if failure occurs.
// = Check boundary conditions.
int is_empty (void) const;
// Returns 1 if the container is empty, otherwise returns 0.
int is_full (void) const;
// Returns 1 if the container is full, otherwise returns 0.
// = Auxiliary methods (not strictly part of the Stack ADT).
int insert (const T &new_item);
// Insert <new_item> into the Stack at the head (but doesn't allow
// duplicates). Returns -1 if failures occur, 1 if item is already
// present (i.e., no duplicates are allowed), else 0.
int remove (const T &item);
// Remove <item> from the Stack. Returns 0 if it removes the item,
// -1 if it can't find the item, and -1 if a failure occurs.
int find (const T &item) const;
// Finds if <item> occurs the set. Returns 0 if finds, else -1.
size_t size (void) const;
// The number of items in the stack.
void dump (void) const;
// Dump the state of an object.
ACE_ALLOC_HOOK_DECLARE;
// Declare the dynamic allocation hooks.
private:
void delete_all_nodes (void);
// Delete all the nodes in the stack.
void copy_all_nodes (const ACE_Unbounded_Stack<T> &s);
// Copy all nodes from <s> to <this>.
ACE_Node<T> *head_;
// Head of the linked list of Nodes.
size_t cur_size_;
// Current size of the stack.
ACE_Allocator *allocator_;
// Allocation strategy of the stack.
};
template <class T>
class ACE_Unbounded_Stack_Iterator
{
// = TITLE
// Implement an iterator over an unbounded Stack.
public:
// = Initialization method.
ACE_Unbounded_Stack_Iterator (ACE_Unbounded_Stack<T> &stack);
// Move to the first element in the <stack>.
// = Iteration methods.
int next (T *&next_item);
// Pass back the <next_item> that hasn't been seen in the Stack.
// Returns 0 when all items have been seen, else 1.
int advance (void);
// Move forward by one element in the Stack. Returns 0 when all the
// items in the Stack have been seen, else 1.
int first (void);
// Move to the first element in the Stack. Returns 0 if the
// Stack is empty, else 1.
int done (void) const;
// Returns 1 when all items have been seen, else 0.
void dump (void) const;
// Dump the state of an object.
ACE_ALLOC_HOOK_DECLARE;
// Declare the dynamic allocation hooks.
private:
ACE_Node<T> *current_;
// Pointer to the current node in the iteration.
ACE_Unbounded_Stack<T> &stack_;
// Pointer to the Stack we're iterating over.
};
template <class T>
class ACE_Unbounded_Queue;
template <class T>
class ACE_Unbounded_Queue_Iterator
{
// = TITLE
// Implement an iterator over an unbounded queue.
public:
// = Initialization method.
ACE_Unbounded_Queue_Iterator (ACE_Unbounded_Queue<T> &q, int end = 0);
// = Iteration methods.
int next (T *&next_item);
// Pass back the <next_item> that hasn't been seen in the queue.
// Returns 0 when all items have been seen, else 1.
int advance (void);
// Move forward by one element in the set. Returns 0 when all the
// items in the queue have been seen, else 1.
int first (void);
// Move to the first element in the queue. Returns 0 if the
// queue is empty, else 1.
int done (void) const;
// Returns 1 when all items have been seen, else 0.
void dump (void) const;
// Dump the state of an object.
ACE_ALLOC_HOOK_DECLARE;
// Declare the dynamic allocation hooks.
private:
ACE_Node<T> *current_;
// Pointer to the current node in the iteration.
ACE_Unbounded_Queue<T> &queue_;
// Pointer to the queue we're iterating over.
};
template <class T>
class ACE_Unbounded_Queue
{
// = TITLE
// A Queue of "infinite" length.
//
// = DESCRIPTION
// This implementation of an unbounded queue uses a circular
// linked list with a dummy node.
public:
friend class ACE_Unbounded_Queue_Iterator<T>;
// Trait definition.
typedef ACE_Unbounded_Queue_Iterator<T> ITERATOR;
// = Initialization and termination methods.
ACE_Unbounded_Queue (ACE_Allocator *alloc = 0);
// construction. Use user specified allocation strategy
// if specified.
ACE_Unbounded_Queue (const ACE_Unbounded_Queue<T> &);
// Copy constructor.
void operator= (const ACE_Unbounded_Queue<T> &);
// Assignment operator.
~ACE_Unbounded_Queue (void);
// construction.
// = Check boundary conditions.
int is_empty (void) const;
// Returns 1 if the container is empty, otherwise returns 0.
int is_full (void) const;
// Returns 1 if the container is full, otherwise returns 0.
// = Classic queue operations.
int enqueue_tail (const T &new_item);
// Adds <new_item> to the tail of the queue. Returns 0 on success,
// -1 on failure.
int enqueue_head (const T &new_item);
// Adds <new_item> to the head of the queue. Returns 0 on success,
// -1 on failure.
int dequeue_head (T &item);
// Removes and returns the first <item> on the queue. Returns 0 on
// success, -1 if the queue was empty.
// = Additional utility methods.
void reset (void);
// Reset the <ACE_Unbounded_Queue> to be empty.
int get (T *&item, size_t slot = 0) const;
// Get the <slot>th element in the set. Returns -1 if the element
// isn't in the range <0..size() - 1>, else 0.
int set (const T &item, size_t slot);
// Set the <slot>th element in the set. Will pad out the set with
// empty nodes if <slot> is beyond the range <0..size() - 1>.
