1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
|
/* -*- C++ -*- */
// $Id$
// ============================================================================
//
// = LIBRARY
// ace
//
// = FILENAME
// RB_Tree.h
//
// = AUTHOR
// Chris Gill
//
// ============================================================================
#ifndef ACE_RB_TREE_H
#define ACE_RB_TREE_H
#include "ace/OS.h"
#include "ace/Functor.h"
#if !defined (ACE_LACKS_PRAGMA_ONCE)
# pragma once
#endif /* ACE_LACKS_PRAGMA_ONCE */
// Forward decl.
template <class EXT_ID, class INT_ID, class COMPARE_KEYS, class ACE_LOCK>
class ACE_RB_Tree_Iterator_Base;
// Forward decl.
template <class EXT_ID, class INT_ID, class COMPARE_KEYS, class ACE_LOCK>
class ACE_RB_Tree_Iterator;
// Forward decl.
template <class EXT_ID, class INT_ID, class COMPARE_KEYS, class ACE_LOCK>
class ACE_RB_Tree_Reverse_Iterator;
// Forward decl.
class ACE_Allocator;
class ACE_RB_Tree_Node_Base
{
public:
enum RB_Tree_Node_Color {RED, BLACK};
};
template <class EXT_ID, class INT_ID>
class ACE_RB_Tree_Node : public ACE_RB_Tree_Node_Base
{
// = TITLE
// Implements a node in a Red-Black Tree ADT.
//
public:
// = Initialization and termination methods.
ACE_RB_Tree_Node (const EXT_ID &k, const INT_ID &t);
// Constructor.
~ACE_RB_Tree_Node (void);
// Destructor.
EXT_ID &key (void);
// Key accessor.
INT_ID &item (void);
// Item accessor.
void color (RB_Tree_Node_Color c);
// Set color of the node.
RB_Tree_Node_Color color (void);
// Get color of the node.
ACE_RB_Tree_Node<EXT_ID, INT_ID> *parent (void);
// Accessor for node's parent pointer.
void parent (ACE_RB_Tree_Node<EXT_ID, INT_ID> * p);
// Mutator for node's parent pointer.
ACE_RB_Tree_Node<EXT_ID, INT_ID> *left (void);
// Accessor for node's left child pointer.
void left (ACE_RB_Tree_Node<EXT_ID, INT_ID> *l);
// Mutator for node's left child pointer.
ACE_RB_Tree_Node<EXT_ID, INT_ID> *right (void);
// Accessor for node's right child pointer.
void right (ACE_RB_Tree_Node<EXT_ID, INT_ID> * r);
// Mutator for node's right child pointer
private:
EXT_ID k_;
// The key.
INT_ID t_;
// The item.
RB_Tree_Node_Color color_;
// Color of the node.
ACE_RB_Tree_Node<EXT_ID, INT_ID> *parent_;
// Pointer to node's parent.
ACE_RB_Tree_Node<EXT_ID, INT_ID> *left_;
// Pointer to node's left child.
ACE_RB_Tree_Node<EXT_ID, INT_ID> *right_;
// Pointer to node's right child.
};
class ACE_RB_Tree_Base
{
public:
// = Search result enumeration.
enum RB_SearchResult {LEFT, EXACT, RIGHT};
};
template <class EXT_ID, class INT_ID, class COMPARE_KEYS, class ACE_LOCK>
class ACE_RB_Tree : public ACE_RB_Tree_Base
{
// = TITLE
// Implements a Red-Black Tree ADT, according to T. H. Corman,
// C. E. Leiserson, and R. L. Rivest, "Introduction to Algorithms"
// 1990, MIT, chapter 14.
//
// = Description
// A number of Changes have been made to this class template
// in order to conform to the ACE_Hash_Map_Manager_Ex
// interface. All previously supported public methods are
// still part of this class. However, these are marked as
// DEPRECATED and will be removed from this class in
// a future version of ACE. Please migrate your code
// to the appropriate public methods indicated in the
// method deprecation comments.
