summaryrefslogtreecommitdiff
path: root/ace/High_Res_Timer.cpp
blob: 76095a14b156a185c6eadaf5c18215058e589a47 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
// $Id$

#define ACE_BUILD_DLL
#include "ace/High_Res_Timer.h"

#if !defined (__ACE_INLINE__)
#include "ace/High_Res_Timer.i"
#endif /* __ACE_INLINE__ */

#include "ace/Stats.h"

ACE_RCSID(ace, High_Res_Timer, "$Id$")

ACE_ALLOC_HOOK_DEFINE(ACE_High_Res_Timer)

// For Intel platforms, a scale factor is required for
// ACE_OS::gethrtime.  We'll still set this to one to prevent division
// by zero errors.
#if (defined (ACE_HAS_PENTIUM) || defined (ACE_HAS_POWERPC_TIMER) || \
     defined (ACE_HAS_ALPHA_TIMER)) && \
    !defined (ACE_HAS_HI_RES_TIMER)

# include "ace/Synch.h"
# include "ace/Object_Manager.h"

  // Initialize the global_scale_factor_ to 1.  The first
  // ACE_High_Res_Timer instance construction will override this
  // value.
  /* static */
  ACE_UINT32 ACE_High_Res_Timer::global_scale_factor_ = 1u;
#else  /* ! (ACE_HAS_PENTIUM || ACE_HAS_POWERPC_TIMER || \
             ACE_HAS_ALPHA_TIMER)  ||
          ACE_HAS_HI_RES_TIMER */
  // A scale_factor of 1000 converts nanosecond ticks to microseconds.
  // That is, on these platforms, 1 tick == 1 nanosecond.
  /* static */
  ACE_UINT32 ACE_High_Res_Timer::global_scale_factor_ = 1000u;
#endif /* ! (ACE_HAS_PENTIUM || ACE_HAS_POWERPC_TIMER || \
             ACE_HAS_ALPHA_TIMER)  ||
          ACE_HAS_HI_RES_TIMER */

ACE_UINT32
ACE_High_Res_Timer::global_scale_factor ()
{
#if (defined (ACE_HAS_PENTIUM) || defined (ACE_HAS_POWERPC_TIMER) || \
     defined (ACE_HAS_ALPHA_TIMER)) && \
    !defined (ACE_HAS_HI_RES_TIMER) && \
    ((defined (ACE_WIN32) && !defined (ACE_HAS_WINCE)) || \
     defined (ghs) || defined (__GNUG__) || defined (__KCC))
  // Check if the global scale factor needs to be set, and do if so.
  if (ACE_High_Res_Timer::global_scale_factor_ == 1u)
    {
      // Grab ACE's static object lock.  This doesn't have anything to
      // do with static objects; it's just a convenient lock to use.
      ACE_MT (ACE_GUARD_RETURN (ACE_Recursive_Thread_Mutex, ace_mon,
                                *ACE_Static_Object_Lock::instance (), 0));

      // Double check
      if (ACE_High_Res_Timer::global_scale_factor_ == 1u)
        {
#         if defined (ACE_WIN32)
            LARGE_INTEGER freq;
            if (::QueryPerformanceFrequency (&freq))
              // We have a high-res timer
              ACE_High_Res_Timer::global_scale_factor (ACE_static_cast (unsigned int,
                                                                        freq.QuadPart / 1000000));
#         elif defined (linux) && (__alpha__)
            // Get the BogoMIPS from /proc.  It works fine on
            // Alpha and Pentium Pro.  For other CPUs, it will
            // be necessary to interpret the BogoMips, as described
            // in the BogoMips mini-HOWTO.
            FILE *cpuinfo;
            if ((cpuinfo = ACE_OS::fopen ("/proc/cpuinfo", "r")))
              {
                char buf[128];
                while (ACE_OS::fgets (buf, sizeof buf, cpuinfo))
                  {
                    ACE_UINT32 whole, fractional;
                    if (::sscanf (buf, "BogoMIPS : %d.%d\n",
                                  &whole, &fractional) == 2 ||
                        ::sscanf (buf, "bogomips : %d.%d\n",
                                  &whole, &fractional) == 2)
                      {
                        ACE_High_Res_Timer::global_scale_factor (whole);
                        break;
                      }
                  }
                ACE_OS::fclose (cpuinfo);
              }
#         endif /* ! ACE_WIN32 && ! (linux && __alpha__) */

