1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
|
/* -*- C++ -*- */
// $Id$
// ============================================================================
//
// = LIBRARY
// ace
//
// = FILENAME
// IOStream.h
//
// = AUTHOR
// James CE Johnson <jcej@lads.com> and Jim Crossley <jim@lads.com>
//
// ============================================================================
#if !defined (ACE_IOSTREAM_H)
#define ACE_IOSTREAM_H
#include "ace/OS.h"
#if !defined (ACE_LACKS_ACE_IOSTREAM)
#include "ace/INET_Addr.h"
#include "ace/Handle_Set.h"
#include "ace/streams.h"
#if defined (ACE_HAS_STRING_CLASS)
#if defined (ACE_WIN32)
typedef CString ACE_IOStream_String;
#else
#if !defined (ACE_HAS_STDCPP_STL_INCLUDES)
#include /**/ <String.h>
typedef String ACE_IOStream_String;
#else
#include /**/ <string>
typedef string ACE_IOStream_String;
#endif /* ! ACE_HAS_STDCPP_STL_INCLUDES */
#endif /* ACE_WIN32 */
#if defined (DEC_CXX)
# if __DECCXX_VER < 50700000
# include /**/ <stl_macros>
# else
# include /**/ <stdcomp>
# endif /* __DECCXX_VER < 50700000 */
#endif /* DEC_CXX */
class ACE_Quoted_String : public ACE_IOStream_String
{
public:
inline ACE_Quoted_String (void) { *this = ""; }
inline ACE_Quoted_String (const char *c) { *this = ACE_IOStream_String (c); }
inline ACE_Quoted_String (const ACE_IOStream_String &s) { *this = s; }
inline ACE_Quoted_String &operator= (const ACE_IOStream_String& s)
{
return (ACE_Quoted_String &) ACE_IOStream_String::operator= (s);
}
inline ACE_Quoted_String &operator = (const char c) {
return (ACE_Quoted_String &) ACE_IOStream_String::operator= (c);
}
inline ACE_Quoted_String &operator = (const char *c) {
return (ACE_Quoted_String &) ACE_IOStream_String::operator= (c);
}
inline int operator < (const ACE_Quoted_String &s) const {
return *(ACE_IOStream_String *) this < (ACE_IOStream_String) s;
}
#if defined (ACE_WIN32)
inline int length (void) { return this->GetLength (); }
#endif /* ACE_WIN32 */
};
#endif /* ACE_HAS_STRING_CLASS */
class ACE_Export ACE_Streambuf : public streambuf
{
// = TITLE
// Create your custom streambuf by providing and ACE_*_Stream
// object to this template. I have tested it with
// ACE_SOCK_Stream and it should work fine for others as well.
//
// = DESCRIPTION
// For any iostream object, the real work is done by the
// underlying streambuf class. That is what we create here.
//
// A streambuf has an internal buffer area into which data is
// read and written as the iostream requests and provides data.
// At some point during the read process, the iostream will
// realize that the streambuf has no more data. The underflow
// function of the streambuf is then called.
//
// Likewise, during the write process, the iostream will
// eventually notice that the streabuf's buffer has become full
// and will invoke the overflow function.
//
// The empty/full state of the read/write "buffers" are
// controled by two sets pointers. One set is dedicated to
// read, the other to write. These pointers, in turn, reference
// a common buffer that is to be shared by both read and write
// operations. It is this common buffer to which data is
// written and from which it is read.
//
// The common buffer is used by functions of the streambuf as
// well as the iostream. Because of this and the fact that it
// is "shared" by both read and write operators, there is a
// danger of data corruption if read and write operations are
// allowed to take place "at the same time".
//
// To prevent data corruption, we manipulate the read and write
// pointer sets so that the streambuf is in either a read-mode
// or write-mode at all times and can never be in both modes at
// the same time.
//
// In the constructor: set the read and write sets to NULL This
// causes the underflow or overflow operators to be invoked at
// the first IO activity of the iostream.
