1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
|
// $Id$
#define ACE_BUILD_DLL
#include "ace/Stats.h"
#if !defined (__ACE_INLINE__)
# include "ace/Stats.i"
#endif /* __ACE_INLINE__ */
ACE_RCSID(ace, Stats, "$Id$")
#if !defined ACE_LACKS_LONGLONG_T
static const ACE_UINT64 ACE_STATS_INTERNAL_OFFSET =
ACE_UINT64_LITERAL (0x100000000);
// If ACE_LACKS_LONGLONG_T, then ACE_UINT64 is a user-defined class.
// To prevent having to construct a static of that class, declare it
// on the stack, and construct it in, each function that needs it.
#endif /* ! ACE_LACKS_LONGLONG_T */
ACE_UINT32
ACE_Stats_Value::fractional_field (void) const
{
ACE_UINT32 field = 10;
for (u_int i = 0; i < precision () - 1; ++i)
field *= 10;
return field;
}
int
ACE_Stats::sample (const ACE_INT32 value)
{
++samples_;
if (samples_ == 0)
overflow_ = 1;
else
{
ACE_UINT64 old_sum = sum_;
ACE_UINT64 old_sum_of_squares = sum_of_squares_;
sum_ += value;
sum_of_squares_ += value * value;
// Overflow checks.
if ((value >= 0 ? sum_ < old_sum : sum_ > old_sum) ||
sum_of_squares_ < old_sum_of_squares)
overflow_ = 1;
if (value < min_)
min_ = value;
if (value > max_)
max_ = value;
}
return overflow_ == 0 ? 0 : -1;
}
void
ACE_Stats::mean (ACE_Stats_Value &mean,
const ACE_UINT32 scale_factor) const
{
if (samples_ > 0)
{
#if defined ACE_LACKS_LONGLONG_T
const ACE_U_LongLong ACE_STATS_INTERNAL_OFFSET (0, 8);
#endif /* ACE_LACKS_LONGLONG_T */
quotient (sum_ - ACE_STATS_INTERNAL_OFFSET,
samples_ * scale_factor,
mean);
}
}
void
ACE_Stats::std_dev (ACE_Stats_Value &std_dev,
const ACE_UINT32 scale_factor) const
{
if (samples_ <= 1)
{
std_dev.whole (0);
std_dev.fractional (0);
}
else
{
#if defined ACE_LACKS_LONGLONG_T
const ACE_U_LongLong ACE_STATS_INTERNAL_OFFSET (0, 8);
#endif /* ACE_LACKS_LONGLONG_T */
// The sample standard deviation is:
//
// sqrt ((sum_of_squares_ - sums^2/samples_) / (samples_-1))
// Calculate the square of sums divided by the number of samples,
// carefully putting it into a 64-bit integer.
const ACE_UINT64 sums_squared_over_samples =
(sum_ - ACE_STATS_INTERNAL_OFFSET) *
((sum_ - ACE_STATS_INTERNAL_OFFSET) / samples_);
// Divide the difference by (samples_ - 1), to get the variance.
// Don't scale the result, yet.
ACE_Stats_Value variance (std_dev.precision ());
quotient (sum_of_squares_ - sums_squared_over_samples,
samples_ - 1,
variance);
const ACE_UINT32 field = std_dev.fractional_field ();
// Take the square root of the variance to get the standard
// deviation.
ACE_UINT64 scaled_variance;
variance.scaled_value (scaled_variance);
// Scale up, once more, because we'll be taking the square root.
scaled_variance *= field;
ACE_Stats_Value unscaled_standard_deviation (std_dev.precision ());
square_root (scaled_variance,
unscaled_standard_deviation);
// Unscale.
quotient (unscaled_standard_deviation,
scale_factor * field,
std_dev);
}
}
void
ACE_Stats::reset (void)
{
#if defined ACE_LACKS_LONGLONG_T
const ACE_U_LongLong ACE_STATS_INTERNAL_OFFSET (0, 8);
#endif /* ACE_LACKS_LONGLONG_T */
overflow_ = 0u;
samples_ = 0u;
min_ = 0x7FFFFFFF;
max_ = -0x8000 * 0x10000;
sum_ = ACE_STATS_INTERNAL_OFFSET;
sum_of_squares_ = 0u;
}
int
ACE_Stats::print_summary (const u_int precision,
const ACE_UINT32 scale_factor,
FILE *file) const
{
if (overflow_)
ACE_OS::fprintf (file,
ASYS_TEXT ("ACE_Stats::print_summary: ")
ASYS_TEXT ("there was overflow!\n"));
// Build a format string, in case the C library doesn't support %*u.