// Returns -1 on failure, 0 if <slot> isn't initially in range, and
// 0 otherwise.
size_t size (void) const;
// The number of items in the queue.
void dump (void) const;
// Dump the state of an object.
// = STL-styled unidirectional iterator factory.
ACE_Unbounded_Queue_Iterator<T> begin (void);
ACE_Unbounded_Queue_Iterator<T> end (void);
ACE_ALLOC_HOOK_DECLARE;
// Declare the dynamic allocation hooks.
protected:
void delete_nodes (void);
// Delete all the nodes in the queue.
void copy_nodes (const ACE_Unbounded_Queue<T> &);
// Copy nodes into this queue.
ACE_Node<T> *head_;
// Pointer to the dummy node in the circular linked Queue.
size_t cur_size_;
// Current size of the queue.
ACE_Allocator *allocator_;
// Allocation Strategy of the queue.
};
template <class T>
class ACE_Double_Linked_List;
template <class T>
class ACE_Double_Linked_List_Iterator_Base
{
// = TITLE
// Implements a common base class for iterators for a double
// linked list ADT
public:
// = Iteration methods.
int next (T *&) const;
// Passes back the <entry> under the iterator. Returns 0 if the
// iteration has completed, otherwise 1
T *next (void) const;
// Return the address of next (current) unvisited item in the list.
// 0 if there is no more element available.
// DEPRECATED
int done (void) const;
// Returns 1 when all items have been seen, else 0.
T & operator* (void) const ;
// STL-like iterator dereference operator: returns a reference
// to the node underneath the iterator.
void reset (ACE_Double_Linked_List<T> &);
// Retasks the iterator to iterate over a new
// Double_Linked_List. This allows clients to reuse an iterator
// without incurring the constructor overhead. If you do use this,
// be aware that if there are more than one reference to this
// iterator, the other "clients" may be very bothered when their
// iterator changes.
// @@ Here be dragons. Comments?
ACE_ALLOC_HOOK_DECLARE;
// Declare the dynamic allocation hooks.
protected:
// = Initialization methods.
ACE_Double_Linked_List_Iterator_Base (ACE_Double_Linked_List<T> &);
// Constructor
ACE_Double_Linked_List_Iterator_Base (const
ACE_Double_Linked_List_Iterator_Base<T>
&iter);
// Copy constructor.
// = Iteration methods.
int go_head (void);
// Move to the first element of the list. Returns 0 if the list is
// empty, else 1. Note: the head of the ACE_DLList is actually a
// null entry, so the first element is actually the 2n'd entry
int go_tail (void);
// Move to the last element of the list. Returns 0 if the list is
// empty, else 1.
T *not_done (void) const ;
// Check if we reach the end of the list. Can also be used to get
// the *current* element in the list. Return the address of the
// current item if there are still elements left , 0 if we run out
// of element.
T *do_advance (void);
// Advance to the next element in the list. Return the address of the
// next element if there are more, 0 otherwise.
T *do_retreat (void);
// Retreat to the previous element in the list. Return the address
// of the previous element if there are more, 0 otherwise.
void dump_i (void) const;
// Dump the state of an object.
T *current_;
// Remember where we are.
ACE_Double_Linked_List<T> *dllist_;
};
template <class T>
class ACE_Double_Linked_List_Iterator : public ACE_Double_Linked_List_Iterator_Base <T>
{
// = TITLE
// Implements an iterator for a double linked list ADT
//
// = DESCRIPTION
// Iterate thru the double-linked list. This class provides
// an interface that let users access the internal element
// addresses directly. Notice <class T> must delcare
// ACE_Double_Linked_List<T>,
// ACE_Double_Linked_List_Iterator_Base <T> and
// ACE_Double_Linked_List_Iterator as friend classes and class T
// should also have data members T* next_ and T* prev_.
public:
// = Initialization method.
ACE_Double_Linked_List_Iterator (ACE_Double_Linked_List<T> &);
int first (void);
// Move to the first element in the list. Returns 0 if the
// list is empty, else 1.
int advance (void);
// Move forward by one element in the list. Returns 0 when all the
// items in the list have been seen, else 1.
T* advance_and_remove (int dont_remove);
// Advance the iterator while removing the original item from the list.
// Return a pointer points to the original (removed) item. If
// <dont_remove> equals 0, this function behaves like advance() but
// return 0 (NULL) instead.
// = STL-style iteration methods
ACE_Double_Linked_List_Iterator<T> & operator++ (void);
// Prefix advance.
ACE_Double_Linked_List_Iterator<T> operator++ (int);
// Postfix advance.
ACE_Double_Linked_List_Iterator<T> & operator-- (void);
// Prefix reverse.
ACE_Double_Linked_List_Iterator<T> operator-- (int);
// Postfix reverse.
void dump (void) const;
// Dump the state of an object.
ACE_ALLOC_HOOK_DECLARE;
// Declare the dynamic allocation hooks.
