1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
|
// Malloc_T.cpp
// $Id$
#if !defined (ACE_MALLOC_T_C)
#define ACE_MALLOC_T_C
#define ACE_BUILD_DLL
#include "ace/Malloc_T.h"
#if !defined (__ACE_INLINE__)
#include "ace/Malloc_T.i"
#endif /* __ACE_INLINE__ */
ACE_RCSID(ace, Malloc_T, "$Id$")
template <class T, class ACE_LOCK>
ACE_Cached_Allocator<T, ACE_LOCK>::ACE_Cached_Allocator (size_t n_chunks)
: pool_ (0),
free_list_ (ACE_PURE_FREE_LIST)
{
this->pool_ = (T*) new char[n_chunks * sizeof (T)];
// ERRNO could be lost because this is within ctor
for (size_t c = 0 ; c < n_chunks ; c++)
this->free_list_.add (new (&this->pool_ [c]) ACE_Cached_Mem_Pool_Node<T>);
// Put into free list using placement contructor, no real memory
// allocation in the above new.
}
template <class T, class ACE_LOCK>
ACE_Cached_Allocator<T, ACE_LOCK>::~ACE_Cached_Allocator (void)
{
char* tmp = (char*)this->pool_;
delete [] tmp;
}
ACE_ALLOC_HOOK_DEFINE (ACE_Malloc)
template <class MALLOC>
ACE_Allocator_Adapter<MALLOC>::ACE_Allocator_Adapter (LPCTSTR pool_name)
: allocator_ (pool_name)
{
ACE_TRACE ("ACE_Allocator_Adapter<MALLOC>::ACE_Allocator_Adapter");
}
template <class MALLOC>
ACE_Allocator_Adapter<MALLOC>::~ACE_Allocator_Adapter (void)
{
ACE_TRACE ("ACE_Allocator_Adapter<MALLOC>::~ACE_Allocator_Adapter");
}
#if defined (ACE_HAS_MALLOC_STATS)
template <class MALLOC> void
ACE_Allocator_Adapter<MALLOC>::print_stats (void) const
{
ACE_TRACE ("ACE_Malloc<MALLOC>::print_stats");
this->allocator_.print_stats ();
}
#endif /* ACE_HAS_MALLOC_STATS */
template <class MALLOC> void
ACE_Allocator_Adapter<MALLOC>::dump (void) const
{
ACE_TRACE ("ACE_Malloc<MALLOC>::dump");
this->allocator_.dump ();
}
template <ACE_MEM_POOL_1, class ACE_LOCK> void
ACE_Malloc<ACE_MEM_POOL_2, ACE_LOCK>::dump (void) const
{
ACE_TRACE ("ACE_Malloc<ACE_MEM_POOL_2, ACE_LOCK>::dump");
ACE_DEBUG ((LM_DEBUG, ACE_BEGIN_DUMP, this));
this->memory_pool_.dump ();
ACE_DEBUG ((LM_DEBUG, ASYS_TEXT ("cb_ptr_ = %x"), this->cb_ptr_));
ACE_DEBUG ((LM_DEBUG, ASYS_TEXT ("\n")));
#if defined (ACE_HAS_MALLOC_STATS)
this->cb_ptr_->malloc_stats_.dump ();
#endif /* ACE_HAS_MALLOC_STATS */
ACE_DEBUG ((LM_DEBUG, ACE_END_DUMP));
}
#if defined (ACE_HAS_MALLOC_STATS)
template <ACE_MEM_POOL_1, class ACE_LOCK> void
ACE_Malloc<ACE_MEM_POOL_2, ACE_LOCK>::print_stats (void) const
{
ACE_TRACE ("ACE_Malloc<ACE_MEM_POOL_2, ACE_LOCK>::print_stats");
ACE_GUARD (ACE_LOCK, ace_mon, this->lock_);
this->cb_ptr_->malloc_stats_.dump ();
ACE_DEBUG ((LM_DEBUG, ASYS_TEXT (" (%P|%t) contents of freelist:\n")));
for (ACE_Malloc_Header *currp = this->cb_ptr_->freep_->s_.next_block_;
;
currp = currp->s_.next_block_)
{
ACE_DEBUG ((LM_DEBUG,
ASYS_TEXT (" (%P|%t) ptr = %u, ACE_Malloc_Header units = %d, byte units = %d\n"),
currp, currp->s_.size_,
currp->s_.size_ * sizeof (ACE_Malloc_Header)));
if (currp == this->cb_ptr_->freep_)
break;
}
}
#endif /* ACE_HAS_MALLOC_STATS */
// Put block AP in the free list (locked version).
