1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
|
// $Id$
#ifndef ACE_FUTURE_CPP
#define ACE_FUTURE_CPP
#include "ace/Future.h"
#if !defined (ACE_LACKS_PRAGMA_ONCE)
# pragma once
#endif /* ACE_LACKS_PRAGMA_ONCE */
ACE_RCSID (ace, Future, "$Id$")
#if defined (ACE_HAS_THREADS)
# include "ace/Guard_T.h"
# include "ace/Recursive_Thread_Mutex.h"
ACE_BEGIN_VERSIONED_NAMESPACE_DECL
template <class T>
ACE_Future_Holder<T>::ACE_Future_Holder (void)
{
}
template <class T>
ACE_Future_Holder<T>::ACE_Future_Holder (const ACE_Future<T> &item)
: item_ (item)
{
}
template <class T>
ACE_Future_Holder<T>::~ACE_Future_Holder (void)
{
}
template <class T>
ACE_Future_Observer<T>::ACE_Future_Observer (void)
{
}
template <class T>
ACE_Future_Observer<T>::~ACE_Future_Observer (void)
{
}
// Dump the state of an object.
template <class T> void
ACE_Future_Rep<T>::dump (void) const
{
#if defined (ACE_HAS_DUMP)
ACE_DEBUG ((LM_DEBUG, ACE_BEGIN_DUMP, this));
ACE_DEBUG ((LM_DEBUG,
"ref_count_ = %d\n",
(int) this->ref_count_));
ACE_DEBUG ((LM_INFO,"value_: \n"));
if (this->value_)
ACE_DEBUG ((LM_DEBUG, ACE_LIB_TEXT (" (NON-NULL)\n")));
else
ACE_DEBUG ((LM_DEBUG, ACE_LIB_TEXT (" (NULL)\n")));
ACE_DEBUG ((LM_INFO,"value_ready_: \n"));
this->value_ready_.dump ();
ACE_DEBUG ((LM_INFO,"value_ready_mutex_: \n"));
this->value_ready_mutex_.dump ();
ACE_DEBUG ((LM_DEBUG, ACE_END_DUMP));
#endif /* ACE_HAS_DUMP */
}
template <class T> ACE_Future_Rep<T> *
ACE_Future_Rep<T>::internal_create (void)
{
ACE_Future_Rep<T> *temp = 0;
ACE_NEW_RETURN (temp,
ACE_Future_Rep<T> (),
0);
return temp;
}
template <class T> ACE_Future_Rep<T> *
ACE_Future_Rep<T>::create (void)
{
// Yes set ref count to zero.
ACE_Future_Rep<T> *temp = internal_create ();
#if defined (ACE_NEW_THROWS_EXCEPTIONS)
if (temp == 0)
ACE_throw_bad_alloc;
#else
ACE_ASSERT (temp != 0);
#endif /* ACE_NEW_THROWS_EXCEPTIONS */
return temp;
}
template <class T> ACE_Future_Rep<T> *
ACE_Future_Rep<T>::attach (ACE_Future_Rep<T>*& rep)
{
ACE_ASSERT (rep != 0);
// Use value_ready_mutex_ for both condition and ref count management
ACE_MT (ACE_Guard<ACE_Recursive_Thread_Mutex> r_mon (rep->value_ready_mutex_));
++rep->ref_count_;
return rep;
}
template <class T> void
ACE_Future_Rep<T>::detach (ACE_Future_Rep<T>*& rep)
{
ACE_ASSERT (rep != 0);
// Use value_ready_mutex_ for both condition and ref count management
ACE_MT (ACE_GUARD (ACE_Recursive_Thread_Mutex, r_mon, rep->value_ready_mutex_));
if (rep->ref_count_-- == 0)
{
ACE_MT (r_mon.release ());
// We do not need the lock when deleting the representation.