//
// This class uses an <ACE_Allocator> to allocate memory. The
// user can make this a persistent class by providing an
// <ACE_Allocator> with a persistable memory pool.
public:
friend class ACE_RB_Tree_Iterator_Base<EXT_ID, INT_ID, COMPARE_KEYS, ACE_LOCK>;
friend class ACE_RB_Tree_Iterator<EXT_ID, INT_ID, COMPARE_KEYS, ACE_LOCK>;
friend class ACE_RB_Tree_Reverse_Iterator<EXT_ID, INT_ID, COMPARE_KEYS, ACE_LOCK>;
typedef EXT_ID KEY;
typedef INT_ID VALUE;
typedef ACE_RB_Tree_Node<EXT_ID, INT_ID> ENTRY;
// = ACE-style iterator typedefs.
typedef ACE_RB_Tree_Iterator<EXT_ID, INT_ID, COMPARE_KEYS, ACE_LOCK> ITERATOR;
typedef ACE_RB_Tree_Reverse_Iterator<EXT_ID, INT_ID, COMPARE_KEYS, ACE_LOCK> REVERSE_ITERATOR;
// = STL-style iterator typedefs.
typedef ACE_RB_Tree_Iterator<EXT_ID, INT_ID, COMPARE_KEYS, ACE_LOCK> iterator;
typedef ACE_RB_Tree_Reverse_Iterator<EXT_ID, INT_ID, COMPARE_KEYS, ACE_LOCK> reverse_iterator;
// = Initialization and termination methods.
ACE_RB_Tree (ACE_Allocator *alloc = 0);
// Constructor.
ACE_RB_Tree (const ACE_RB_Tree<EXT_ID, INT_ID, COMPARE_KEYS, ACE_LOCK> &rbt);
// Copy constructor.
int open (ACE_Allocator *alloc = 0);
// Initialize an RB Tree.
int close (void);
// Close down an RB_Tree and release dynamically allocated
// resources.
virtual ~ACE_RB_Tree (void);
// Destructor.
// = insertion, removal, and search methods.
int bind (const EXT_ID &item,
const INT_ID &int_id);
// Associate <ext_id> with <int_id>. If <ext_id> is already in the
// tree then the <ACE_RB_Tree_Node> is not changed. Returns 0 if a
// new entry is bound successfully, returns 1 if an attempt is made
// to bind an existing entry, and returns -1 if failures occur.
int bind (const EXT_ID &ext_id,
const INT_ID &int_id,
ACE_RB_Tree_Node<EXT_ID, INT_ID> *&entry);
// Same as a normal bind, except the tree entry is also passed back
// to the caller. The entry in this case will either be the newly
// created entry, or the existing one.
int trybind (const EXT_ID &ext_id,
INT_ID &int_id);
// Associate <ext_id> with <int_id> if and only if <ext_id> is not
// in the tree. If <ext_id> is already in the tree then the <int_id>
// parameter is assigned the existing value in the tree. Returns 0
// if a new entry is bound successfully, returns 1 if an attempt is
// made to bind an existing entry, and returns -1 if failures occur.
int trybind (const EXT_ID &ext_id,
INT_ID &int_id,
ACE_RB_Tree_Node<EXT_ID, INT_ID> *&entry);
// Same as a normal trybind, except the tree entry is also passed
// back to the caller. The entry in this case will either be the
// newly created entry, or the existing one.
int rebind (const EXT_ID &ext_id,
const INT_ID &int_id);
// Reassociate <ext_id> with <int_id>. If <ext_id> is not in the
// tree then behaves just like <bind>. Returns 0 if a new entry is
// bound successfully, returns 1 if an existing entry was rebound,
// and returns -1 if failures occur.
int rebind (const EXT_ID &ext_id,
const INT_ID &int_id,
ACE_RB_Tree_Node<EXT_ID, INT_ID> *&entry);
// Same as a normal rebind, except the tree entry is also passed back
// to the caller. The entry in this case will either be the newly
// created entry, or the existing one.
int rebind (const EXT_ID &ext_id,
const INT_ID &int_id,
INT_ID &old_int_id);
// Associate <ext_id> with <int_id>. If <ext_id> is not in the tree
// then behaves just like <bind>. Otherwise, store the old value of
// <int_id> into the "out" parameter and rebind the new parameters.