//
// In the underflow function we arrange for the common buffer to
// reference our read buffer and for the write pointer set to be
// disabled. If a write operation is performed by the iostream
// this will cause the overflow function to be invoked.
//
// In the overflow function we arrange for the common buffer to
// reference our write buffer and for the read pointer set to be
// disabled. This causes the underflow function to be invoked
// when the iostream "changes our mode".
//
// The overflow function will also invoke the send_n function to
// flush the buffered data to our peer. Similarly, the sync and
// syncout functions will cause send_n to be invoked to send the
// data.
//
// Since socket's and the like do not support seeking, there can
// be no method for "syncing" the input. However, since we
// maintain separate read/write buffers, no data is lost by
// "syncing" the input. It simply remains buffered.
public:
virtual ~ACE_Streambuf (void);
// If the default allocation strategey were used the common buffer
// would be deleted when the object destructs. Since we are
// providing separate read/write buffers, it is up to us to manage
// their memory.
ACE_Time_Value *recv_timeout (ACE_Time_Value *tv = NULL);
// Get the current Time_Value pointer and provide a new one.
char *reset_put_buffer (char *newBuffer = NULL,
u_int _streambuf_size = 0,
u_int _pptr = 0 );
// Use this to allocate a new/different buffer for put operations.
// If you do not provide a buffer pointer, one will be allocated.
// That is the preferred method. If you do provide a buffer, the
// size must match that being used by the get buffer. If
// successful, you will receive a pointer to the current put buffer.
// It is your responsibility to delete this memory when you are done
// with it.
u_int put_avail (void);
// Return the number of bytes to be 'put' onto the stream media.
// pbase + put_avail = pptr
char *reset_get_buffer (char *newBuffer = NULL,
u_int _streambuf_size = 0,
u_int _gptr = 0,
u_int _egptr = 0);
// Use this to allocate a new/different buffer for get operations.
// If you do not provide a buffer pointer, one will be allocated.
// That is the preferred method. If you do provide a buffer, the
// size must match that being used by the put buffer. If
// successful, you will receive a pointer to the current get buffer.
// It is your responsibility to delete this memory when you are done
// with it.
u_int get_waiting (void);
// Return the number of bytes not yet gotten. eback + get_waiting =
// gptr
u_int get_avail (void);
// Return the number of bytes in the get area (includes some already
// gotten); eback + get_avail = egptr
u_int streambuf_size (void);
// Query the streambuf for the size of its buffers.
u_char timeout (void);
// Did we take an error because of an IO operation timeout? Note:
// Invoking this resets the flag.
protected:
ACE_Streambuf (u_int streambuf_size,
int io_mode);
virtual int sync (void);
// Sync both input and output. See syncin/syncout below for
// descriptions.
// = Signatures for the underflow/overflow discussed above.
virtual int underflow (void);
virtual int overflow (int = EOF);
// The overflow function receives the character which caused the
// overflow.
void reset_base (void);
// Resets the base() pointer and streambuf mode. This is used
// internally when get/put buffers are allocatd.
protected:
// = Two pointer sets for manipulating the read/write areas.
char *eback_saved_;
char *gptr_saved_;
char *egptr_saved_;
char *pbase_saved_;
char *pptr_saved_;
char *epptr_saved_;
// = With cur_mode_ we keep track of our current IO mode.
// This helps us to optimize the underflow/overflow functions.
u_char cur_mode_;
const u_char get_mode_;
const u_char put_mode_;
int mode_;
// mode tells us if we're working for an istream, ostream, or
// iostream.
const u_int streambuf_size_;
// This defines the size of the input and output buffers. It can be
// set by the object constructor.
u_char timeout_;
// Did we take an error because of an IO operation timeout?