template<ACE_MEM_POOL_1, class ACE_LOCK> void
ACE_Malloc<ACE_MEM_POOL_2, ACE_LOCK>::free (void *ap)
{
ACE_TRACE ("ACE_Malloc<ACE_MEM_POOL_2, ACE_LOCK>::free");
ACE_GUARD (ACE_LOCK, ace_mon, this->lock_);
this->shared_free (ap);
}
// This function is called by the ACE_Malloc constructor to initialize
// the memory pool. The first time in it allocates room for the
// control block (as well as a chunk of memory, depending on
// rounding...). Depending on the type of <MEM_POOL> (i.e., shared
// vs. local) subsequent calls from other processes will only
// initialize the control block pointer.
template <ACE_MEM_POOL_1, class ACE_LOCK> int
ACE_Malloc<ACE_MEM_POOL_2, ACE_LOCK>::open (void)
{
ACE_TRACE ("ACE_Malloc<ACE_MEM_POOL_2, ACE_LOCK>::open");
ACE_GUARD_RETURN (ACE_LOCK, ace_mon, this->lock_, -1);
size_t rounded_bytes = 0;
int first_time = 0;
this->cb_ptr_ = (ACE_Control_Block *)
this->memory_pool_.init_acquire (sizeof *this->cb_ptr_,
rounded_bytes,
first_time);
if (this->cb_ptr_ == 0)
ACE_ERROR_RETURN ((LM_ERROR, ASYS_TEXT (" (%P|%t) %p\n"), ASYS_TEXT ("init_acquire failed")), -1);
else if (first_time)
{
// ACE_DEBUG ((LM_DEBUG, ASYS_TEXT (" (%P|%t) first time in, control block = %u\n"), this->cb_ptr_));
#if defined (ACE_HAS_MALLOC_STATS)
// Call the constructor on the ACE_LOCK, using the placement
// operator!
new ((void *) &this->cb_ptr_->malloc_stats_) ACE_Malloc_Stats;
#endif /* ACE_HAS_MALLOC_STATS */
// Initialize the freelist pointer to point to the dummy
// ACE_Malloc_Header.
this->cb_ptr_->freep_ = &this->cb_ptr_->base_;
// Initialize the dummy ACE_Malloc_Header to point to itself.
this->cb_ptr_->freep_->s_.size_ = 0;
this->cb_ptr_->freep_->s_.next_block_ = this->cb_ptr_->freep_;
// initialize the name list to 0
this->cb_ptr_->name_head_ = 0;
if (rounded_bytes > (sizeof *this->cb_ptr_ + sizeof (ACE_Malloc_Header)))
{
// If we've got any extra space at the end of the control
// block, then skip past the dummy ACE_Malloc_Header to
// point at the first free block.
ACE_Malloc_Header *p = this->cb_ptr_->freep_ + 1;
// Why aC++ in 64-bit mode can't grok this, I have no idea... but
// it ends up with an extra bit set which makes size_ really big
// without this hack.