// Returns 0 if a new entry is bound successfully, returns 1 if an
// existing entry was rebound, and returns -1 if failures occur.
int rebind (const EXT_ID &ext_id,
const INT_ID &int_id,
INT_ID &old_int_id,
ACE_RB_Tree_Node<EXT_ID, INT_ID> *&entry);
// Same as a normal rebind, except the tree entry is also passed back
// to the caller. The entry in this case will either be the newly
// created entry, or the existing one.
int rebind (const EXT_ID &ext_id,
const INT_ID &int_id,
EXT_ID &old_ext_id,
INT_ID &old_int_id);
// Associate <ext_id> with <int_id>. If <ext_id> is not in the tree
// then behaves just like <bind>. Otherwise, store the old values
// of <ext_id> and <int_id> into the "out" parameters and rebind the
// new parameters. This is very useful if you need to have an
// atomic way of updating <ACE_RB_Tree_Nodes> and you also need
// full control over memory allocation. Returns 0 if a new entry is
// bound successfully, returns 1 if an existing entry was rebound,
// and returns -1 if failures occur.
int rebind (const EXT_ID &ext_id,
const INT_ID &int_id,
EXT_ID &old_ext_id,
INT_ID &old_int_id,
ACE_RB_Tree_Node<EXT_ID, INT_ID> *&entry);
// Same as a normal rebind, except the tree entry is also passed back
// to the caller. The entry in this case will either be the newly
// created entry, or the existing one.
int find (const EXT_ID &ext_id,
INT_ID &int_id);
// Locate <ext_id> and pass out parameter via <int_id>. If found,
// return 0, returns -1 if not found.
int find (const EXT_ID &ext_id,
ACE_RB_Tree_Node<EXT_ID, INT_ID> *&entry);
// Locate <ext_id> and pass out parameter via <entry>. If found,
// return 0, returns -1 if not found.
int unbind (const EXT_ID &ext_id);
// Unbind (remove) the <ext_id> from the tree. Don't return the
// <int_id> to the caller (this is useful for collections where the
// <int_id>s are *not* dynamically allocated...)
int unbind (const EXT_ID &ext_id,
INT_ID &int_id);
// Break any association of <ext_id>. Returns the value of <int_id>
// in case the caller needs to deallocate memory.
int unbind (ACE_RB_Tree_Node<EXT_ID, INT_ID> *entry);
// Remove entry from tree. This method should be used with *extreme*
// caution, and only for optimization purposes. The node being passed
// in had better have been allocated by the tree that is unbinding it.
// = Public helper methods.
size_t current_size (void);
// Returns the current number of nodes in the tree.
void operator= (const ACE_RB_Tree<EXT_ID, INT_ID, COMPARE_KEYS, ACE_LOCK> &rbt);
// Assignment operator.
virtual int lessthan (const EXT_ID &k1, const EXT_ID &k2);
// Less than comparison function for keys, using comparison functor.
ACE_LOCK &mutex (void);
// Returns a reference to the underlying <ACE_LOCK>. This makes it
// possible to acquire the lock explicitly, which can be useful in
// some cases if you instantiate the <ACE_Atomic_Op> with an
// <ACE_Recursive_Mutex> or <ACE_Process_Mutex>, or if you need to
// guard the state of an iterator. NOTE: the right name would be
// <lock>, but HP/C++ will choke on that!
void dump (void) const;
// Dump the state of an object.
// = STL styled iterator factory functions.
