1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
|
// $Id$
#include "ace/Obstack_T.h"
#if !defined (__ACE_INLINE__)
#include "ace/Obstack_T.i"
#endif /* __ACE_INLINE__ */
ACE_RCSID(ace, Obstack_T, "$Id$")
ACE_ALLOC_HOOK_DEFINE(ACE_Obstack_T)
template <class CHAR> void
ACE_Obstack_T<CHAR>::dump (void) const
{
ACE_TRACE ("ACE_Obstack_T<CHAR>::dump");
ACE_DEBUG ((LM_DEBUG, ACE_BEGIN_DUMP, this));
ACE_DEBUG ((LM_DEBUG, ACE_LIB_TEXT ("size_ = %d\n"), this->size_));
ACE_DEBUG ((LM_DEBUG, ACE_LIB_TEXT ("head_ = %x\n"), this->head_));
ACE_DEBUG ((LM_DEBUG, ACE_LIB_TEXT ("curr_ = %x\n"), this->curr_));
ACE_DEBUG ((LM_DEBUG, ACE_END_DUMP));
}
template <class CHAR> int
ACE_Obstack_T<CHAR>::request (size_t len)
{
ACE_TRACE ("ACE_Obstack_T<CHAR>::request");
// normalize the length.
len *= sizeof (CHAR);
// We will always have enough room for null terminating char
// unless sizeof (char) > 4.
// There's no way we can handle more than this->size_ of strings.
if (this->size_ < len)
return -1;
// Check whether we need to grow our chunk...
if (this->curr_->cur_ + len >= this->curr_->end_)
{
ACE_Obchunk *temp = this->curr_;
if (this->curr_->next_ == 0)
{
// We must allocate new memory.
this->curr_->next_ = this->new_chunk ();
this->curr_ = this->curr_->next_;
}
else
{
// We can reuse previously allocated memory.
this->curr_ = this->curr_->next_;
this->curr_->block_ = this->curr_->cur_ = this->curr_->contents_;
}
// if there are something in there already.
if (temp->cur_ != temp->block_)
{
// @@ Require pointer arithmatic?
size_t datasize = temp->cur_ - temp->block_;
// Check the total length of data again.
if (this->size_ < len + datasize)
return -1;
ACE_OS::memcpy (this->curr_->block_,
temp->block_,
datasize);
this->curr_->cur_ = this->curr_->block_ + datasize;
}
}
return 0;
}
template <class CHAR> CHAR *
ACE_Obstack_T<CHAR>::grow (CHAR c)
{
ACE_TRACE ("ACE_Obstack_T<CHAR>::grow");
if (this->request (1) == 0)
{
CHAR *retv = ACE_reinterpret_cast (CHAR *,
this->curr_->cur_);
this->curr_->cur_ += sizeof (CHAR);
*retv = c;
return retv;
}
else
return 0;
}
template <class CHAR> ACE_Obchunk *
ACE_Obstack_T<CHAR>::new_chunk (void)
{
ACE_TRACE ("ACE_Obstack_T<CHAR>::new_chunk");
ACE_Obchunk *temp;
ACE_NEW_MALLOC_RETURN (temp,
ACE_static_cast (ACE_Obchunk *,
this->allocator_strategy_->malloc
(sizeof (class ACE_Obchunk) + this->size_)),
ACE_Obchunk (this->size_),
0);
return temp;
}
template <class CHAR>
ACE_Obstack_T<CHAR>::ACE_Obstack_T (size_t size,
ACE_Allocator *allocator_strategy)
: allocator_strategy_ (allocator_strategy),
size_ (size)
{
ACE_TRACE ("ACE_Obstack_T<CHAR>::ACE_Obstack");
if (this->allocator_strategy_ == 0)
ACE_ALLOCATOR (this->allocator_strategy_,
ACE_Allocator::instance ());
this->head_ = this->new_chunk ();
this->curr_ = this->head_;
}
template <class CHAR>
ACE_Obstack_T<CHAR>::~ACE_Obstack_T (void)
{
ACE_TRACE ("ACE_Obstack_T<CHAR>::~ACE_Obstack_T");
ACE_Obchunk *temp = this->head_;
while (temp != 0)
{
ACE_Obchunk *next = temp->next_;
temp->next_ = 0;
this->allocator_strategy_->free ((void *) temp);
temp = next;
}
}
template <class CHAR> CHAR *
ACE_Obstack_T<CHAR>::copy (const CHAR *s,
size_t len)
{
ACE_TRACE ("ACE_Obstack_T<CHAR>::copy");
if (this->request (len) != 0)
return 0;
size_t tsize = len * sizeof (CHAR);
ACE_OS::memcpy (this->curr_->cur_, s, tsize);
this->curr_->cur_ += tsize ;
return this->freeze ();
}
template <class CHAR> void
ACE_Obstack_T<CHAR>::release (void)
{
ACE_TRACE ("ACE_Obstack_T<CHAR>::release");
this->curr_ = this->head_;
this->curr_->block_ = this->curr_->cur_ = this->curr_->contents_;
}
|