summaryrefslogtreecommitdiff
path: root/ace/High_Res_Timer.cpp
blob: f4e8cad1d60ca2936a34b4658d91aebbaaf82c5e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
// $Id$

#define ACE_BUILD_DLL
#include "ace/High_Res_Timer.h"

#if !defined (__ACE_INLINE__)
#include "ace/High_Res_Timer.i"
#endif /* __ACE_INLINE__ */

ACE_ALLOC_HOOK_DEFINE(ACE_High_Res_Timer)

// For Intel platforms, a scale factor is required for
// ACE_OS::gethrtime.  We'll still set this to one to prevent division
// by zero errors.
#if defined (ACE_WIN32) && ! defined (ACE_HAS_WINCE)

u_long
ACE_High_Res_Timer::get_registry_scale_factor (void)
{
  HKEY hk;
  unsigned long speed;
  unsigned long speed_size = sizeof speed;
  unsigned long speed_type = REG_DWORD;

  long rc = ::RegOpenKeyEx (HKEY_LOCAL_MACHINE,
                            __TEXT ("HARDWARE\\DESCRIPTION\\System\\CentralProcessor\\0"),
                            NULL,
                            KEY_READ,
                            &hk);

  if (rc != ERROR_SUCCESS)
    // Couldn't find key
    return 1;

  rc = ::RegQueryValueEx (hk,
                          __TEXT ("~MHz"),
                          0,
                          &speed_type,
                          (LPBYTE) &speed,
                          &speed_size);

  ::RegCloseKey (hk);

  if (rc != ERROR_SUCCESS)
    // Couldn't get the value
    return 1;

  return speed;
}

/* static */
ACE_UINT32 ACE_High_Res_Timer::global_scale_factor_ = ACE_High_Res_Timer::get_registry_scale_factor ();

#elif defined (ACE_HAS_HI_RES_TIMER) || defined (ACE_HAS_AIX_HI_RES_TIMER) || \
  defined (ACE_HAS_CLOCK_GETTIME) || defined (ACE_PSOS) || defined (CHORUS)
  // A scale_factor of 1000 converts nanosecond ticks to microseconds.
  // That is, on these platforms, 1 tick == 1 nanosecond.
  /* static */
  ACE_UINT32 ACE_High_Res_Timer::global_scale_factor_ = 1000u;
#else
  // Don't convert at all, by default.  Application code may have to
  // override this using a call to global_scale_factor ().
  ACE_UINT32 ACE_High_Res_Timer::global_scale_factor_ = 1;
#endif /* ACE_WIN32 */

void
ACE_High_Res_Timer::dump (void) const
{
  ACE_TRACE ("ACE_High_Res_Timer::dump");

  ACE_DEBUG ((LM_DEBUG, ACE_BEGIN_DUMP, this));
  ACE_DEBUG ((LM_DEBUG, ASYS_TEXT ("\nglobal_scale_factor_: %u\n"),
             global_scale_factor_));
#if defined (ACE_LACKS_LONGLONG_T)
  ACE_DEBUG ((LM_DEBUG,
             ASYS_TEXT ("start_.hi (): %u; start_.lo (): %u;\n"
                        "end_.hi (): %u; end_.lo (): %u;\n"
                        "total_.hi (): %u; total_.lo (): %u;\n"
                        "start_incr_.hi () %u; start_incr_.lo (): %u\n"),
             start_.hi (), start_.lo (),
             end_.hi (), end_.lo (),
             total_.hi (), total_.lo (),
             start_incr_.hi (), start_incr_.lo ()));
#else  /* ! ACE_LACKS_LONGLONG_T */
  ACE_DEBUG ((LM_DEBUG,
             ASYS_TEXT ("start_: %u; end_: %u; total_: %u; start_incr_: %u\n"),
             start_, end_, total_, start_incr_));
#endif /* ! ACE_LACKS_LONGLONG_T */
  ACE_DEBUG ((LM_DEBUG, ACE_END_DUMP));
}

void
ACE_High_Res_Timer::reset (void)
{
  ACE_TRACE ("ACE_High_Res_Timer::reset");
  (void) ACE_OS::memset (&this->start_, 0, sizeof this->start_);
  (void) ACE_OS::memset (&this->end_, 0, sizeof this->end_);
  (void) ACE_OS::memset (&this->total_, 0, sizeof this->total_);
  (void) ACE_OS::memset (&this->start_incr_, 0, sizeof this->start_incr_);
}

void
ACE_High_Res_Timer::elapsed_time (ACE_Time_Value &tv)
{
  hrtime_to_tv (tv, end_ - start_);
}

#if defined (ACE_HAS_POSIX_TIME)
void
ACE_High_Res_Timer::elapsed_time (struct timespec &elapsed_time)
{
  // See elapsed_time (ACE_hrtime_t &nanoseconds) implementation below;
  // this implementation is based on that.