// There should be no side effects from deleting rep and we don
// not want to release a deleted mutex.
delete rep;
}
}
template <class T> void
ACE_Future_Rep<T>::assign (ACE_Future_Rep<T>*& rep, ACE_Future_Rep<T>* new_rep)
{
ACE_ASSERT (rep != 0);
ACE_ASSERT (new_rep != 0);
// Use value_ready_mutex_ for both condition and ref count management
ACE_MT (ACE_GUARD (ACE_Recursive_Thread_Mutex, r_mon, rep->value_ready_mutex_));
ACE_Future_Rep<T>* old = rep;
rep = new_rep;
// detached old last for exception safety
if (old->ref_count_-- == 0)
{
ACE_MT (r_mon.release ());
// We do not need the lock when deleting the representation.
// There should be no side effects from deleting rep and we don
// not want to release a deleted mutex.
delete old;
}
}
template <class T>
ACE_Future_Rep<T>::ACE_Future_Rep (void)
: value_ (0),
ref_count_ (0),
value_ready_ (this->value_ready_mutex_)
{
}
template <class T>
ACE_Future_Rep<T>::~ACE_Future_Rep (void)
{
delete this->value_;
}
template <class T> int
ACE_Future_Rep<T>::ready (void) const
{
return this->value_ != 0;
}
template <class T> int
ACE_Future_Rep<T>::set (const T &r,
ACE_Future<T> &caller)
{
// If the value is already produced, ignore it...
if (this->value_ == 0)
{
ACE_MT (ACE_GUARD_RETURN (ACE_Recursive_Thread_Mutex,
ace_mon,
this->value_ready_mutex_,
-1));
// Otherwise, create a new result value. Note the use of the
// Double-checked locking pattern to avoid multiple allocations.
if (this->value_ == 0) // Still no value, so proceed
{
ACE_NEW_RETURN (this->value_,
T (r),
-1);
// Remove and notify all subscribed observers.
ACE_TYPENAME OBSERVER_COLLECTION::iterator iterator =
this->observer_collection_.begin ();
ACE_TYPENAME OBSERVER_COLLECTION::iterator end =
this->observer_collection_.end ();
while (iterator != end)
{
OBSERVER *observer = *iterator++;
observer->update (caller);
}
// Signal all the waiting threads.
return this->value_ready_.broadcast ();
}
// Destructor releases the lock.
}
return 0;
}
template <class T> int
ACE_Future_Rep<T>::get (T &value,
ACE_Time_Value *tv) const
{
// If the value is already produced, return it.
if (this->value_ == 0)
{
ACE_MT (ACE_GUARD_RETURN (ACE_Recursive_Thread_Mutex, ace_mon,
this->value_ready_mutex_,
-1));
// If the value is not yet defined we must block until the
// producer writes to it.
while (this->value_ == 0)
// Perform a timed wait.
if (this->value_ready_.wait (tv) == -1)
return -1;
// Destructor releases the lock.
}
value = *this->value_;
return 0;
}
template <class T> int
ACE_Future_Rep<T>::attach (ACE_Future_Observer<T> *observer,
ACE_Future<T> &caller)
{
ACE_MT (ACE_GUARD_RETURN (ACE_Recursive_Thread_Mutex, ace_mon, this->value_ready_mutex_, -1));
// Otherwise, create a new result value. Note the use of the
// Double-checked locking pattern to avoid corrupting the list.
int result = 1;
// If the value is already produced, then notify observer
if (this->value_ == 0)
result = this->observer_collection_.insert (observer);
else
observer->update (caller);
return result;
}
template <class T> int
ACE_Future_Rep<T>::detach (ACE_Future_Observer<T> *observer)
{
ACE_MT (ACE_GUARD_RETURN (ACE_Recursive_Thread_Mutex, ace_mon, this->value_ready_mutex_, -1));
// Remove all occurrences of the specified observer from this
// objects hash map.
return this->observer_collection_.remove (observer);
}
template <class T>
ACE_Future_Rep<T>::operator T ()
{
// If the value is already produced, return it.
if (this->value_ == 0)
{
// Constructor of ace_mon acquires the mutex.
ACE_MT (ACE_GUARD_RETURN (ACE_Recursive_Thread_Mutex, ace_mon, this->value_ready_mutex_, 0));
// If the value is not yet defined we must block until the
// producer writes to it.