          if (ACE_High_Res_Timer::global_scale_factor_ == 1u)
            // Failed to retrieve CPU speed from system, so calculate it.
            ACE_High_Res_Timer::calibrate ();
        }
    }
#endif /* (ACE_HAS_PENTIUM || ACE_HAS_POWERPC_TIMER || \
           ACE_HAS_ALPHA_TIMER) && \
          ! ACE_HAS_HIGH_RES_TIMER &&
          ((WIN32 && ! WINCE) || ghs || __GNUG__) */

  return global_scale_factor_;
}

ACE_High_Res_Timer::ACE_High_Res_Timer (void)
{
  ACE_TRACE ("ACE_High_Res_Timer::ACE_High_Res_Timer");

  this->reset ();

  // Make sure that the global scale factor is set.
  (void) global_scale_factor ();
}

ACE_UINT32
ACE_High_Res_Timer::calibrate (const ACE_UINT32 usec,
                               const u_int iterations)
{
  const ACE_Time_Value sleep_time (0, usec);
  ACE_Stats delta_hrtime;
  ACE_Stats actual_sleeps; /* In units of 100 usec, to avoid overflow. */

  for (u_int i = 0; i < iterations; ++i)
    {
      const ACE_Time_Value actual_start = ACE_OS::gettimeofday ();
      const ACE_hrtime_t start = ACE_OS::gethrtime ();
      ACE_OS::sleep (sleep_time);
      const ACE_hrtime_t stop = ACE_OS::gethrtime ();
      const ACE_Time_Value actual_delta =
        ACE_OS::gettimeofday () - actual_start;

      // Store the sample.
      delta_hrtime.sample (ACE_U64_TO_U32 (stop - start));
      actual_sleeps.sample (actual_delta.msec () * 100u);
    }

  // Calculate the mean value of the samples, with no fractional
  // precision.  Use it for the global scale factor.
  ACE_Stats_Value ticks (0);
  delta_hrtime.mean (ticks);

  ACE_Stats_Value actual_sleep (0);
  actual_sleeps.mean (actual_sleep);

  // The addition of 5 below rounds instead of truncates.
  const ACE_UINT32 scale_factor =
    (ticks.whole () / actual_sleep.whole () + 5) /
    10u /* usec/100 usec */;
  ACE_High_Res_Timer::global_scale_factor (scale_factor);

  return scale_factor;
}

void
ACE_High_Res_Timer::dump (void) const
{
  ACE_TRACE ("ACE_High_Res_Timer::dump");