#if defined (__hpux) && defined (__LP64__)
size_t hpux11_hack = (rounded_bytes - sizeof *this->cb_ptr_)
/ sizeof(ACE_Malloc_Header);
p->s_.size_ = hpux11_hack;
#else
p->s_.size_ = (rounded_bytes - sizeof *this->cb_ptr_)
/ sizeof (ACE_Malloc_Header);
#endif
AMS (++this->cb_ptr_->malloc_stats_.nchunks_);
AMS (++this->cb_ptr_->malloc_stats_.nblocks_);
AMS (++this->cb_ptr_->malloc_stats_.ninuse_);
// Insert the newly allocated chunk of memory into the free
// list.
this->shared_free ((void *) (p + 1));
}
}
return 0;
}
template <ACE_MEM_POOL_1, class ACE_LOCK>
ACE_Malloc<ACE_MEM_POOL_2, ACE_LOCK>::ACE_Malloc (LPCTSTR pool_name)
: memory_pool_ (pool_name),
lock_ (pool_name == 0 ? 0 : ACE::basename (pool_name,
ACE_DIRECTORY_SEPARATOR_CHAR))
{
ACE_TRACE ("ACE_Malloc<ACE_MEM_POOL_2, ACE_LOCK>::ACE_Malloc");
this->open ();
}
template <ACE_MEM_POOL_1, class ACE_LOCK>
ACE_Malloc<ACE_MEM_POOL_2, ACE_LOCK>::ACE_Malloc (LPCTSTR pool_name,
LPCTSTR lock_name,
const ACE_MEM_POOL_OPTIONS *options)
: memory_pool_ (pool_name, options),
lock_ (lock_name != 0 ? lock_name : ACE::basename (pool_name,
ACE_DIRECTORY_SEPARATOR_CHAR))
{
ACE_TRACE ("ACE_Malloc<ACE_MEM_POOL_2, ACE_LOCK>::ACE_Malloc");
this->open ();
}
#if !defined (ACE_HAS_TEMPLATE_TYPEDEFS)
template <ACE_MEM_POOL_1, class ACE_LOCK>
ACE_Malloc<ACE_MEM_POOL_2, ACE_LOCK>::ACE_Malloc (LPCTSTR pool_name,
LPCTSTR lock_name,
const void *options)
: memory_pool_ (pool_name, (const ACE_MEM_POOL_OPTIONS *) options),
lock_ (lock_name)
{
ACE_TRACE ("ACE_Malloc<ACE_MEM_POOL_2, ACE_LOCK>::ACE_Malloc");
this->open ();
}
#endif /* ACE_HAS_TEMPLATE_TYPEDEFS */
template <ACE_MEM_POOL_1, class ACE_LOCK>
ACE_Malloc<ACE_MEM_POOL_2, ACE_LOCK>::~ACE_Malloc (void)
{
ACE_TRACE ("ACE_Malloc<MEM_POOL>::~ACE_Malloc<MEM_POOL>");
}
// Clean up the resources allocated by ACE_Malloc.
template <ACE_MEM_POOL_1, class ACE_LOCK> int
ACE_Malloc<ACE_MEM_POOL_2, ACE_LOCK>::remove (void)
{
ACE_TRACE ("ACE_Malloc<ACE_MEM_POOL_2, ACE_LOCK>::remove");
// ACE_DEBUG ((LM_DEBUG, ASYS_TEXT (" (%P|%t) destroying ACE_Malloc\n")));
int result = 0;
#if defined (ACE_HAS_MALLOC_STATS)
this->print_stats ();
#endif /* ACE_HAS_MALLOC_STATS */
// Remove the ACE_LOCK.
this->lock_.remove ();
// Give the memory pool a chance to release its resources.
result = this->memory_pool_.release ();
return result;
}
// General-purpose memory allocator. Assumes caller holds the locks.
template <ACE_MEM_POOL_1, class ACE_LOCK> void *
ACE_Malloc<ACE_MEM_POOL_2, ACE_LOCK>::shared_malloc (size_t nbytes)
{
ACE_TRACE ("ACE_Malloc<ACE_MEM_POOL_2, ACE_LOCK>::shared_malloc");
// Round up request to a multiple of the ACE_Malloc_Header size.
size_t nunits =
(nbytes + sizeof (ACE_Malloc_Header) - 1) / sizeof (ACE_Malloc_Header)
+ 1; // Add one for the <ACE_Malloc_Header> itself.