ACE_Time_Value recv_timeout_value_;
ACE_Time_Value *recv_timeout_;
// We want to allow the user to provide Time_Value pointers to
// prevent infinite blocking while waiting to receive data.
int syncin (void);
// syncin is called when the input needs to be synced with the
// source file. In a filebuf, this results in the seek() system
// call being used. We can't do that on socket-like connections, so
// this does basically nothing. That's safe because we have a
// separate read buffer to maintain the already-read data. In a
// filebuf, the single common buffer is used forcing the seek()
// call.
int syncout (void);
// syncout is called when the output needs to be flushed. This is
// easily done by calling the peer's send_n function.
int flushbuf (void);
// flushbuf is the worker of syncout. It is a separate function
// because it gets used sometimes in different context.
int fillbuf (void);
// fillbuf is called in a couple of places. This is the worker of
// underflow. It will attempt to fill the read buffer from the
// peer.
virtual int get_one_byte (void);
// Used by fillbuf and others to get exactly one byte from the peer.
// recv_n is used to be sure we block until something is available.
// It is virtual because we really need to override it for
// datagram-derived objects.
virtual ssize_t send (char *buf,
ssize_t len) = 0;
virtual ssize_t recv (char *buf,
ssize_t len,
ACE_Time_Value *tv = NULL) = 0;
virtual ssize_t recv (char *buf,
ssize_t len,
int flags,
ACE_Time_Value *tv = NULL) = 0;
virtual ssize_t recv_n (char *buf,
ssize_t len,
int flags = 0,
ACE_Time_Value *tv = NULL) = 0;
// Stream connections and "unconnected connections" (ie --
// datagrams) need to work just a little differently. We derive
// custom Streambuf objects for them and provide these functions at
// that time.
virtual ACE_HANDLE get_handle (void);
#if defined (ACE_HAS_STANDARD_CPP_LIBRARY) && (ACE_HAS_STANDARD_CPP_LIBRARY != 0)
char *base (void) const
{
return cur_mode_ == get_mode_ ? eback_saved_
: cur_mode_ == put_mode_ ? pbase_saved_
: 0;
}
char *ebuf (void) const
{
return cur_mode_ == 0 ? 0 : base() + streambuf_size_;
}
int blen (void) const
{
return streambuf_size_;
}
void setb (char* b, char* eb, int a=0)
{
setbuf (b, (eb - b));
}
int out_waiting (void)
{
return pptr () - pbase ();
}
#endif /* ACE_HAS_STANDARD_CPP_LIBRARY */
};
///////////////////////////////////////////////////////////////////////////
// These typedefs are provided by G++ (on some systems?) without the
// trailing '_'. Since we can't count on 'em, I've defined them to
// what GNU wants here.
//
typedef ios& (*__manip_)(ios&);
typedef istream& (*__imanip_)(istream&);
typedef ostream& (*__omanip_)(ostream&);
// Trying to do something like is shown below instead of using the
// __*manip typedefs causes Linux do segfault when "<<endl" is done.
//
// virtual MT& operator<<(ios& (*func)(ios&)) { (*func)(*this); return *this; }
// This macro defines the get operator for class MT into datatype DT.
// We will use it below to quickly override most (all?) iostream get
// operators. Notice how the ipfx() and isfx() functions are used.
#define GET_SIG(MT,DT) inline virtual MT& operator>> (DT v)
#define GET_CODE { \
if (ipfx (0)) \
{ \
iostream::operator>> (v); \
} \
isfx (); \
return *this; \
}
#define GET_PROT(MT,DT,CODE) GET_SIG(MT,DT) CODE
#define GET_FUNC(MT,DT) GET_PROT(MT,DT,GET_CODE)
// This macro defines the put operator for class MT into datatype DT.
// We will use it below to quickly override most (all?) iostream put
// operators. Notice how the opfx() and osfx() functions are used.