};
template <class T>
class ACE_Double_Linked_List_Reverse_Iterator : public ACE_Double_Linked_List_Iterator_Base <T>
{
// = TITLE
// Implements a reverse iterator for a double linked list ADT
//
// = DESCRIPTION
// Iterate backwards over the double-linked list. This class
// provide an interface that let users access the internal
// element addresses directly, which seems to break the
// encapsulation. Notice <class T> must delcare
// ACE_Double_Linked_List<T>,
// ACE_Double_Linked_List_Iterator_Base <T> and
// ACE_Double_Linked_List_Iterator as friend classes and class T
// should also have data members T* next_ and T* prev_.
public:
// = Initialization method.
ACE_Double_Linked_List_Reverse_Iterator (ACE_Double_Linked_List<T> &);
int first (void);
// Move to the first element in the list. Returns 0 if the
// list is empty, else 1.
int advance (void);
// Move forward by one element in the list. Returns 0 when all the
// items in the list have been seen, else 1.
T* advance_and_remove (int dont_remove);
// Advance the iterator while removing the original item from the list.
// Return a pointer points to the original (removed) item. If
// <dont_remove> equals 0, this function behaves like advance() but
// return 0 (NULL) instead.
// = STL-style iteration methods
ACE_Double_Linked_List_Reverse_Iterator<T> & operator++ (void);
// Prefix advance.
ACE_Double_Linked_List_Reverse_Iterator<T> operator++ (int);
// Postfix advance.
ACE_Double_Linked_List_Reverse_Iterator<T> & operator-- (void);
// Prefix reverse.
ACE_Double_Linked_List_Reverse_Iterator<T> operator-- (int);
// Postfix reverse.
void dump (void) const;
// Dump the state of an object.
ACE_ALLOC_HOOK_DECLARE;
// Declare the dynamic allocation hooks.
};
template <class T>
class ACE_Double_Linked_List
{
// = TITLE
// A double-linked list implementation.
//
// = DESCRIPTION
// This implementation of an unbounded double-linked list uses a
// circular linked list with a dummy node. It is pretty much
// like the ACE_Unbounded_Queue except that it allows removing
// of a specific element from a specific location.
public:
friend class ACE_Double_Linked_List_Iterator_Base<T>;
friend class ACE_Double_Linked_List_Iterator<T>;
friend class ACE_Double_Linked_List_Reverse_Iterator<T>;
// Trait definition.
typedef ACE_Double_Linked_List_Iterator<T> ITERATOR;
typedef ACE_Double_Linked_List_Reverse_Iterator<T> REVERSE_ITERATOR;
// = Initialization and termination methods.
ACE_Double_Linked_List (ACE_Allocator *alloc = 0);
// construction. Use user specified allocation strategy
// if specified.
ACE_Double_Linked_List (ACE_Double_Linked_List<T> &);
// Copy constructor.
void operator= (ACE_Double_Linked_List<T> &);
// Assignment operator.
~ACE_Double_Linked_List (void);
// Destructor.
// = Check boundary conditions.
int is_empty (void) const;
// Returns 1 if the container is empty, otherwise returns 0.
int is_full (void) const;
// Returns 1 if the container is full, otherwise returns 0.
// = Classic queue operations.
T *insert_tail (T *new_item);
// Adds <new_item> to the tail of the list. Returns the new item
// that was inserted.
T *insert_head (T *new_item);
// Adds <new_item> to the head of the list.Returns the new item that
// was inserted.
T* delete_head (void);
// Removes and returns the first <item> in the list. Returns
// internal node's address on success, 0 if the queue was empty.
// This method will *not* free the internal node.
T *delete_tail (void);
// Removes and returns the last <item> in the list. Returns
// internal nodes's address on success, 0 if the queue was
// empty. This method will *not* free the internal node.
// = Additional utility methods.
void reset (void);
// Reset the <ACE_Double_Linked_List> to be empty.
// Notice that since no one is interested in the items within,
// This operation will delete all items.
int get (T *&item, size_t slot = 0);
// Get the <slot>th element in the set. Returns -1 if the element
// isn't in the range <0..size() - 1>, else 0.
size_t size (void) const;
// The number of items in the queue.
void dump (void) const;
// Dump the state of an object.
int remove (T *n);
// Use DNode address directly.
ACE_ALLOC_HOOK_DECLARE;
// Declare the dynamic allocation hooks.
protected:
void delete_nodes (void);
// Delete all the nodes in the list.
void copy_nodes (ACE_Double_Linked_List<T> &);
// Copy nodes into this list.
void init_head (void);
// Setup header pointer. Called after we create the head node in ctor.
int insert_element (T *new_item,
int before = 0,
T *old_item = 0);
// Insert a <new_element> into the list. It will be added before
// or after <old_item>. Default is to insert the new item *after*
// <head_>. Return 0 if succeed, -1 if error occured.
int remove_element (T *item);
// Remove an <item> from the list. Return 0 if succeed, -1 otherwise.
// Notice that this function checks if item is <head_> and either its
// <next_> or <prev_> is NULL. The function resets item's <next_> and
// <prev_> to 0 to prevent clobbering the double-linked list if a user
// tries to remove the same node again.
T *head_;
// Head of the circular double-linked list.
size_t size_;
// Size of this list.
ACE_Allocator *allocator_;
// Allocation Strategy of the queue.