// Begin the search starting at the place in the freelist
// where the last block was found.
ACE_Malloc_Header *prevp = this->cb_ptr_->freep_;
ACE_Malloc_Header *currp = prevp->s_.next_block_;
// Search the freelist to locate a block of the appropriate size.
for (int i = 0; ; i++, prevp = currp, currp = currp->s_.next_block_)
{
if (currp->s_.size_ >= nunits) // Big enough
{
AMS (++this->cb_ptr_->malloc_stats_.ninuse_);
if (currp->s_.size_ == nunits)
// Exact size, just update the pointers.
prevp->s_.next_block_ = currp->s_.next_block_;
else
{
// Remaining chunk is larger than requested block, so
// allocate at tail end.
AMS (++this->cb_ptr_->malloc_stats_.nblocks_);
currp->s_.size_ -= nunits;
currp += currp->s_.size_;
currp->s_.size_ = nunits;
}
this->cb_ptr_->freep_ = prevp;
// Skip over the ACE_Malloc_Header when returning pointer.
return (void *) (currp + 1);
}
else if (currp == this->cb_ptr_->freep_)
{
// We've wrapped around freelist without finding a block.
// Therefore, we need to ask the memory pool for a new chunk
// of bytes.
size_t chunk_bytes = 0;
if ((currp = (ACE_Malloc_Header *)
this->memory_pool_.acquire (nunits * sizeof (ACE_Malloc_Header),
chunk_bytes)) != 0)
{
AMS (++this->cb_ptr_->malloc_stats_.nblocks_);
AMS (++this->cb_ptr_->malloc_stats_.nchunks_);
AMS (++this->cb_ptr_->malloc_stats_.ninuse_);
// Compute the chunk size in ACE_Malloc_Header units.
currp->s_.size_ = chunk_bytes / sizeof (ACE_Malloc_Header);
// Insert the new chunk into the freelist.
this->shared_free ((void *) (currp + 1));
currp = this->cb_ptr_->freep_;
}
else
ACE_ERROR_RETURN ((LM_ERROR, ASYS_TEXT (" (%P|%t) %p\n"), ASYS_TEXT ("malloc")), 0);
}
}
}
// General-purpose memory allocator.
template <ACE_MEM_POOL_1, class ACE_LOCK> void *
ACE_Malloc<ACE_MEM_POOL_2, ACE_LOCK>::malloc (size_t nbytes)
{
ACE_TRACE ("ACE_Malloc<ACE_MEM_POOL_2, ACE_LOCK>::malloc");
ACE_GUARD_RETURN (ACE_LOCK, ace_mon, this->lock_, 0);
return this->shared_malloc (nbytes);
}
// General-purpose memory allocator.
template <ACE_MEM_POOL_1, class ACE_LOCK> void *
ACE_Malloc<ACE_MEM_POOL_2, ACE_LOCK>::calloc (size_t nbytes,
char initial_value)
{
ACE_TRACE ("ACE_Malloc<ACE_MEM_POOL_2, ACE_LOCK>::calloc");
void *ptr = this->malloc (nbytes);
if (ptr != 0)
ACE_OS::memset (ptr, initial_value, nbytes);
return ptr;
}
// Put block AP in the free list (must be called with locks held!)
template <ACE_MEM_POOL_1, class ACE_LOCK> void
ACE_Malloc<ACE_MEM_POOL_2, ACE_LOCK>::shared_free (void *ap)
{
ACE_TRACE ("ACE_Malloc<ACE_MEM_POOL_2, ACE_LOCK>::shared_free");
if (ap == 0)
return;
ACE_Malloc_Header *blockp; // Points to the block ACE_Malloc_Header.
