1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
|
/* -*- C++ -*- */
// $Id$
// ============================================================================
//
// = LIBRARY
// ace
//
// = FILENAME
// Reactor.h
//
// = AUTHOR
// Irfan Pyarali
//
// ============================================================================
#if !defined (ACE_REACTOR_H)
#define ACE_REACTOR_H
class ACE_Reactor_Impl;
// Need the class def for ACE_Handle_Set to compile references to it in
// programs.
#include "ace/Handle_Set.h"
// Timer Queue is a complicated template class. A simple forward
// declaration will not work
#include "ace/Timer_Queue.h"
// Event_Handler.h contains the definition of ACE_Reactor_Mask
#include "ace/Event_Handler.h"
// We are using 4 or 5 signal classes, we could forward declare
// them.... But Timer_Queue_T.h includes Signal.h, so I don't think
// forward declaration will be useful here
#include "ace/Signal.h"
class ACE_Export ACE_Reactor
{
// = TITLE
// The resposiblility of this class is to forward all methods to
// its delegation/implementation class, e.g.,
// <ACE_Select_Reactor> or <ACE_WFMO_Reactor>.
public:
enum
{
// = Operations on the "ready" mask and the "dispatch" mask.
GET_MASK = 1,
// Retrieve current value of the the "ready" mask or the
// "dispatch" mask.
SET_MASK = 2,
// Set value of bits to new mask (changes the entire mask).
ADD_MASK = 3,
// Bitwise "or" the value into the mask (only changes enabled
// bits).
CLR_MASK = 4
// Bitwise "and" the negation of the value out of the mask (only
// changes enabled bits).
};
static ACE_Reactor *instance (void);
// Get pointer to a process-wide <ACE_Reactor>.
static ACE_Reactor *instance (ACE_Reactor *);
// Set pointer to a process-wide <ACE_Reactor> and return existing
// pointer.
static void close_singleton (void);
// Delete the dynamically allocated Singleton
// = Reactor event loop management methods.
static int run_event_loop (void);
static int run_alertable_event_loop (void);
// Run the event loop until the
// <ACE_Reactor::handle_events/ACE_Reactor::alertable_handle_events>
// method returns -1 or the <end_event_loop> method is invoked.
static int run_event_loop (ACE_Time_Value &tv);
static int run_alertable_event_loop (ACE_Time_Value &tv);
// Run the event loop until the <ACE_Reactor::handle_events> or
// <ACE_Reactor::alertable_handle_events> methods returns -1, the
// <end_event_loop> method is invoked, or the <ACE_Time_Value>
// expires.
static int end_event_loop (void);
// Instruct the <ACE_Reactor::instance> to terminate its event loop
// and notifies the <ACE_Reactor::instance> so that it can wake up
// and close down gracefully.
static int event_loop_done (void);
// Report if the <ACE_Reactor::instance>'s event loop is finished.
static void reset_event_loop (void);
// Resets the <ACE_Reactor::end_event_loop_> static so that the
// <run_event_loop> method can be restarted.
ACE_Reactor (ACE_Reactor_Impl *implementation = 0);
// Create the Reactor using <implementation>
virtual ~ACE_Reactor (void);
// Close down and release all resources.
virtual int open (size_t size,
int restart = 0,
ACE_Sig_Handler *signal_handler = 0,
ACE_Timer_Queue *timer_queue = 0);
// Initialization.
virtual int set_sig_handler (ACE_Sig_Handler *signal_handler);
// Use a user specified signal handler instead.
virtual int set_timer_queue (ACE_Timer_Queue *timer_queue);
// Use a user specified timer queue instead.
// Notice that I don't think you should mess with timer queue
// once the Reactor is up and running.
virtual int close (void);
// Close down and release all resources.
// = Event loop drivers.
virtual int handle_events (ACE_Time_Value *max_wait_time = 0);
virtual int alertable_handle_events (ACE_Time_Value *max_wait_time = 0);
// This event loop driver blocks for up to <max_wait_time> before
// returning. It will return earlier if events occur. Note that
// <max_wait_time> can be 0, in which case this method blocks
// indefinitely until events occur.
//
// <max_wait_time> is decremented to reflect how much time this call
// took. For instance, if a time value of 3 seconds is passed to
// handle_events and an event occurs after 2 seconds,
// <max_wait_time> will equal 1 second. This can be used if an
// application wishes to handle events for some fixed amount of
// time.