};
template <class T> class ACE_DLList;
template <class T> class ACE_DLList_Iterator;
template <class T> class ACE_DLList_Reverse_Iterator;
typedef ACE_Double_Linked_List<ACE_DLList_Node> ACE_DLList_Base;
//typedef ACE_Double_Linked_List_Iterator <ACE_DLList_Node>
// ACE_DLList_Iterator_Base;
//typedef ACE_Double_Linked_List_Reverse_Iterator <ACE_DLList_Node>
// ACE_DLList_Reverse_Iterator_Base;
//@@ These two typedefs (inherited from James Hu's original design)
// have been removed because Sun CC 4.2 had problems with it. I guess
// having the DLList_Iterators inheriting from a class which is
// actually a typedef leads to problems. #define'ing rather than
// typedef'ing worked, but as per Carlos's reccomendation, I'm just
// replacing all references to the base classes with their actual
// type. Matt Braun (6/15/99)
template <class T>
class ACE_DLList : public ACE_DLList_Base
{
// = TITLE
// A double-linked list container class.
//
// = DESCRIPTION
// This implementation uses ACE_Double_Linked_List to perform
// the logic behind this container class. It delegates all of its
// calls to ACE_Double_Linked_List.
friend class ACE_DLList_Node;
friend class ACE_Double_Linked_List_Iterator<T>;
friend class ACE_DLList_Iterator<T>;
friend class ACE_DLList_Reverse_Iterator<T>;
public:
void operator= (ACE_DLList<T> &l);
// Delegates to ACE_Double_Linked_List.
// = Classic queue operations.
T *insert_tail (T *new_item);
// Delegates to ACE_Double_Linked_List.
T *insert_head (T *new_item);
// Delegates to ACE_Double_Linked_List.
T *delete_head (void);
// Delegates to ACE_Double_Linked_List.
T *delete_tail (void);
// Delegates to ACE_Double_Linked_List.
// = Additional utility methods.
int get (T *&item, size_t slot = 0);
// Delegates to ACE_Double_Linked_List, but where
// ACE_Double_Linked_List returns the node as the item, this get
// returns the contents of the node in item.
void dump (void) const;
// Delegates to ACE_Double_Linked_List.
int remove (ACE_DLList_Node *n);
// Delegates to ACE_Double_Linked_List.
// = Initialization and termination methods.
ACE_DLList (ACE_Allocator *alloc = 0);
// Delegates to ACE_Double_Linked_List.
ACE_DLList (ACE_DLList<T> &l);
// Delegates to ACE_Double_Linked_List.
~ACE_DLList (void);
// Deletes the list starting from the head.
};
template <class T>
class ACE_DLList_Iterator : public ACE_Double_Linked_List_Iterator <ACE_DLList_Node>
{
// = TITLE
// A double-linked list container class iterator.
//
// = DESCRIPTION
// This implementation uses ACE_Double_Linked_List_Iterator to
// perform the logic behind this container class. It delegates
// all of its calls to ACE_Double_Linked_List_Iterator.
friend class ACE_DLList<T>;
friend class ACE_DLList_Node;
public:
// = Initialization method.
ACE_DLList_Iterator (ACE_DLList<T> &l);
// = Iteration methods.
int advance (void);
// Move forward by one element in the set. Returns 0 when all the
// items in the set have been seen, else 1.
T *next (void) const;
// Delegates to ACE_Double_Linked_List_Iterator, except that whereas
// the Double_Linked_List version of next returns the node, this next
// returns the contents of the node
int remove (void);
// Removes the current item (i.e., this->next()) from the list.
void dump (void) const;
// Delegates to ACE_Double_Linked_List_Iterator.
private:
ACE_DLList<T> &list_;
};
template <class T>
class ACE_DLList_Reverse_Iterator : public ACE_Double_Linked_List_Reverse_Iterator <ACE_DLList_Node>
{
// = TITLE
// A double-linked list container class iterator.
//
// = DESCRIPTION
// This implementation uses ACE_Double_Linked_List_Iterator to
// perform the logic behind this container class. It delegates
// all of its calls to ACE_Double_Linked_List_Iterator.
friend class ACE_DLList<T>;
friend class ACE_DLList_Node;
public:
// = Initialization method.
ACE_DLList_Reverse_Iterator (ACE_DLList<T> &l);
// = Iteration methods.
int advance (void);
// Move forward by one element in the set. Returns 0 when all the
// items in the set have been seen, else 1.
T *next (void) const;
// Delegates to ACE_Double_Linked_List_Iterator.
int remove (void);
// Removes the current item (i.e., this->next()) from the list.
void dump (void) const;
// Delegates to ACE_Double_Linked_List_Iterator.
private:
ACE_DLList<T> &list_;
};
template <class T>
class ACE_Unbounded_Set_Iterator
{
// = TITLE
// Implement an iterator over an unbounded set.
public:
// = Initialization method.
ACE_Unbounded_Set_Iterator (ACE_Unbounded_Set<T> &s, int end = 0);
// = Iteration methods.
int next (T *&next_item);
// Pass back the <next_item> that hasn't been seen in the Set.
// Returns 0 when all items have been seen, else 1.
int advance (void);
// Move forward by one element in the set. Returns 0 when all the
// items in the set have been seen, else 1.
int first (void);
// Move to the first element in the set. Returns 0 if the
// set is empty, else 1.
int done (void) const;
// Returns 1 when all items have been seen, else 0.
void dump (void) const;
// Dump the state of an object.
// = STL styled iteration, compare, and reference functions.
ACE_Unbounded_Set_Iterator<T> operator++ (int);
// Postfix advance.
ACE_Unbounded_Set_Iterator<T>& operator++ (void);
// Prefix advance.