ACE_Malloc_Header *currp;
// Adjust AP to point to the block ACE_Malloc_Header
blockp = (ACE_Malloc_Header *) ap - 1;
// Search until we find the location where the blocks belongs. Note
// that addresses are kept in sorted order.
for (currp = this->cb_ptr_->freep_;
blockp <= currp || blockp >= currp->s_.next_block_;
currp = currp->s_.next_block_)
{
if (currp >= currp->s_.next_block_
&& (blockp > currp || blockp < currp->s_.next_block_))
// Freed block at the start or the end of the memory pool
break;
}
// Join to upper neighbor
if (blockp + blockp->s_.size_ == currp->s_.next_block_)
{
AMS (--this->cb_ptr_->malloc_stats_.nblocks_);
blockp->s_.size_ += currp->s_.next_block_->s_.size_;
blockp->s_.next_block_ = currp->s_.next_block_->s_.next_block_;
}
else
blockp->s_.next_block_ = currp->s_.next_block_;
if (currp + currp->s_.size_ == blockp) // Join to lower neighbor
{
AMS (--this->cb_ptr_->malloc_stats_.nblocks_);
currp->s_.size_ += blockp->s_.size_;
currp->s_.next_block_ = blockp->s_.next_block_;
}
else
currp->s_.next_block_ = blockp;
AMS (--this->cb_ptr_->malloc_stats_.ninuse_);
this->cb_ptr_->freep_ = currp;
}
// No locks held here, caller must acquire/release lock.
template <ACE_MEM_POOL_1, class ACE_LOCK> ACE_Name_Node *
ACE_Malloc<ACE_MEM_POOL_2, ACE_LOCK>::shared_find (const char *name)
{
ACE_TRACE ("ACE_Malloc<ACE_MEM_POOL_2, ACE_LOCK>::shared_find");
for (ACE_Name_Node *node = this->cb_ptr_->name_head_;
node != 0;
node = node->next_)
if (ACE_OS::strcmp (node->name_, name) == 0)
return node;
return 0;
}
template <ACE_MEM_POOL_1, class ACE_LOCK> int
ACE_Malloc<ACE_MEM_POOL_2, ACE_LOCK>::shared_bind (const char *name,
void *pointer)
{
// Combine the two allocations into one to avoid overhead...
ACE_Name_Node *new_node = (ACE_Name_Node *)
this->shared_malloc (sizeof (ACE_Name_Node) + ACE_OS::strlen (name) + 1);
if (new_node == 0)
return -1;
// This is a sleezy trick ;-)
new_node->name_ = (char *) (new_node + 1);
// Insert new node at the head of the list. Note that (new_node) is
// *not* a cast!
ACE_NEW_RETURN (this->cb_ptr_->name_head_,
(new_node) ACE_Name_Node (name, pointer,
this->cb_ptr_->name_head_),
-1);
return 0;
}
template <ACE_MEM_POOL_1, class ACE_LOCK> int
ACE_Malloc<ACE_MEM_POOL_2, ACE_LOCK>::trybind (const char *name,
void *&pointer)
{
ACE_TRACE ("ACE_Malloc<ACE_MEM_POOL_2, ACE_LOCK>::trybind");
ACE_WRITE_GUARD_RETURN (ACE_LOCK, ace_mon, this->lock_, -1);
ACE_Name_Node *node = this->shared_find (name);
if (node == 0)
// Didn't find it, so insert it.
return this->shared_bind (name, pointer);
else
{
// Found it, so return a copy of the current entry.
pointer = node->pointer_;
return 1;
}
}
template <ACE_MEM_POOL_1, class ACE_LOCK> int
ACE_Malloc<ACE_MEM_POOL_2, ACE_LOCK>::bind (const char *name,
void *pointer,
int duplicates)
{
ACE_TRACE ("ACE_Malloc<ACE_MEM_POOL_2, ACE_LOCK>::bind");
ACE_WRITE_GUARD_RETURN (ACE_LOCK, ace_mon, this->lock_, -1);
if (duplicates == 0 && this->shared_find (name) != 0)
// If we're not allowing duplicates, then if the name is already
// present, return 1.