//
// Returns the total number of <ACE_Event_Handler>s that were
// dispatched, 0 if the <max_wait_time> elapsed without dispatching
// any handlers, or -1 if an error occurs.
//
// The only difference between <alertable_handle_events> and
// <handle_events> is that in the alertable case, the eventloop will
// return when the system queues an I/O completion routine or an
// Asynchronous Procedure Call.
virtual int handle_events (ACE_Time_Value &max_wait_time);
virtual int alertable_handle_events (ACE_Time_Value &max_wait_time);
// This method is just like the one above, except the
// <max_wait_time> value is a reference and can therefore never be
// NULL.
//
// The only difference between <alertable_handle_events> and
// <handle_events> is that in the alertable case, the eventloop will
// return when the system queues an I/O completion routine or an
// Asynchronous Procedure Call.
// = Register and remove Handlers.
virtual int register_handler (ACE_Event_Handler *event_handler,
ACE_Reactor_Mask mask);
// Register <event_handler> with <mask>. The I/O handle will always
// come from <get_handle> on the <event_handler>.
virtual int register_handler (ACE_HANDLE io_handle,
ACE_Event_Handler *event_handler,
ACE_Reactor_Mask mask);
// Register <event_handler> with <mask>. The I/O handle is provided
// through the <io_handle> parameter.
#if defined (ACE_WIN32)
virtual int register_handler (ACE_Event_Handler *event_handler,
ACE_HANDLE event_handle = ACE_INVALID_HANDLE);
// Register an <event_handler> that will be notified when
// <event_handle> is signaled. Since no event mask is passed
// through this interface, it is assumed that the <event_handle>
// being passed in is an event handle and not an I/O handle.
//
// Originally this interface was available for all platforms, but
// because ACE_HANDLE is an int on non-Win32 platforms, compilers
// are not able to tell the difference between
// register_handler(ACE_Event_Handler*,ACE_Reactor_Mask) and
// register_handler(ACE_Event_Handler*,ACE_HANDLE). Therefore, we
// have restricted this method to Win32 only.
#endif /* ACE_WIN32 */
virtual int register_handler (ACE_HANDLE event_handle,
ACE_HANDLE io_handle,
ACE_Event_Handler *event_handler,
ACE_Reactor_Mask mask);
// Register an <event_handler> that will be notified when
// <event_handle> is signaled. <mask> specifies the network events
// that the <event_handler> is interested in.
virtual int register_handler (const ACE_Handle_Set &handles,
ACE_Event_Handler *event_handler,
ACE_Reactor_Mask mask);
// Register <event_handler> with all the <handles> in the <Handle_Set>.
virtual int register_handler (int signum,
ACE_Event_Handler *new_sh,
ACE_Sig_Action *new_disp = 0,
ACE_Event_Handler **old_sh = 0,
ACE_Sig_Action *old_disp = 0);
// Register <new_sh> to handle the signal <signum> using the
// <new_disp>. Returns the <old_sh> that was previously registered
// (if any), along with the <old_disp> of the signal handler.
virtual int register_handler (const ACE_Sig_Set &sigset,
ACE_Event_Handler *new_sh,
ACE_Sig_Action *new_disp = 0);
// Registers <new_sh> to handle a set of signals <sigset> using the
// <new_disp>.
virtual int remove_handler (ACE_Event_Handler *event_handler,
ACE_Reactor_Mask mask);
// Removes <event_handler>. Note that the I/O handle will be
// obtained using <get_handle> method of <event_handler> . If
// <mask> == <ACE_Event_Handler::DONT_CALL> then the <handle_close>
// method of the <event_handler> is not invoked.
virtual int remove_handler (ACE_HANDLE handle,
ACE_Reactor_Mask mask);
// Removes <handle>. If <mask> == <ACE_Event_Handler::DONT_CALL>
// then the <handle_close> method of the associated <event_handler>
// is not invoked.
virtual int remove_handler (const ACE_Handle_Set &handle_set,
ACE_Reactor_Mask mask);
// Removes all handles in <handle_set>. If <mask> ==
// <ACE_Event_Handler::DONT_CALL> then the <handle_close> method of
// the associated <event_handler>s is not invoked.
virtual int remove_handler (int signum,
ACE_Sig_Action *new_disp,
ACE_Sig_Action *old_disp = 0,
int sigkey = -1);
// Remove the ACE_Event_Handler currently associated with <signum>.