ACE_RB_Tree_Iterator<EXT_ID, INT_ID, COMPARE_KEYS, ACE_LOCK> begin (void);
// Return forward iterator positioned at first node in tree.
ACE_RB_Tree_Iterator<EXT_ID, INT_ID, COMPARE_KEYS, ACE_LOCK> end (void);
// Return forward iterator positioned at last node in tree.
ACE_RB_Tree_Reverse_Iterator<EXT_ID, INT_ID, COMPARE_KEYS, ACE_LOCK> rbegin (void);
// Return reverse iterator positioned at last node in tree.
ACE_RB_Tree_Reverse_Iterator<EXT_ID, INT_ID, COMPARE_KEYS, ACE_LOCK> rend (void);
// Return reverse iterator positioned at first node in tree.
// = DEPRECATED methods. Please migrate your code to use the new methods instead
INT_ID* find (const EXT_ID &k);
// Returns a pointer to the item corresponding to the
// given key, or 0 if it cannot find the key in the tree.
//
// DEPRECATED: signature will change to become
// int find (const EXT_ID &ext_id); which will return
// 0 if the <ext_id> is in the tree, otherwise -1.
INT_ID* insert (const EXT_ID &k, const INT_ID &t);
// Inserts a *copy* of the key and the item into the tree: both the
// key type EXT_ID and the item type INT_ID must have well defined semantics
// for copy construction. The default implementation also requires that
// the key type support well defined < semantics. This method returns a
// pointer to the inserted item copy, or 0 if an error occurred.
// NOTE: if an identical key already exists in the tree, no new item
// is created, and the returned pointer addresses the existing item
// associated with the existing key.
// DEPRECATED
int remove (const EXT_ID &k);
// Removes the item associated with the given key from the tree and
// destroys it. Returns 1 if it found the item and successfully
// destroyed it, 0 if it did not find the item, or -1 if an error
// occurred.
// DEPRECATED
void clear (void);
// Destroys all nodes and sets the root pointer null.
// DEPRECATED
protected:
// = Protected methods. These should only be called with locks held.
void RB_rotate_right (ACE_RB_Tree_Node<EXT_ID, INT_ID> * x);
// Method for right rotation of the tree about a given node.
void RB_rotate_left (ACE_RB_Tree_Node<EXT_ID, INT_ID> * x);
// Method for left rotation of the tree about a given node.
void RB_delete_fixup (ACE_RB_Tree_Node<EXT_ID, INT_ID> * x);
// Method for restoring Red-Black properties after deletion.
ACE_RB_Tree_Node<EXT_ID, INT_ID> *
RB_tree_successor (ACE_RB_Tree_Node<EXT_ID, INT_ID> *x) const;
// Method to find the successor node of the given node in the tree.
ACE_RB_Tree_Node<EXT_ID, INT_ID> *
RB_tree_predecessor (ACE_RB_Tree_Node<EXT_ID, INT_ID> *x) const;
// Method to find the predecessor node of the given node in the
// tree.
ACE_RB_Tree_Node<EXT_ID, INT_ID> *
RB_tree_minimum (ACE_RB_Tree_Node<EXT_ID, INT_ID> *x) const;
// Method to find the minimum node of the subtree rooted at the
// given node.
ACE_RB_Tree_Node<EXT_ID, INT_ID> *
RB_tree_maximum (ACE_RB_Tree_Node<EXT_ID, INT_ID> *x) const;
// Method to find the maximum node of the subtree rooted at the
// given node.
ACE_RB_Tree_Node<EXT_ID, INT_ID> *
find_node (const EXT_ID &k, RB_SearchResult &result);
// Returns a pointer to a matching node if there is one, a pointer
// to the node under which to insert the item if the tree is not
// empty and there is no such match, or 0 if the tree is empty.