return 1;
else
// If we get this far, either we're allowing duplicates or we didn't
// find the name yet.
return this->shared_bind (name, pointer);
}
template <ACE_MEM_POOL_1, class ACE_LOCK> int
ACE_Malloc<ACE_MEM_POOL_2, ACE_LOCK>::find (const char *name, void *&pointer)
{
ACE_TRACE ("ACE_Malloc<ACE_MEM_POOL_2, ACE_LOCK>::find");
ACE_READ_GUARD_RETURN (ACE_LOCK, ace_mon, this->lock_, -1);
ACE_Name_Node *node = this->shared_find (name);
if (node == 0)
return -1;
else
{
pointer = node->pointer_;
return 0;
}
}
// Returns a count of the number of available chunks that can hold
// <size> byte allocations. Function can be used to determine if you
// have reached a water mark. This implies a fixed amount of allocated
// memory.
//
// @param size - the chunk size of that you would like a count of
// @return function returns the number of chunks of the given size
// that would fit in the currently allocated memory
template <ACE_MEM_POOL_1, class ACE_LOCK> ssize_t
ACE_Malloc<ACE_MEM_POOL_2, ACE_LOCK>::avail_chunks (size_t size) const
{
ACE_TRACE ("ACE_Malloc<ACE_MEM_POOL_2, ACE_LOCK>::avail_chunks");
ACE_READ_GUARD_RETURN (ACE_LOCK, ace_mon, (ACE_LOCK &) this->lock_, -1);
size_t count = 0;
// Avoid dividing by 0...
size = size == 0 ? 1 : size;
for (ACE_Malloc_Header *currp = this->cb_ptr_->freep_->s_.next_block_;
currp != this->cb_ptr_->freep_;
currp = currp->s_.next_block_)
// calculate how many will fit in this block.
if (currp->s_.size_ * sizeof (ACE_Malloc_Header) >= size)
count += currp->s_.size_ * sizeof (ACE_Malloc_Header) / size;
return count;
}
template <ACE_MEM_POOL_1, class ACE_LOCK> int
ACE_Malloc<ACE_MEM_POOL_2, ACE_LOCK>::find (const char *name)
{
ACE_TRACE ("ACE_Malloc<ACE_MEM_POOL_2, ACE_LOCK>::find");
ACE_READ_GUARD_RETURN (ACE_LOCK, ace_mon, this->lock_, -1);
return this->shared_find (name) == 0 ? -1 : 0;
}
template <ACE_MEM_POOL_1, class ACE_LOCK> int
ACE_Malloc<ACE_MEM_POOL_2, ACE_LOCK>::unbind (const char *name, void *&pointer)
{
ACE_TRACE ("ACE_Malloc<ACE_MEM_POOL_2, ACE_LOCK>::unbind");
ACE_WRITE_GUARD_RETURN (ACE_LOCK, ace_mon, this->lock_, -1);
ACE_Name_Node *prev = 0;
for (ACE_Name_Node *curr = this->cb_ptr_->name_head_;
curr != 0;
curr = curr->next_)
{
if (ACE_OS::strcmp (curr->name_, name) == 0)
{
pointer = curr->pointer_;
if (prev == 0)
this->cb_ptr_->name_head_ = curr->next_;
else
prev->next_ = curr->next_;
// This will free up both the node and the name due to our
// sleezy trick in bind ()!
this->shared_free (curr);
return 0;
}
prev = curr;
}
// Didn't find it, so fail.