// Install the new disposition (if given) and return the previous
// disposition (if desired by the caller). Returns 0 on success and
// -1 if <signum> is invalid.
virtual int remove_handler (const ACE_Sig_Set &sigset);
// Calls <remove_handler> for every signal in <sigset>.
// = Suspend and resume Handlers.
virtual int suspend_handler (ACE_Event_Handler *event_handler);
// Suspend <event_handler> temporarily. Use
// <event_handler->get_handle()> to get the handle.
virtual int suspend_handler (ACE_HANDLE handle);
// Suspend <handle> temporarily.
virtual int suspend_handler (const ACE_Handle_Set &handles);
// Suspend all <handles> in handle set temporarily.
virtual int suspend_handlers (void);
// Suspend all <handles> temporarily.
virtual int resume_handler (ACE_Event_Handler *event_handler);
// Resume <event_handler>. Use <event_handler->get_handle()> to get
// the handle.
virtual int resume_handler (ACE_HANDLE handle);
// Resume <handle>.
virtual int resume_handler (const ACE_Handle_Set &handles);
// Resume all <handles> in handle set.
virtual int resume_handlers (void);
// Resume all <handles>.
// Timer management.
virtual long schedule_timer (ACE_Event_Handler *event_handler,
const void *arg,
const ACE_Time_Value &delta,
const ACE_Time_Value &interval = ACE_Time_Value::zero);
// Schedule an <event_handler> that will expire after <delay> amount
// of time. If it expires then <arg> is passed in as the value to
// the <event_handler>'s <handle_timeout> callback method. If
// <interval> is != to <ACE_Time_Value::zero> then it is used to
// reschedule the <event_handler> automatically. This method
// returns a <timer_id> that uniquely identifies the <event_handler>
// in an internal list. This <timer_id> can be used to cancel an
// <event_handler> before it expires. The cancellation ensures that
// <timer_ids> are unique up to values of greater than 2 billion
// timers. As long as timers don't stay around longer than this
// there should be no problems with accidentally deleting the wrong
// timer. Returns -1 on failure (which is guaranteed never to be a
// valid <timer_id>.
virtual int cancel_timer (ACE_Event_Handler *event_handler,
int dont_call_handle_close = 1);
// Cancel all Event_Handlers that match the address of
// <event_handler>. Returns number of handlers cancelled.
virtual int cancel_timer (long timer_id,
const void **arg = 0,
int dont_call_handle_close = 1);
// Cancel the single Event_Handler that matches the <timer_id> value
// (which was returned from the schedule method). If arg is
// non-NULL then it will be set to point to the ``magic cookie''
// argument passed in when the Event_Handler was registered. This
// makes it possible to free up the memory and avoid memory leaks.
// Returns 1 if cancellation succeeded and 0 if the <timer_id>
// wasn't found.
// = High-level Event_Handler scheduling operations
virtual int schedule_wakeup (ACE_Event_Handler *event_handler,
ACE_Reactor_Mask masks_to_be_added);
// Add <masks_to_be_added> to the <event_handler>'s entry.
// <event_handler> must already have been registered.
virtual int schedule_wakeup (ACE_HANDLE handle,
ACE_Reactor_Mask masks_to_be_added);
// Add <masks_to_be_added> to the <handle>'s entry. <event_handler>
// associated with <handle> must already have been registered.
virtual int cancel_wakeup (ACE_Event_Handler *event_handler,
ACE_Reactor_Mask masks_to_be_cleared);
// Clear <masks_to_be_cleared> from the <event_handler>'s entry.
virtual int cancel_wakeup (ACE_HANDLE handle,
ACE_Reactor_Mask masks_to_be_cleared);
// Clear <masks_to_be_cleared> from the <handle>'s entry.