ASYS_TCHAR format[32];
ACE_OS::sprintf (format, ASYS_TEXT ("%%d.%%0%du"), precision);
ACE_Stats_Value u (precision);
mean (u, scale_factor);
ASYS_TCHAR mean_string [128];
ACE_OS::sprintf (mean_string, format, u.whole (), u.fractional ());
ACE_Stats_Value sd (precision);
std_dev (sd, scale_factor);
ASYS_TCHAR std_dev_string [128];
ACE_OS::sprintf (std_dev_string, format, sd.whole (), sd.fractional ());
ACE_Stats_Value minimum (precision), maximum (precision);
if (min_ != 0)
{
const ACE_UINT64 m (min_);
quotient (m, scale_factor, minimum);
}
if (max_ != 0)
{
const ACE_UINT64 m (max_);
quotient (m, scale_factor, maximum);
}
ASYS_TCHAR min_string [128];
ASYS_TCHAR max_string [128];
ACE_OS::sprintf (min_string, format,
minimum.whole (), minimum.fractional ());
ACE_OS::sprintf (max_string, format,
maximum.whole (), maximum.fractional ());
ACE_OS::fprintf (file, ASYS_TEXT ("samples: %u (%s - %s); mean: ")
ASYS_TEXT ("%s; std dev: %s\n"),
samples (), min_string, max_string,
mean_string, std_dev_string);
return overflow_ ? -1 : 0;
}
void
ACE_Stats::dump (void) const
{
print_summary (3u);
}
void
ACE_Stats::quotient (const ACE_UINT64 dividend,
const ACE_UINT32 divisor,
ACE_Stats_Value "ient)
{
// The whole part of the division comes from simple integer division.
quotient.whole (ACE_static_cast (ACE_UINT32,
divisor == 0 ? 0 : dividend / divisor));
if (quotient.precision () > 0 || divisor == 0)
{
const ACE_UINT32 field = quotient.fractional_field ();
// Fractional = (dividend % divisor) * 10^precision / divisor.
quotient.fractional (ACE_static_cast (ACE_UINT32,
dividend % divisor * field / divisor));
}
else
// No fractional portion is requested, so don't bother
// calculating it.
quotient.fractional (0);
}
void
ACE_Stats::quotient (const ACE_Stats_Value ÷nd,
const ACE_UINT32 divisor,
ACE_Stats_Value "ient)
{
// The whole part of the division comes from simple integer division.
quotient.whole (divisor == 0 ? 0 : dividend.whole () / divisor);
if (quotient.precision () > 0 || divisor == 0)
{
const ACE_UINT32 field = quotient.fractional_field ();
// Fractional = (dividend % divisor) * 10^precision / divisor.
quotient.fractional (dividend.whole () % divisor * field / divisor +
dividend.fractional () / divisor);
}
else
// No fractional portion is requested, so don't bother
// calculating it.
quotient.fractional (0);
}
void
ACE_Stats::square_root (const ACE_UINT64 n,
ACE_Stats_Value &square_root)
{
ACE_UINT32 floor = 0;
ACE_UINT32 ceiling = 0xFFFFFFFFu;
ACE_UINT32 mid = 0;
u_int i;
// The maximum number of iterations is log_2 (2^64) == 64.
for (i = 0; i < 64; ++i)
{
mid = (ceiling - floor) / 2 + floor;
if (floor == mid)
// Can't divide the interval any further.
break;
else
{
// Multiply carefully to avoid overflow.
ACE_UINT64 mid_squared = mid; mid_squared *= mid;
if (mid_squared == n)
break;
else if (mid_squared < n)
floor = mid;
else
ceiling = mid;
}
}
square_root.whole (mid);
ACE_UINT64 mid_squared = mid; mid_squared *= mid;
if (square_root.precision () && mid_squared < n)
{
// (mid * 10^precision + fractional)^2 ==
// n^2 * 10^(precision * 2)
const ACE_UINT32 field = square_root.fractional_field ();
floor = 0;
ceiling = field;
mid = 0;
// Do the 64-bit arithmetic carefully to avoid overflow.
ACE_UINT64 target = n;
target *= field;
target *= field;
ACE_UINT64 difference = 0;
for (i = 0; i < square_root.precision (); ++i)
{
mid = (ceiling - floor) / 2 + floor;
ACE_UINT64 current = square_root.whole () * field + mid;
current *= square_root.whole () * field + mid;
if (floor == mid)
{
difference = target - current;
break;
}
else if (current <= target)
floor = mid;
else
ceiling = mid;
}
// Check to see if the fractional part should be one greater.
ACE_UINT64 next = square_root.whole () * field + mid + 1;
next *= square_root.whole () * field + mid + 1;
square_root.fractional (next - target < difference ? mid + 1 : mid);
}
else
{
// No fractional portion is requested, so don't bother
// calculating it.
square_root.fractional (0);
}
}
|