return -1;
}
template <ACE_MEM_POOL_1, class ACE_LOCK> int
ACE_Malloc<ACE_MEM_POOL_2, ACE_LOCK>::unbind (const char *name)
{
ACE_TRACE ("ACE_Malloc<ACE_MEM_POOL_2, ACE_LOCK>::unbind");
void *temp = 0;
return this->unbind (name, temp);
}
template <ACE_MEM_POOL_1, class ACE_LOCK> void
ACE_Malloc_Iterator<ACE_MEM_POOL_2, ACE_LOCK>::dump (void) const
{
ACE_TRACE ("ACE_Malloc_Iterator<ACE_MEM_POOL_2, ACE_LOCK>::dump");
ACE_DEBUG ((LM_DEBUG, ACE_BEGIN_DUMP, this));
this->curr_->dump ();
this->guard_.dump ();
ACE_DEBUG ((LM_DEBUG, ASYS_TEXT ("name_ = %s"), this->name_));
ACE_DEBUG ((LM_DEBUG, ASYS_TEXT ("\n")));
ACE_DEBUG ((LM_DEBUG, ACE_END_DUMP));
}
template <ACE_MEM_POOL_1, class ACE_LOCK>
ACE_Malloc_Iterator<ACE_MEM_POOL_2, ACE_LOCK>::ACE_Malloc_Iterator (ACE_Malloc<ACE_MEM_POOL_2, ACE_LOCK> &malloc,
const char *name)
: malloc_ (malloc),
curr_ (0),
guard_ (malloc_.lock_),
name_ (name != 0 ? ACE_OS::strdup (name) : 0)
{
ACE_TRACE ("ACE_Malloc_Iterator<ACE_MEM_POOL_2, ACE_LOCK>::ACE_Malloc_Iterator");
// Cheap trick to make code simple.
ACE_Name_Node temp;
this->curr_ = &temp;
this->curr_->next_ = malloc_.cb_ptr_->name_head_;
this->advance ();
}
template <ACE_MEM_POOL_1, class ACE_LOCK>
ACE_Malloc_Iterator<ACE_MEM_POOL_2, ACE_LOCK>::~ACE_Malloc_Iterator (void)
{
ACE_OS::free ((void *) this->name_);
}
template <ACE_MEM_POOL_1, class ACE_LOCK> int
ACE_Malloc_Iterator<ACE_MEM_POOL_2, ACE_LOCK>::next (void *&next_entry,
char *&name)
{
ACE_TRACE ("ACE_Malloc_Iterator<ACE_MEM_POOL_2, ACE_LOCK>::next");
if (this->curr_ != 0)
{
next_entry = this->curr_->pointer_;
name = this->curr_->name_;
return 1;
}
else
return 0;
}
template <ACE_MEM_POOL_1, class ACE_LOCK> int
ACE_Malloc_Iterator<ACE_MEM_POOL_2, ACE_LOCK>::next (void *&next_entry)
{
ACE_TRACE ("ACE_Malloc_Iterator<ACE_MEM_POOL_2, ACE_LOCK>::next");
if (this->curr_ != 0)
{
next_entry = this->curr_->pointer_;
return 1;
}
else
return 0;
}
template <ACE_MEM_POOL_1, class ACE_LOCK> int
ACE_Malloc_Iterator<ACE_MEM_POOL_2, ACE_LOCK>::done (void) const
{
ACE_TRACE ("ACE_Malloc_Iterator<ACE_MEM_POOL_2, ACE_LOCK>::done");
return this->curr_ == 0;
}
template <ACE_MEM_POOL_1, class ACE_LOCK> int
ACE_Malloc_Iterator<ACE_MEM_POOL_2, ACE_LOCK>::advance (void)
{
ACE_TRACE ("ACE_Malloc_Iterator<ACE_MEM_POOL_2, ACE_LOCK>::advance");
this->curr_ = this->curr_->next_;
if (this->name_ == 0)
return this->curr_ != 0;
while (this->curr_ != 0
&& ACE_OS::strcmp (this->name_, this->curr_->name_) != 0)
this->curr_ = this->curr_->next_;
return this->curr_ != 0;
}
#endif /* ACE_MALLOC_T_C */
|