T& operator* (void);
// Returns a reference to the interal element <this> is pointing to.
int operator== (const ACE_Unbounded_Set_Iterator<T> &) const;
int operator!= (const ACE_Unbounded_Set_Iterator<T> &) const;
// Check if two iterators point to the same position
ACE_ALLOC_HOOK_DECLARE;
// Declare the dynamic allocation hooks.
private:
ACE_Node<T> *current_;
// Pointer to the current node in the iteration.
ACE_Unbounded_Set<T> *set_;
// Pointer to the set we're iterating over.
};
template <class T>
class ACE_Unbounded_Set
{
// = TITLE
// Implement a simple unordered set of <T> of unbounded size.
//
// = DESCRIPTION
// This implementation of an unordered set uses a circular
// linked list with a dummy node. This implementation does not
// allow duplicates, but it maintains FIFO ordering of insertions.
public:
friend class ACE_Unbounded_Set_Iterator<T>;
// Trait definition.
typedef ACE_Unbounded_Set_Iterator<T> ITERATOR;
typedef ACE_Unbounded_Set_Iterator<T> iterator;
// = Initialization and termination methods.
ACE_Unbounded_Set (ACE_Allocator *alloc = 0);
// Constructor. Use user specified allocation strategy
// if specified.
ACE_Unbounded_Set (const ACE_Unbounded_Set<T> &);
// Copy constructor.
void operator= (const ACE_Unbounded_Set<T> &);
// Assignment operator.
~ACE_Unbounded_Set (void);
// Destructor.
// = Check boundary conditions.
int is_empty (void) const;
// Returns 1 if the container is empty, otherwise returns 0.
int is_full (void) const;
// Returns 1 if the container is full, otherwise returns 0.
// = Classic unordered set operations.
int insert (const T &new_item);
// Insert <new_item> into the set (doesn't allow duplicates).
// Returns -1 if failures occur, 1 if item is already present, else
// 0.
int remove (const T &item);
// Remove first occurrence of <item> from the set. Returns 0 if
// it removes the item, -1 if it can't find the item, and -1 if a
// failure occurs.
int find (const T &item) const;
// Finds if <item> occurs in the set. Returns 0 if find succeeds,
// else -1.
size_t size (void) const;
// Size of the set.
void dump (void) const;
// Dump the state of an object.
void reset (void);
// Reset the <ACE_Unbounded_Set> to be empty.
// = STL-styled unidirectional iterator factory.
ACE_Unbounded_Set_Iterator<T> begin (void);
ACE_Unbounded_Set_Iterator<T> end (void);
ACE_ALLOC_HOOK_DECLARE;
// Declare the dynamic allocation hooks.
private:
int insert_tail (const T &item);
// Insert <item> at the tail of the set (doesn't check for
// duplicates).
void delete_nodes (void);
// Delete all the nodes in the Set.
void copy_nodes (const ACE_Unbounded_Set<T> &);
// Copy nodes into this set.
ACE_Node<T> *head_;
// Head of the linked list of Nodes.
size_t cur_size_;
// Current size of the set.
ACE_Allocator *allocator_;
// Allocation strategy of the set.
};
// Forward declaration.
template <class T, size_t ACE_SIZE>
class ACE_Fixed_Set;
template <class T, size_t ACE_SIZE>
class ACE_Fixed_Set_Iterator
{
// = TITLE
// Interates through an unordered set.
//
// = DESCRIPTION
// This implementation of an unordered set uses a fixed array.
// Allows deletions while iteration is occurring.
public:
// = Initialization method.
ACE_Fixed_Set_Iterator (ACE_Fixed_Set<T, ACE_SIZE> &s);
// = Iteration methods.
int next (T *&next_item);
// Pass back the <next_item> that hasn't been seen in the Set.
// Returns 0 when all items have been seen, else 1.
int advance (void);
// Move forward by one element in the set. Returns 0 when all the
// items in the set have been seen, else 1.
int first (void);
// Move to the first element in the set. Returns 0 if the
// set is empty, else 1.
int done (void) const;
// Returns 1 when all items have been seen, else 0.
void dump (void) const;
// Dump the state of an object.
ACE_ALLOC_HOOK_DECLARE;
// Declare the dynamic allocation hooks.
private:
ACE_Fixed_Set<T, ACE_SIZE> &s_;
// Set we are iterating over.
ssize_t next_;
// How far we've advanced over the set.
};
template <class T, size_t ACE_SIZE>
class ACE_Fixed_Set
{
// = TITLE
// Implement a simple unordered set of <T> with maximum <ACE_SIZE>.
//
// = DESCRIPTION
// This implementation of an unordered set uses a fixed array.
// This implementation does not allow duplicates...
public:
friend class ACE_Fixed_Set_Iterator<T, ACE_SIZE>;
// Trait definition.
typedef ACE_Fixed_Set_Iterator<T, ACE_SIZE> ITERATOR;
// = Initialization and termination methods.
ACE_Fixed_Set (void);
// Constructor.
ACE_Fixed_Set (const ACE_Fixed_Set<T, ACE_SIZE> &);
// Copy constructor.
void operator= (const ACE_Fixed_Set<T, ACE_SIZE> &);
// Assignment operator.
~ACE_Fixed_Set (void);
// Destructor.