// Wait ``forever.''
while (this->value_ == 0)
if (this->value_ready_.wait () == -1)
// What to do in this case since we've got to indicate
// failure somehow? Exceptions would be nice, but they're
// not portable...
return 0;
// Destructor releases the mutex
}
return *this->value_;
}
template <class T>
ACE_Future<T>::ACE_Future (void)
: future_rep_ (FUTURE_REP::create ())
{
}
template <class T>
ACE_Future<T>::ACE_Future (const ACE_Future<T> &r)
: future_rep_ (FUTURE_REP::attach (((ACE_Future<T> &) r).future_rep_))
{
}
template <class T>
ACE_Future<T>::ACE_Future (const T &r)
: future_rep_ (FUTURE_REP::create ())
{
this->future_rep_->set (r, *this);
}
template <class T>
ACE_Future<T>::~ACE_Future (void)
{
FUTURE_REP::detach (future_rep_);
}
template <class T> bool
ACE_Future<T>::operator== (const ACE_Future<T> &r) const
{
return r.future_rep_ == this->future_rep_;
}
template <class T> bool
ACE_Future<T>::operator!= (const ACE_Future<T> &r) const
{
return r.future_rep_ != this->future_rep_;
}
template <class T> int
ACE_Future<T>::cancel (const T &r)
{
this->cancel ();
return this->future_rep_->set (r,
*this);
}
template <class T> int
ACE_Future<T>::cancel (void)
{
// If this ACE_Future is already attached to a ACE_Future_Rep,
// detach it (maybe delete the ACE_Future_Rep).
FUTURE_REP::assign (this->future_rep_,
FUTURE_REP::create ());
return 0;
}
template <class T> int
ACE_Future<T>::set (const T &r)
{
// Give the pointer to the result to the ACE_Future_Rep.
return this->future_rep_->set (r,
*this);
}
template <class T> int
ACE_Future<T>::ready (void) const
{
// We're ready if the ACE_Future_rep is ready...
return this->future_rep_->ready ();
}
template <class T> int
ACE_Future<T>::get (T &value,
ACE_Time_Value *tv) const
{
// We return the ACE_Future_rep.
return this->future_rep_->get (value, tv);
}
template <class T> int
ACE_Future<T>::attach (ACE_Future_Observer<T> *observer)
{
return this->future_rep_->attach (observer, *this);
}
template <class T> int
ACE_Future<T>::detach (ACE_Future_Observer<T> *observer)
{
return this->future_rep_->detach (observer);
}
template <class T>
ACE_Future<T>::operator T ()
{
// note that this will fail (and COREDUMP!)
// if future_rep_ == 0 !
//
// but...
// this is impossible unless somebody is so stupid to
// try something like this:
//
// Future<T> futT;
// T t;
// t = futT;
// perform type conversion on Future_Rep.
return *future_rep_;
}
template <class T> void
ACE_Future<T>::operator = (const ACE_Future<T> &rhs)
{
// assignment:
//
// bind <this> to the same <ACE_Future_Rep> as <r>.
// This will work if &r == this, by first increasing the ref count
ACE_Future<T> &r = (ACE_Future<T> &) rhs;
FUTURE_REP::assign (this->future_rep_,
FUTURE_REP::attach (r.future_rep_));
}
template <class T> void
ACE_Future<T>::dump (void) const
{
#if defined (ACE_HAS_DUMP)
ACE_DEBUG ((LM_DEBUG,
ACE_BEGIN_DUMP, this));
if (this->future_rep_)
this->future_rep_->dump ();
ACE_DEBUG ((LM_DEBUG,
ACE_END_DUMP));
#endif /* ACE_HAS_DUMP */
}
template <class T> ACE_Future_Rep<T> *
ACE_Future<T>::get_rep ()
{
return this->future_rep_;
}
ACE_END_VERSIONED_NAMESPACE_DECL
#endif /* ACE_HAS_THREADS */
#endif /* ACE_FUTURE_CPP */
|