  ACE_DEBUG ((LM_DEBUG, ACE_BEGIN_DUMP, this));
  ACE_DEBUG ((LM_DEBUG, ASYS_TEXT ("\nglobal_scale_factor_: %u\n"),
             global_scale_factor ()));
#if defined (ACE_LACKS_LONGLONG_T)
  ACE_DEBUG ((LM_DEBUG,
             ASYS_TEXT (":\nstart_.hi ():     %8x; start_.lo ():      %8x;\n")
             ASYS_TEXT ("end_.hi ():       %8x; end_.lo ():        %8x;\n")
             ASYS_TEXT ("total_.hi ():     %8x; total_.lo ():      %8x;\n")
             ASYS_TEXT ("start_incr_.hi () %8x; start_incr_.lo (): %8x;\n"),
             start_.hi (), start_.lo (),
             end_.hi (), end_.lo (),
             total_.hi (), total_.lo (),
             start_incr_.hi (), start_incr_.lo ()));
#else  /* ! ACE_LACKS_LONGLONG_T */
  ACE_DEBUG ((LM_DEBUG,
             ASYS_TEXT (":\nstart_.hi ():     %8x; start_.lo ():      %8x;\n")
             ASYS_TEXT ("end_.hi ():       %8x; end_.lo ():        %8x;\n")
             ASYS_TEXT ("total_.hi ():     %8x; total_.lo ():      %8x;\n")
             ASYS_TEXT ("start_incr_.hi () %8x; start_incr_.lo (): %8x;\n"),
             ACE_CU64_TO_CU32 (start_ >> 32),
             ACE_CU64_TO_CU32 (start_ & 0xfffffffful),
             ACE_CU64_TO_CU32 (end_ >> 32),
             ACE_CU64_TO_CU32 (end_ & 0xfffffffful),
             ACE_CU64_TO_CU32 (total_ >> 32),
             ACE_CU64_TO_CU32 (total_ & 0xfffffffful),
             ACE_CU64_TO_CU32 (start_incr_ >> 32),
             ACE_CU64_TO_CU32 (start_incr_ & 0xfffffffful)));
#endif /* ! ACE_LACKS_LONGLONG_T */
  ACE_DEBUG ((LM_DEBUG, ACE_END_DUMP));
}

void
ACE_High_Res_Timer::reset (void)
{
  ACE_TRACE ("ACE_High_Res_Timer::reset");

  start_ = 0;
  end_ = 0;
  total_ = 0;
  start_incr_ = 0;
}

void
ACE_High_Res_Timer::elapsed_time (ACE_Time_Value &tv) const
{
  hrtime_to_tv (tv, end_ - start_);
}

#if defined (ACE_HAS_POSIX_TIME)
void
ACE_High_Res_Timer::elapsed_time (struct timespec &elapsed_time) const
{
  // This implementation should be cleaned up.

  // Just grab the nanoseconds.  That is, leave off all values above
  // microsecond.  This equation is right!  Don't mess with me!  (It
  // first strips off everything but the portion less than 1 usec.
  // Then it converts that to nanoseconds by dividing by the scale
  // factor to convert to usec, and multiplying by 1000.)  The cast
  // avoids a MSVC 4.1 compiler warning about narrowing.
  u_long nseconds = ACE_static_cast (u_long,
                                     (this->end_ - this->start_) %
                                       global_scale_factor () * 1000u /
                                       global_scale_factor ());

  // Get just the microseconds (dropping any left over nanoseconds).
  ACE_UINT32 useconds = (ACE_UINT32) ((this->end_ - this->start_) / global_scale_factor ());

#if ! defined(ACE_HAS_BROKEN_TIMESPEC_MEMBERS)
  elapsed_time.tv_sec = (time_t) (useconds / ACE_ONE_SECOND_IN_USECS);
  // Transforms one second in microseconds into nanoseconds.
  elapsed_time.tv_nsec = (time_t) ((useconds % ACE_ONE_SECOND_IN_USECS) * 1000u + nseconds);
#else
  elapsed_time.ts_sec = (time_t) (useconds / ACE_ONE_SECOND_IN_USECS);
  // Transforms one second in microseconds into nanoseconds.
  elapsed_time.ts_nsec = (time_t) ((useconds % ACE_ONE_SECOND_IN_USECS) * 1000u + nseconds);
#endif /* ACE_HAS_BROKEN_TIMESPEC_MEMBERS */
}
#endif /* ACE_HAS_POSIX_TIME */

void
ACE_High_Res_Timer::elapsed_time_incr (ACE_Time_Value &tv) const
{
  hrtime_to_tv (tv, total_);
}

void
ACE_High_Res_Timer::elapsed_time (ACE_hrtime_t &nanoseconds) const
{
  // Please do _not_ rearrange this equation.  It is carefully
  // designed and tested to avoid overflow on machines that
  // don't have native 64-bit ints.
  nanoseconds = (this->end_ - this->start_) * (1000u / this->global_scale_factor ());
}

void
ACE_High_Res_Timer::elapsed_time_incr (ACE_hrtime_t &nanoseconds) const
{
  // Same as above.
  nanoseconds = this->total_ / this->global_scale_factor () * 1000u;
}