// = Check boundary conditions.
int is_empty (void) const;
// Returns 1 if the container is empty, otherwise returns 0.
int is_full (void) const;
// Returns 1 if the container is full, otherwise returns 0.
// = Classic unordered set operations.
int insert (const T &new_item);
// Insert <new_item> into the set (doesn't allow duplicates).
// Returns -1 if failures occur, 1 if item is already present, else
// 0.
int remove (const T &item);
// Remove first occurrence of <item> from the set. Returns 0 if
// it removes the item, -1 if it can't find the item, and -1 if a
// failure occurs.
int find (const T &item) const;
// Finds if <item> occurs in the set. Returns 0 if finds, else -1.
size_t size (void) const;
// Size of the set.
void dump (void) const;
// Dump the state of an object.
ACE_ALLOC_HOOK_DECLARE;
// Declare the dynamic allocation hooks.
private:
struct
{
T item_;
// Item in the set.
int is_free_;
// Keeps track of whether this item is in use or not.
} search_structure_[ACE_SIZE];
// Holds the contents of the set.
size_t cur_size_;
// Current size of the set.
size_t max_size_;
// Maximum size of the set.
};
// Forward declaration.
template <class T>
class ACE_Bounded_Set;
template <class T>
class ACE_Bounded_Set_Iterator
{
// = TITLE
// Interates through an unordered set.
//
// = DESCRIPTION
// This implementation of an unordered set uses a Bounded array.
// Allows deletions while iteration is occurring.
public:
// = Initialization method.
ACE_Bounded_Set_Iterator (ACE_Bounded_Set<T> &s);
// = Iteration methods.
int next (T *&next_item);
// Pass back the <next_item> that hasn't been seen in the Set.
// Returns 0 when all items have been seen, else 1.
int advance (void);
// Move forward by one element in the set. Returns 0 when all the
// items in the set have been seen, else 1.
int first (void);
// Move to the first element in the set. Returns 0 if the
// set is empty, else 1.
int done (void) const;
// Returns 1 when all items have been seen, else 0.
void dump (void) const;
// Dump the state of an object.
ACE_ALLOC_HOOK_DECLARE;
// Declare the dynamic allocation hooks.
private:
ACE_Bounded_Set<T> &s_;
// Set we are iterating over.
ssize_t next_;
// How far we've advanced over the set.
};
template <class T>
class ACE_Bounded_Set
{
// = TITLE
// Implement a simple unordered set of <T> with maximum
// set at creation time.
//
// = DESCRIPTION
// This implementation of an unordered set uses a Bounded array.
// This implementation does not allow duplicates...
public:
friend class ACE_Bounded_Set_Iterator<T>;
// Trait definition.
typedef ACE_Bounded_Set_Iterator<T> ITERATOR;
enum
{
DEFAULT_SIZE = 10
};
// = Initialization and termination methods.
ACE_Bounded_Set (void);
// Constructor.
ACE_Bounded_Set (size_t size);
// Constructor.
ACE_Bounded_Set (const ACE_Bounded_Set<T> &);
// Copy constructor.
void operator= (const ACE_Bounded_Set<T> &);
// Assignment operator.
~ACE_Bounded_Set (void);
// Destructor
// = Check boundary conditions.
int is_empty (void) const;
// Returns 1 if the container is empty, otherwise returns 0.
int is_full (void) const;
// Returns 1 if the container is full, otherwise returns 0.
// = Classic unordered set operations.
int insert (const T &new_item);
// Insert <new_item> into the set (doesn't allow duplicates).
// Returns -1 if failures occur, 1 if item is already present, else
// 0.
int remove (const T &item);
// Remove first occurrence of <item> from the set. Returns 0 if it
// removes the item, -1 if it can't find the item, and -1 if a
// failure occurs.
int find (const T &item) const;
// Finds if <item> occurs in the set. Returns 0 if finds, else -1.
size_t size (void) const;
// Size of the set.
void dump (void) const;
// Dump the state of an object.
ACE_ALLOC_HOOK_DECLARE;
// Declare the dynamic allocation hooks.
private:
struct Search_Structure
{
T item_;
// Item in the set.
int is_free_;
// Keeps track of whether this item is in use or not.
};
Search_Structure *search_structure_;
// Holds the contents of the set.
size_t cur_size_;
// Current size of the set.
size_t max_size_;
// Maximum size of the set.
};
template <class T>
class ACE_Ordered_MultiSet_Iterator
{
// = TITLE
// Implement a bidirectional iterator over an ordered multiset.
// This class template requires that < operator semantics be
// defined for the parameterized type <T>, but does not impose
// any restriction on how that ordering operator is implemented.
public:
friend class ACE_Ordered_MultiSet<T>;
// = Initialization method.
ACE_Ordered_MultiSet_Iterator (ACE_Ordered_MultiSet<T> &s);
// = Iteration methods.
int next (T *&next_item) const;
// Pass back the <next_item> that hasn't been seen in the ordered multiset.
// Returns 0 when all items have been seen, else 1.
int first (void);
// Repositions the iterator at the first item in the ordered multiset
// Returns 0 if the list is empty else 1.
int last (void);
// Repositions the iterator at the last item in the ordered multiset
// Returns 0 if the list is empty else 1.
int advance (void);
// Move forward by one element in the set. Returns 0 when all the
// items in the set have been seen, else 1.
int retreat (void);
// Move backward by one element in the set. Returns 0 when all the
// items in the set have been seen, else 1.
int done (void) const;
// Returns 1 when all items have been seen, else 0.
void dump (void) const;
// Dump the state of an object.