// = Notification methods.
virtual int notify (ACE_Event_Handler *event_handler = 0,
ACE_Reactor_Mask mask = ACE_Event_Handler::EXCEPT_MASK,
ACE_Time_Value *tv = 0);
// Notify <event_handler> of <mask> event. The <ACE_Time_Value>
// indicates how long to blocking trying to notify. If <timeout> ==
// 0, the caller will block until action is possible, else will wait
// until the relative time specified in <timeout> elapses).
virtual void max_notify_iterations (int iterations);
// Set the maximum number of times that ACE_Reactor will
// iterate and dispatch the <ACE_Event_Handlers> that are passed in
// via the notify queue before breaking out of its
// <ACE_Message_Queue::dequeue> loop. By default, this is set to
// -1, which means "iterate until the queue is empty." Setting this
// to a value like "1 or 2" will increase "fairness" (and thus
// prevent starvation) at the expense of slightly higher dispatching
// overhead.
virtual int max_notify_iterations (void);
// Get the maximum number of times that the ACE_Reactor will
// iterate and dispatch the <ACE_Event_Handlers> that are passed in
// via the notify queue before breaking out of its
// <ACE_Message_Queue::dequeue> loop.
virtual int handler (ACE_HANDLE handle,
ACE_Reactor_Mask mask,
ACE_Event_Handler **event_handler = 0);
// Check to see if <handle> is associated with a valid Event_Handler
// bound to <mask>. Return the <event_handler> associated with this
// <handler> if <event_handler> != 0.
virtual int handler (int signum,
ACE_Event_Handler **event_handler = 0);
// Check to see if <signum> is associated with a valid Event_Handler
// bound to a signal. Return the <event_handler> associated with
// this <handler> if <event_handler> != 0.
virtual int initialized (void);
// Returns true if Reactor has been successfully initialized, else
// false.
virtual size_t size (void);
// Returns the current size of the Reactor's internal descriptor
// table.
virtual ACE_Lock &lock (void);
// Returns a reference to the Reactor's internal lock.
virtual void wakeup_all_threads (void);
// Wake up all threads in waiting in the event loop
virtual int owner (ACE_thread_t new_owner,
ACE_thread_t *old_owner = 0);
// Transfers ownership of Reactor to the <new_owner>.
virtual int owner (ACE_thread_t *owner);
// Return the ID of the "owner" thread.
virtual void requeue_position (int position);
// Set position of the owner thread.
virtual int requeue_position (void);
// Get position of the owner thread.
// = Low-level wait_set mask manipulation methods.
virtual int mask_ops (ACE_Event_Handler *event_handler,
ACE_Reactor_Mask mask,
int ops);
// GET/SET/ADD/CLR the dispatch mask "bit" bound with the
// <event_handler> and <mask>.
virtual int mask_ops (ACE_HANDLE handle,
ACE_Reactor_Mask mask,
int ops);
// GET/SET/ADD/CLR the dispatch MASK "bit" bound with the <handle>
// and <mask>.
// = Low-level ready_set mask manipulation methods.
virtual int ready_ops (ACE_Event_Handler *event_handler,
ACE_Reactor_Mask mask,
int ops);
// GET/SET/ADD/CLR the ready "bit" bound with the <event_handler>
// and <mask>.
virtual int ready_ops (ACE_HANDLE handle,
ACE_Reactor_Mask mask,
int ops);
// GET/SET/ADD/CLR the ready "bit" bound with the <handle> and <mask>.
virtual ACE_Reactor_Impl *implementation (void);
// Get the implementation class
virtual int uses_event_associations (void);
// Return 1 if we any event associations were made by the reactor
// for the handles that it waits on, 0 otherwise.
ACE_ALLOC_HOOK_DECLARE;
// Declare the dynamic allocation hooks.
void dump (void) const;
// Dump the state of an object.
protected:
virtual void implementation (ACE_Reactor_Impl *implementation);
// Set the implementation class.
ACE_Reactor_Impl *implementation_;
// Delegation/implementation class that all methods will be
// forwarded to.
int delete_implementation_;
// Flag used to indicate whether we are responsible for cleaning up
// the implementation instance
static ACE_Reactor *reactor_;
// Pointer to a process-wide <ACE_Reactor> singleton.
static int instantiated_;
// Flag indicating whether the singleton reactor has been instantiated or not.
static int delete_reactor_;
// Must delete the <reactor_> singleton if non-0.
static sig_atomic_t end_event_loop_;
// Terminate the event loop of the singleton Reactor.
ACE_Reactor (const ACE_Reactor &);
ACE_Reactor &operator = (const ACE_Reactor &);
// Deny access since member-wise won't work...
};
#if defined (__ACE_INLINE__)
#include "ace/Reactor.i"
#endif /* __ACE_INLINE__ */
#endif /* ACE_REACTOR_H */
|