#if !defined (ACE_HAS_WINCE)
void
ACE_High_Res_Timer::print_ave (const char *str,
                               const int count,
                               ACE_HANDLE handle) const
{
  ACE_TRACE ("ACE_High_Res_Timer::print_ave");

  // Get the total number of nanoseconds elapsed.
  ACE_hrtime_t total_nanoseconds;
  this->elapsed_time (total_nanoseconds);

  // Separate to seconds and nanoseconds.
  u_long total_secs =
    ACE_static_cast (u_long,
                     total_nanoseconds / (ACE_UINT32) ACE_ONE_SECOND_IN_NSECS);
  ACE_UINT32 extra_nsecs =
    ACE_static_cast (ACE_UINT32,
                     total_nanoseconds % (ACE_UINT32) ACE_ONE_SECOND_IN_NSECS);

  char buf[100];
  if (count > 1)
    {
      ACE_hrtime_t avg_nsecs = total_nanoseconds / (ACE_UINT32) count;
      ACE_OS::sprintf (buf, " count = %d, total (secs %lu, usecs %u), avg usecs = %lu\n",
             count, total_secs, (extra_nsecs + 500u) / 1000u,
             (u_long) ((avg_nsecs + 500u) / 1000u));
    }
  else
    ACE_OS::sprintf (buf, " total %3lu.%06lu secs\n",
             total_secs, (extra_nsecs + 500u) / 1000u);

  ACE_OS::write (handle, str, ACE_OS::strlen (str));
  ACE_OS::write (handle, buf, ACE_OS::strlen (buf));
}

void
ACE_High_Res_Timer::print_total (const char *str,
                                 const int count,
                                 ACE_HANDLE handle) const
{
  ACE_TRACE ("ACE_High_Res_Timer::print_total");

  // Get the total number of nanoseconds elapsed.
  ACE_hrtime_t total_nanoseconds;
  this->elapsed_time (total_nanoseconds);

  // Separate to seconds and nanoseconds.
  u_long total_secs  = (u_long) (total_nanoseconds / (ACE_UINT32) ACE_ONE_SECOND_IN_NSECS);
  ACE_UINT32 extra_nsecs = (ACE_UINT32) (total_nanoseconds % (ACE_UINT32) ACE_ONE_SECOND_IN_NSECS);

  char buf[100];
  if (count > 1)
    {
      ACE_hrtime_t avg_nsecs   = this->total_ / (ACE_UINT32) count;
      ACE_OS::sprintf (buf, " count = %d, total (secs %lu, usecs %u), avg usecs = %lu\n",
             count, total_secs, (extra_nsecs + 500u) / 1000u,
             (u_long) ((avg_nsecs + 500u) / 1000u));
    }
  else
    ACE_OS::sprintf (buf, " total %3lu.%06u secs\n",
             total_secs, (extra_nsecs + 500u) / 1000u);

  ACE_OS::write (handle, str, ACE_OS::strlen (str));
  ACE_OS::write (handle, buf, ACE_OS::strlen (buf));
}
#endif /* !ACE_HAS_WINCE */

int
ACE_High_Res_Timer::get_env_global_scale_factor (const char *env)
{
#if !defined (ACE_HAS_WINCE)
  if (env != 0)
    {
      const char *env_value = ACE_OS::getenv (env);
      if (env_value != 0)
        {
          int value = ACE_OS::atoi (env_value);
          if (value > 0)
            {
              ACE_High_Res_Timer::global_scale_factor (value);
              return 0;
            }
        }
    }
#else
  ACE_UNUSED_ARG (env);
#endif /* !ACE_HAS_WINCE */
  return -1;
}