// It stores the result of the search in the result argument:
// LEFT if the node is to the left of the node to be inserted,
// RIGHT if the node is to the right of the node to be inserted,
// or EXACT if an exactly matching node already exists.
void RB_rebalance (ACE_RB_Tree_Node<EXT_ID, INT_ID> * x);
// Rebalance the tree after insertion of a node.
int close_i (void);
// Close down an RB_Tree. this method should
// only be called with locks already held.
int find_i (const EXT_ID &ext_id, ACE_RB_Tree_Node<EXT_ID, INT_ID>* &entry);
// Retrieves a pointer to the item corresponding to the
// given key. Returns 0 for success, or -1 if it cannot find the key
// in the tree.
INT_ID* insert_i (const EXT_ID &k, const INT_ID &t);
// Inserts a *copy* of the key and the item into the tree: both the
// key type EXT_ID and the item type INT_ID must have well defined semantics
// for copy construction. The default implementation also requires that
// the key type support well defined < semantics. This method returns a
// pointer to the inserted item copy, or 0 if an error occurred.
// NOTE: if an identical key already exists in the tree, no new item
// is created, and the returned pointer addresses the existing item
// associated with the existing key.
int insert_i (const EXT_ID &k, const INT_ID &t,
ACE_RB_Tree_Node<EXT_ID, INT_ID> *&entry);
// Inserts a *copy* of the key and the item into the tree: both the
// key type EXT_ID and the item type INT_ID must have well defined semantics
// for copy construction. The default implementation also requires that
// the key type support well defined < semantics. This method passes back
// a pointer to the inserted (or existing) node, and the search status. If
// the node already exists, the method returns 1. If the node does not
// exist, and a new one is successfully created, and the method returns 0.
// If there was an error, the method returns -1.
int remove_i (const EXT_ID &k, INT_ID &i);
// Removes the item associated with the given key from the tree and
// destroys it. Returns 1 if it found the item and successfully
// destroyed it, 0 if it did not find the item, or -1 if an error
// occurred. Returns the stored internal id in the second argument.
int remove_i (ACE_RB_Tree_Node<EXT_ID, INT_ID> *z);
// Removes the item associated with the given key from the tree and
// destroys it.
private:
// = Private members.
ACE_Allocator *allocator_;
// Pointer to a memory allocator.
ACE_LOCK lock_;
// Synchronization variable for the MT_SAFE <ACE_RB_Tree>.
ACE_RB_Tree_Node<EXT_ID, INT_ID> *root_;
// The root of the tree.
COMPARE_KEYS compare_keys_;
// Comparison functor for comparing nodes in the tree.
size_t current_size_;
// The current number of nodes in the tree.
};
template <class EXT_ID, class INT_ID, class COMPARE_KEYS, class ACE_LOCK>
class ACE_RB_Tree_Iterator_Base
{
// = TITLE
// Implements a common base class for iterators for a Red-Black Tree ADT.
public:
void operator= (const ACE_RB_Tree_Iterator_Base<EXT_ID, INT_ID, COMPARE_KEYS, ACE_LOCK> &iter);
// Assignment operator: copies both the tree reference and the position in the tree.
// = Iteration methods.
int done (void) const;
// Returns 1 when the iteration has completed, otherwise 0.
ACE_RB_Tree_Node<EXT_ID, INT_ID> & operator* (void) const;
// STL-like iterator dereference operator: returns a reference
// to the node underneath the iterator.
const ACE_RB_Tree<EXT_ID, INT_ID, COMPARE_KEYS, ACE_LOCK> &tree (void);
// Returns a const reference to the tree over which we're iterating.
int operator== (const ACE_RB_Tree_Iterator_Base<EXT_ID, INT_ID, COMPARE_KEYS, ACE_LOCK> &) const;
// Comparison operator: returns 1 if both iterators point to the same position, otherwise 0.
int operator!= (const ACE_RB_Tree_Iterator_Base<EXT_ID, INT_ID, COMPARE_KEYS, ACE_LOCK> &) const;
// Comparison operator: returns 1 if the iterators point to different positions, otherwise 0.