  // Just grab the nanoseconds.  That is, leave off all values above
  // microsecond.  This equation is right!  Don't mess with me!  (It
  // first strips off everything but the portion less than 1 usec.
  // Then it converts that to nanoseconds by dividing by the scale
  // factor to convert to usec, and multiplying by 1000.)  The cast
  // avoids a MSVC 4.1 compiler warning about narrowing.
  u_long nseconds = (u_long) ((this->end_ - this->start_) %
                                global_scale_factor_ * 1000u /
                                global_scale_factor_);

  // Get just the microseconds (dropping any left over nanoseconds).
  ACE_UINT32 useconds = (ACE_UINT32) ((this->end_ - this->start_) / global_scale_factor_);

#if ! defined(ACE_HAS_BROKEN_TIMESPEC_MEMBERS)
  elapsed_time.tv_sec = (time_t) (useconds / ACE_ONE_SECOND_IN_USECS);
  // Transforms one second in microseconds into nanoseconds.
  elapsed_time.tv_nsec = (time_t) ((useconds % ACE_ONE_SECOND_IN_USECS) * 1000u + nseconds);
#else
  elapsed_time.ts_sec = (time_t) (useconds / ACE_ONE_SECOND_IN_USECS);
  // Transforms one second in microseconds into nanoseconds.
  elapsed_time.ts_nsec = (time_t) ((useconds % ACE_ONE_SECOND_IN_USECS) * 1000u + nseconds);
#endif /* ACE_HAS_BROKEN_TIMESPEC_MEMBERS */
}
#endif /* ACE_HAS_POSIX_TIME */

void
ACE_High_Res_Timer::elapsed_time_incr (ACE_Time_Value &tv)
{
  hrtime_to_tv (tv, total_);
}

// The whole point is to get nanoseconds.  However, our scale_factor
// gives us microseconds.  We could use floating points to get the
// nanosecond precision if some compilers didn't barf on 64-bit
// divisions with doubles.  So, we just extract out the nanoseconds
// first and then add them to the standard microsecond calculation.
void
ACE_High_Res_Timer::elapsed_time (ACE_hrtime_t &nanoseconds)
{
  // Just grab the nanoseconds.  That is, leave off all values above
  // microsecond.  This equation is right!  Don't mess with me!
  // (It first strips off everything but the portion less than 1 usec.
  // Then it converts that to nanoseconds by dividing by the scale
  // factor to convert to usec, and multiplying by 1000.)
  // The cast avoids a MSVC 4.1 compiler warning about narrowing.
  u_long nseconds = (u_long) ((this->end_ - this->start_) %
                                global_scale_factor_ * 1000u /
                                global_scale_factor_);

  // Get just the microseconds (dropping any left over nanoseconds).
  ACE_UINT32 useconds = (ACE_UINT32) ((this->end_ - this->start_) / global_scale_factor_);

  // Total nanoseconds in a single 64-bit value.
  nanoseconds = useconds * 1000u + nseconds;
}

#if !defined (ACE_HAS_WINCE)
void
ACE_High_Res_Timer::print_ave (const char *str, const int count, ACE_HANDLE handle)
{
  ACE_TRACE ("ACE_High_Res_Timer::print_ave");

  // Get the total number of nanoseconds elapsed.
  ACE_hrtime_t total_nanoseconds;
  this->elapsed_time (total_nanoseconds);

  // Separate to seconds and nanoseconds.
  u_long total_secs  = (u_long) (total_nanoseconds / (ACE_UINT32) ACE_ONE_SECOND_IN_NSECS);
  ACE_UINT32 extra_nsecs = (ACE_UINT32) (total_nanoseconds % (ACE_UINT32) ACE_ONE_SECOND_IN_NSECS);

  char buf[100];
  if (count > 1)
    {
      ACE_hrtime_t avg_nsecs = total_nanoseconds / (ACE_UINT32) count;
      ACE_OS::sprintf (buf, " count = %d, total (secs %lu, usecs %u), avg usecs = %lu\n",
             count, total_secs, (extra_nsecs + 500u) / 1000u,
             (u_long) ((avg_nsecs + 500u) / 1000u));
    }
  else
    ACE_OS::sprintf (buf, " total %3lu.%06lu secs\n",
             total_secs, (extra_nsecs + 500u) / 1000u);

  ACE_OS::write (handle, str, ACE_OS::strlen (str));
  ACE_OS::write (handle, buf, ACE_OS::strlen (buf));
}

void
ACE_High_Res_Timer::print_total (const char *str, const int count, ACE_HANDLE handle)
{
  ACE_TRACE ("ACE_High_Res_Timer::print_total");

  // Get the total number of nanoseconds elapsed.
  ACE_hrtime_t total_nanoseconds;
  this->elapsed_time (total_nanoseconds);

  // Separate to seconds and nanoseconds.
  u_long total_secs  = (u_long) (total_nanoseconds / (ACE_UINT32) ACE_ONE_SECOND_IN_NSECS);
  ACE_UINT32 extra_nsecs = (ACE_UINT32) (total_nanoseconds % (ACE_UINT32) ACE_ONE_SECOND_IN_NSECS);

  char buf[100];
  if (count > 1)
    {
      ACE_hrtime_t avg_nsecs   = this->total_ / (ACE_UINT32) count;
      ACE_OS::sprintf (buf, " count = %d, total (secs %lu, usecs %u), avg usecs = %lu\n",
             count, total_secs, (extra_nsecs + 500u) / 1000u,
             (u_long) ((avg_nsecs + 500u) / 1000u));
    }
  else
    ACE_OS::sprintf (buf, " total %3lu.%06u secs\n",
             total_secs, (extra_nsecs + 500u) / 1000u);

  ACE_OS::write (handle, str, ACE_OS::strlen (str));
  ACE_OS::write (handle, buf, ACE_OS::strlen (buf));
}
#endif /* !ACE_HAS_WINCE */

int
ACE_High_Res_Timer::get_env_global_scale_factor (const char *env)
{
#if !defined (ACE_HAS_WINCE)
  if (env != 0)
    {
      const char *env_value = ACE_OS::getenv (env);
      if (env_value != 0)
        {
          int value = ACE_OS::atoi (env_value);
          if (value > 0)
            {
              ACE_High_Res_Timer::global_scale_factor (value);
              return 0;
            }
        }
    }
#else
  ACE_UNUSED_ARG (env);
#endif /* !ACE_HAS_WINCE */
  return -1;
}