#define PUT_SIG(MT,DT) inline virtual MT& operator<< (DT v)
#define PUT_CODE { \
if (opfx ()) \
{ \
iostream::operator<< (v); \
} \
osfx (); \
return *this; \
}
#define PUT_PROT(MT,DT,CODE) PUT_SIG(MT,DT) CODE
#define PUT_FUNC(MT,DT) PUT_PROT(MT,DT,PUT_CODE)
// These are necessary in case somebody wants to derive from us and
// override one of these with a custom approach.
#define GET_FUNC_SET0(MT,CODE,CODE2) \
GET_PROT(MT,short &,CODE) \
GET_PROT(MT,u_short &,CODE) \
GET_PROT(MT,int &,CODE) \
GET_PROT(MT,u_int &,CODE) \
GET_PROT(MT,long &,CODE) \
GET_PROT(MT,u_long &,CODE) \
GET_PROT(MT,float &,CODE) \
GET_PROT(MT,double &,CODE) \
GET_PROT(MT,char &,CODE) \
GET_PROT(MT,u_char &,CODE) \
GET_PROT(MT,char *,CODE) \
GET_PROT(MT,u_char *,CODE) \
inline virtual MT& operator>>(__omanip_ func) CODE2 \
inline virtual MT& operator>>(__manip_ func) CODE2
#define PUT_FUNC_SET0(MT,CODE,CODE2) \
PUT_PROT(MT,short,CODE) \
PUT_PROT(MT,u_short,CODE) \
PUT_PROT(MT,int,CODE) \
PUT_PROT(MT,u_int,CODE) \
PUT_PROT(MT,long,CODE) \
PUT_PROT(MT,u_long,CODE) \
PUT_PROT(MT,float,CODE) \
PUT_PROT(MT,double,CODE) \
PUT_PROT(MT,char,CODE) \
PUT_PROT(MT,u_char,CODE) \
PUT_PROT(MT,const char *,CODE) \
PUT_PROT(MT,u_char *,CODE) \
PUT_PROT(MT,void *,CODE) \
inline virtual MT& operator<<(__omanip_ func) CODE2 \
inline virtual MT& operator<<(__manip_ func) CODE2
#if defined (ACE_LACKS_SIGNED_CHAR)
#define GET_FUNC_SET1(MT,CODE,CODE2) GET_FUNC_SET0(MT,CODE,CODE2)
#define PUT_FUNC_SET1(MT,CODE,CODE2) PUT_FUNC_SET0(MT,CODE,CODE2)
#else
#define GET_FUNC_SET1(MT,CODE,CODE2) \
GET_PROT(MT,signed char &,CODE) \
GET_PROT(MT,signed char *,CODE) \
GET_FUNC_SET0(MT,CODE,CODE2)
#define PUT_FUNC_SET1(MT,CODE,CODE2) \
PUT_FUNC(MT,signed char) \
PUT_FUNC(MT,const signed char *) \
PUT_FUNC_SET0(MT,CODE,CODE2)
#endif /* ACE_LACKS_SIGNED_CHAR */
#define GET_MANIP_CODE { if( ipfx() ) { (*func)(*this); } isfx(); return *this; }
#define PUT_MANIP_CODE { if( opfx() ) { (*func)(*this); } osfx(); return *this; }
#define GET_FUNC_SET(MT) GET_FUNC_SET1(MT,GET_CODE,GET_MANIP_CODE)
#define PUT_FUNC_SET(MT) PUT_FUNC_SET1(MT,PUT_CODE,PUT_MANIP_CODE)
#define GETPUT_FUNC_SET(MT) GET_FUNC_SET(MT) PUT_FUNC_SET(MT)
#define GET_SIG_SET(MT) GET_FUNC_SET1(MT,= 0;,= 0;)
#define PUT_SIG_SET(MT) PUT_FUNC_SET1(MT,= 0;,= 0;)
#define GETPUT_SIG_SET(MT) GET_SIG_SET(MT) PUT_SIG_SET(MT)
// Include the templates here.
#include "ace/IOStream_T.h"
#endif /* !ACE_LACKS_ACE_IOSTREAM */
#endif /* ACE_IOSTREAM_H */
|