ACE_ALLOC_HOOK_DECLARE;
// Declare the dynamic allocation hooks.
private:
ACE_DNode<T> *current_;
// Pointer to the current node in the iteration.
ACE_Ordered_MultiSet<T> &set_;
// Pointer to the set we're iterating over.
};
template <class T>
class ACE_Ordered_MultiSet
{
// = TITLE
// Implement a simple ordered multiset of <T> of unbounded size.
// This class template requires that < operator semantics be
// defined for the parameterized type <T>, but does not impose
// any restriction on how that ordering operator is implemented.
//
// = DESCRIPTION
// This implementation of an unordered set uses a circular
// linked list with a dummy node. This implementation does not
// allow duplicates, but it maintains FIFO ordering of
// insertions.
public:
friend class ACE_Ordered_MultiSet_Iterator<T>;
// Trait definition.
typedef ACE_Ordered_MultiSet_Iterator<T> ITERATOR;
// = Initialization and termination methods.
ACE_Ordered_MultiSet (ACE_Allocator *alloc = 0);
// Constructor. Use user specified allocation strategy
// if specified.
ACE_Ordered_MultiSet (const ACE_Ordered_MultiSet<T> &);
// Copy constructor.
~ACE_Ordered_MultiSet (void);
// Destructor.
void operator= (const ACE_Ordered_MultiSet<T> &);
// Assignment operator.
// = Check boundary conditions.
int is_empty (void) const;
// Returns 1 if the container is empty, otherwise returns 0.
size_t size (void) const;
// Size of the set.
// = Classic unordered set operations.
int insert (const T &new_item);
// Insert <new_item> into the ordered multiset.
// Returns -1 if failures occur, else 0.
int insert (const T &new_item, ITERATOR &iter);
// Insert <new_item> into the ordered multiset, starting its search at
// the node pointed to by the iterator, and if insetion was successful,
// updates the iterator to point to the newly inserted node.
// Returns -1 if failures occur, else 0.
int remove (const T &item);
// Remove first occurrence of <item> from the set. Returns 0 if
// it removes the item, -1 if it can't find the item.
int find (const T &item, ITERATOR &iter) const;
// Finds first occurrance of <item> in the multiset, using the iterator's
// current position as a hint to improve performance. If find succeeds,
// it positions the iterator at that node and returns 0, or if it cannot
// locate the node, it leaves the iterator alone and just returns -1.
void reset (void);
// Reset the <ACE_Ordered_MultiSet> to be empty.
void dump (void) const;
// Dump the state of an object.
ACE_ALLOC_HOOK_DECLARE;
// Declare the dynamic allocation hooks.
private:
int insert_from (const T &item, ACE_DNode<T> *start_position,
ACE_DNode<T> **new_position);
// Insert <item>, starting its search at the position given,
// and if successful updates the passed pointer to point to
// the newly inserted item's node.
int locate (const T &item, ACE_DNode<T> *start_position,
ACE_DNode<T> *&new_position) const;
// looks for first occurance of <item> in the ordered set, using the
// passed starting position as a hint: if there is such an instance, it
// updates the new_position pointer to point to this node and returns 0;
// if there is no such node, then if there is a node before where the
// item would have been, it updates the new_position pointer to point
// to this node and returns -1; if there is no such node, then if there
// is a node after where the item would have been, it updates the
// new_position pointer to point to this node (or 0 if there is no such
// node) and returns 1;
void delete_nodes (void);
// Delete all the nodes in the Set.
void copy_nodes (const ACE_Ordered_MultiSet<T> &);
// Copy nodes into this set.
ACE_DNode<T> *head_;
// Head of the bilinked list of Nodes.
ACE_DNode<T> *tail_;
// Head of the bilinked list of Nodes.
size_t cur_size_;
// Current size of the set.
ACE_Allocator *allocator_;
// Allocation strategy of the set.
};
// ****************************************************************
// Forward declaration.
template <class T> class ACE_Array_Iterator;
template<class T>
class ACE_Array_Base
{
// = TITLE
// Implement a simple dynamic array
//
// = DESCRIPTION
// This parametric class implements a simple dynamic array;
// resizing must be controlled by the user. No comparison or find
// operations are implemented.
//
public:
// Define a "trait"
typedef T TYPE;
typedef ACE_Array_Iterator<T> ITERATOR;
// = Initialization and termination methods.
ACE_Array_Base (size_t size = 0,
ACE_Allocator *alloc = 0);
// Dynamically create an uninitialized array.
ACE_Array_Base (size_t size,
const T &default_value,
ACE_Allocator *alloc = 0);
// Dynamically initialize the entire array to the <default_value>.
ACE_Array_Base (const ACE_Array_Base<T> &s);
// The copy constructor performs initialization by making an exact
// copy of the contents of parameter <s>, i.e., *this == s will
// return true.
void operator= (const ACE_Array_Base<T> &s);
// Assignment operator performs an assignment by making an exact
// copy of the contents of parameter <s>, i.e., *this == s will
// return true. Note that if the <max_size_> of <array_> is >= than
// <s.max_size_> we can copy it without reallocating. However, if
// <max_size_> is < <s.max_size_> we must delete the <array_>,
// reallocate a new <array_>, and then copy the contents of <s>.