ACE_ALLOC_HOOK_DECLARE;
// Declare the dynamic allocation hooks.
protected:
// = Initialization and termination methods.
ACE_RB_Tree_Iterator_Base (const ACE_RB_Tree<EXT_ID, INT_ID, COMPARE_KEYS, ACE_LOCK> &tree,
int set_first);
// Constructor. Takes an ACE_RB_Tree over which to iterate, and
// an integer indicating (if non-zero) to position the iterator
// at the first element in the tree (if this integer is 0, the
// iterator is positioned at the last element in the tree).
ACE_RB_Tree_Iterator_Base (const ACE_RB_Tree_Iterator_Base<EXT_ID, INT_ID, COMPARE_KEYS, ACE_LOCK> &iter);
// Copy constructor.
~ACE_RB_Tree_Iterator_Base (void);
// Destructor.
// = Internal methods
int forward_i (void);
// Move forward by one element in the tree. Returns 0 when
// there are no more elements in the tree, otherwise 1.
int reverse_i (void);
// Move back by one element in the tree. Returns 0 when
// there are no more elements in the tree, otherwise 1.
void dump_i (void) const;
// Dump the state of an object.
// = Protected members.
const ACE_RB_Tree<EXT_ID, INT_ID, COMPARE_KEYS, ACE_LOCK> *tree_;
// Reference to the ACE_RB_Tree over which we're iterating.
ACE_RB_Tree_Node <EXT_ID, INT_ID> *node_;
// Pointer to the node currently under the iterator.
};
template <class EXT_ID, class INT_ID, class COMPARE_KEYS, class ACE_LOCK>
class ACE_RB_Tree_Iterator : public ACE_RB_Tree_Iterator_Base<EXT_ID, INT_ID, COMPARE_KEYS, ACE_LOCK>
{
// = TITLE
// Implements an iterator for a Red-Black Tree ADT.
public:
// = Initialization and termination methods.
ACE_RB_Tree_Iterator (const ACE_RB_Tree<EXT_ID, INT_ID, COMPARE_KEYS, ACE_LOCK> &tree,
int set_first = 1);
// Constructor. Takes an ACE_RB_Tree over which to iterate, and
// an integer indicating (if non-zero) to position the iterator
// at the first element in the tree (if this integer is 0, the
// iterator is positioned at the last element in the tree).
~ACE_RB_Tree_Iterator (void);
// Destructor.
// = ACE-style iteration methods.
int advance (void);
// Move forward by one element in the tree. Returns
// 0 when all elements have been seen, else 1.
void dump (void) const;
// Dump the state of an object.
// = STL-style iteration methods.
ACE_RB_Tree_Iterator<EXT_ID, INT_ID, COMPARE_KEYS, ACE_LOCK> & operator++ (void);
// Prefix advance.
ACE_RB_Tree_Iterator<EXT_ID, INT_ID, COMPARE_KEYS, ACE_LOCK> operator++ (int);
// Postfix advance.
ACE_RB_Tree_Iterator<EXT_ID, INT_ID, COMPARE_KEYS, ACE_LOCK> & operator-- (void);
// Prefix reverse.
ACE_RB_Tree_Iterator<EXT_ID, INT_ID, COMPARE_KEYS, ACE_LOCK> operator-- (int);
// Postfix reverse.
ACE_ALLOC_HOOK_DECLARE;
// Declare the dynamic allocation hooks.
int next (ACE_RB_Tree_Node<EXT_ID, INT_ID> *&next_entry) const;
// Passes back the <entry> under the iterator. Returns 0 if
// the iteration has completed, otherwise 1. This method must
// be declared and defined in both the derived forward and
// reverse iterator classes rather than in the base iterator
// class because of a method signature resolution problem
// caused by the existence of the deprecated next (void)
// method in the derived forward iterator class. When that
// deprecated method is removed, this method should be removed
// from the derived classes and placed in the base class.
// = DEPRECATED methods. Please migrate your code to use the new methods instead
EXT_ID *key (void);
// Accessor for key of node under iterator (if any).
// DEPRECATED
INT_ID *item (void);
// Accessor for item of node under iterator (if any).
// DEPRECATED
int first (void);
// Move to the first item in the iteration (and in the tree).
// DEPRECATED
int last (void);
// Move to the last item in the iteration (and in the tree).
// DEPRECATED
int next (void);
// Move to the next item in the iteration (and in the tree).
// DEPRECATED
int previous (void);
// Move to the previous item in the iteration (and in the tree).
// DEPRECATED
int is_done (void);
// Returns 0 if the iterator is positioned over a valid ACE_RB_Tree
// node, returns 1 if not.
// DEPRECATED: use the base class <done> method instead.
};
template <class EXT_ID, class INT_ID, class COMPARE_KEYS, class ACE_LOCK>
class ACE_RB_Tree_Reverse_Iterator : public ACE_RB_Tree_Iterator_Base<EXT_ID, INT_ID, COMPARE_KEYS, ACE_LOCK>
{
// = TITLE
// Implements a reverse iterator for a Red-Black Tree ADT.
public:
// = Initialization and termination methods.
ACE_RB_Tree_Reverse_Iterator (const ACE_RB_Tree<EXT_ID, INT_ID, COMPARE_KEYS, ACE_LOCK> &tree,
int set_last = 1);
// Constructor. Takes an ACE_RB_Tree over which to iterate, and
// an integer indicating (if non-zero) to position the iterator
// at the last element in the tree (if this integer is 0, the
// iterator is positioned at the first element in the tree).
~ACE_RB_Tree_Reverse_Iterator (void);
// Destructor.
// = ACE-style iteration methods.
int advance (void);
// Move forward by one element in the tree. Returns
// 0 when all elements have been seen, else 1.
void dump (void) const;
// Dump the state of an object.
// = STL-style iteration methods.
ACE_RB_Tree_Reverse_Iterator<EXT_ID, INT_ID, COMPARE_KEYS, ACE_LOCK> & operator++ (void);
// Prefix advance.
ACE_RB_Tree_Reverse_Iterator<EXT_ID, INT_ID, COMPARE_KEYS, ACE_LOCK> operator++ (int);
// Postfix advance.
ACE_RB_Tree_Reverse_Iterator<EXT_ID, INT_ID, COMPARE_KEYS, ACE_LOCK> & operator-- (void);
// Prefix reverse.
ACE_RB_Tree_Reverse_Iterator<EXT_ID, INT_ID, COMPARE_KEYS, ACE_LOCK> operator-- (int);
// Postfix reverse.
ACE_ALLOC_HOOK_DECLARE;
// Declare the dynamic allocation hooks.
int next (ACE_RB_Tree_Node<EXT_ID, INT_ID> *&next_entry) const;
// Passes back the <entry> under the iterator. Returns 0 if
// the iteration has completed, otherwise 1. This method must
// be declared and defined in both the derived forward and
// reverse iterator classes rather than in the base iterator
// class because of a method signature resolution problem
// caused by the existence of the deprecated next (void)
// method in the derived forward iterator class. When that
// deprecated method is removed, this method should be removed
// from the derived classes and placed in the base class.
};
#if defined (__ACE_INLINE__)
#include "ace/RB_Tree.i"
#endif /* __ACE_INLINE__ */
#if defined (ACE_TEMPLATES_REQUIRE_SOURCE)
#include "ace/RB_Tree.cpp"
#endif /* ACE_TEMPLATES_REQUIRE_SOURCE */
#if defined (ACE_TEMPLATES_REQUIRE_PRAGMA)
#pragma implementation ("RB_Tree.cpp")
#endif /* ACE_TEMPLATES_REQUIRE_PRAGMA */
#endif /* ! defined (ACE_RB_TREE_H) */
|