~ACE_Array_Base (void);
// Clean up the array (e.g., delete dynamically allocated memory).
// = Set/get methods.
T &operator [] (size_t slot);
// Set item in the array at location <slot>. Doesn't
// perform range checking.
const T &operator [] (size_t slot) const;
// Get item in the array at location <slot>. Doesn't
// perform range checking.
int set (const T &new_item, size_t slot);
// Set an item in the array at location <slot>. Returns
// -1 if <slot> is not in range, else returns 0.
int get (T &item, size_t slot) const;
// Get an item in the array at location <slot>. Returns -1 if
// <slot> is not in range, else returns 0. Note that this function
// copies the item. If you want to avoid the copy, you can use
// the const operator [], but then you'll be responsible for range checking.
size_t size (void) const;
// Returns the <cur_size_> of the array.
int size (size_t new_size);
// Changes the size of the array to match <new_size>.
// It copies the old contents into the new array.
// Return -1 on failure.
size_t max_size (void) const;
// Returns the <max_size_> of the array.
int max_size (size_t new_size);
// Changes the size of the array to match <new_size>.
// It copies the old contents into the new array.
// Return -1 on failure.
// It does not affect new_size
private:
int in_range (size_t slot) const;
// Returns 1 if <slot> is within range, i.e., 0 >= <slot> <
// <cur_size_>, else returns 0.
size_t max_size_;
// Maximum size of the array, i.e., the total number of <T> elements
// in <array_>.
size_t cur_size_;
// Current size of the array. This starts out being == to
// <max_size_>. However, if we are assigned a smaller array, then
// <cur_size_> will become less than <max_size_>. The purpose of
// keeping track of both sizes is to avoid reallocating memory if we
// don't have to.
T *array_;
// Pointer to the array's storage buffer.
ACE_Allocator *allocator_;
// Allocation strategy of the ACE_Array_Base.
friend class ACE_Array_Iterator<T>;
};
// ****************************************************************
template <class T>
class ACE_Array : public ACE_Array_Base<T>
{
// = TITLE
// Implement a dynamic array class.
//
// = DESCRIPTION
// This class extends ACE_Array_Base, it provides comparison
// operators.
public:
// Define a "trait"
typedef T TYPE;
typedef ACE_Array_Iterator<T> ITERATOR;
// = Exceptions.
// = Initialization and termination methods.
ACE_Array (size_t size = 0,
ACE_Allocator* alloc = 0);
// Dynamically create an uninitialized array.
ACE_Array (size_t size,
const T &default_value,
ACE_Allocator* alloc = 0);
// Dynamically initialize the entire array to the <default_value>.
ACE_Array (const ACE_Array<T> &s);
// The copy constructor performs initialization by making an exact
// copy of the contents of parameter <s>, i.e., *this == s will
// return true.
void operator= (const ACE_Array<T> &s);
// Assignment operator performs an assignment by making an exact
// copy of the contents of parameter <s>, i.e., *this == s will
// return true. Note that if the <max_size_> of <array_> is >= than
// <s.max_size_> we can copy it without reallocating. However, if
// <max_size_> is < <s.max_size_> we must delete the <array_>,
// reallocate a new <array_>, and then copy the contents of <s>.
// = Compare operators
int operator== (const ACE_Array<T> &s) const;
// Compare this array with <s> for equality. Two arrays are equal
// if their size()'s are equal and all the elements from 0 .. size()
// are equal.
int operator!= (const ACE_Array<T> &s) const;
// Compare this array with <s> for inequality such that <*this> !=
// <s> is always the complement of the boolean return value of
// <*this> == <s>.
};
template <class T>
class ACE_Array_Iterator
{
// = TITLE
// Implement an iterator over an ACE_Array.
//
// = DESCRIPTION
// This iterator is safe in the face of array element deletions.
// But it is NOT safe if the array is resized (via the ACE_Array
// assignment operator) during iteration. That would be very
// odd, and dangerous.
public:
// = Initialization method.
ACE_Array_Iterator (ACE_Array_Base<T> &);
// = Iteration methods.
int next (T *&next_item);
// Pass back the <next_item> that hasn't been seen in the Array.
// Returns 0 when all items have been seen, else 1.
int advance (void);
// Move forward by one element in the Array. Returns 0 when all the
// items in the Array have been seen, else 1.
int done (void) const;
// Returns 1 when all items have been seen, else 0.
void dump (void) const;
// Dump the state of an object.
ACE_ALLOC_HOOK_DECLARE;
// Declare the dynamic allocation hooks.
private:
u_int current_;
// Pointer to the current item in the iteration.
ACE_Array_Base<T> &array_;
// Pointer to the Array we're iterating over.
};
#if defined (__ACE_INLINE__)
#include "ace/Containers_T.i"
#endif /* __ACE_INLINE__ */
#if defined (ACE_TEMPLATES_REQUIRE_SOURCE)
#include "ace/Containers_T.cpp"
#endif /* ACE_TEMPLATES_REQUIRE_SOURCE */
#if defined (ACE_TEMPLATES_REQUIRE_PRAGMA)
#pragma implementation ("Containers_T.cpp")
#endif /* ACE_TEMPLATES_REQUIRE_PRAGMA */
#endif /* ACE_CONTAINERS_T_H */
|