1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
|
/* -*- C++ -*- */
// $Id$
// ============================================================================
//
// = LIBRARY
// ace
//
// = FILENAME
// Synch_T.h
//
// = AUTHOR
// Douglas C. Schmidt <schmidt@uci.edu>
//
// ============================================================================
#ifndef ACE_SYNCH_T_H
#define ACE_SYNCH_T_H
#include "ace/pre.h"
#include "ace/Event_Handler.h"
#if !defined (ACE_LACKS_PRAGMA_ONCE)
# pragma once
#endif /* ACE_LACKS_PRAGMA_ONCE */
#include "ace/Synch.h"
// Forward decl
class ACE_Time_Value;
template <class ACE_LOCKING_MECHANISM>
class ACE_Lock_Adapter : public ACE_Lock
{
// = TITLE
// This is an adapter that allows applications to transparently
// combine the <ACE_Lock> abstract base class (which contains
// pure virtual methods) with any of the other concrete ACE
// synchronization classes (e.g., <ACE_Mutex>, <ACE_Semaphore>,
// <ACE_RW_Mutex>, etc.).
//
// = DESCRIPTION
// This class uses a form of the Adapter pattern.
public:
typedef ACE_LOCKING_MECHANISM ACE_LOCK;
// = Initialization/Finalization methods.
ACE_Lock_Adapter (ACE_LOCKING_MECHANISM &lock);
// Constructor. All locking requests will be forwarded to <lock>.
ACE_Lock_Adapter (void);
// Constructor. Since no lock is provided by the user, one will be
// created internally.
virtual ~ACE_Lock_Adapter (void);
// Destructor. If <lock_> was not passed in by the user, it will be
// deleted.
// = Lock accessors.
virtual int acquire (void);
// Block the thread until the lock is acquired.
virtual int tryacquire (void);
// Conditionally acquire the lock (i.e., won't block).
virtual int release (void);
// Release the lock.
virtual int acquire_read (void);
// Block until the thread acquires a read lock. If the locking
// mechanism doesn't support read locks then this just calls
// <acquire>.
virtual int acquire_write (void);
// Block until the thread acquires a write lock. If the locking
// mechanism doesn't support read locks then this just calls
// <acquire>.
virtual int tryacquire_read (void);
// Conditionally acquire a read lock. If the locking mechanism
// doesn't support read locks then this just calls <acquire>.
virtual int tryacquire_write (void);
// Conditionally acquire a write lock. If the locking mechanism
// doesn't support read locks then this just calls <acquire>.
virtual int remove (void);
// Explicitly destroy the lock.
private:
ACE_LOCKING_MECHANISM *lock_;
// The concrete locking mechanism that all the methods delegate to.
int delete_lock_;
// This flag keep track of whether we are responsible for deleting
// the lock
};
template <class ACE_LOCKING_MECHANISM>
class ACE_Reverse_Lock : public ACE_Lock
{
// = TITLE
// A reverse (or anti) lock.
//
// = DESCRIPTION
// This is an interesting adapter class that changes a lock into
// a reverse lock, i.e., <acquire> on this class calls <release>
// on the lock, and <release> on this class calls <acquire> on
// the lock.
//
// One motivation for this class is when we temporarily want to
// release a lock (which we have already acquired) but then
// reaquire it soon after. An alternative design would be to
// add a Anti_Guard or Reverse_Guard class which would <release>
// on construction and <acquire> destruction. However, there
// are *many* varieties of the Guard class and this design
// choice would lead to at least 6 new classes. One new
// ACE_Reverse_Lock class seemed more reasonable.
public:
typedef ACE_LOCKING_MECHANISM ACE_LOCK;
// = Initialization/Finalization methods.
ACE_Reverse_Lock (ACE_LOCKING_MECHANISM &lock);
// Constructor. All locking requests will be forwarded to <lock>.
virtual ~ACE_Reverse_Lock (void);
// Destructor. If <lock_> was not passed in by the user, it will be
// deleted.
// = Lock accessors.
virtual int acquire (void);
// Release the lock.
virtual int tryacquire (void);
// Release the lock.
virtual int release (void);
// Acquire the lock.
virtual int acquire_read (void);
// Release the lock.
virtual int acquire_write (void);
// Release the lock.
virtual int tryacquire_read (void);
// Release the lock.
virtual int tryacquire_write (void);
// Release the lock.
virtual int remove (void);
// Explicitly destroy the lock.
private:
ACE_LOCKING_MECHANISM &lock_;
// The concrete locking mechanism that all the methods delegate to.
};
template <class ACE_LOCK, class TYPE>
class ACE_Test_and_Set : public ACE_Event_Handler
{
public:
// = TITLE
// Implements the classic ``test and set'' operation.
//
// = DESCRIPTION
// This class keeps track of the status of <is_set_>, which can
// be set based on various events (such as receipt of a
// signal). This class is derived from <ACE_Event_Handler> so
// that it can be "signaled" by a Reactor when a signal occurs.
// We assume that <TYPE> is a data type that can be assigned the
// value 0 or 1.
ACE_Test_and_Set (TYPE initial_value = 0);
TYPE is_set (void) const;
// Returns true if we are set, else false.
TYPE set (TYPE);
// Sets the <is_set_> status, returning the original value of
// <is_set_>.
virtual int handle_signal (int signum,
siginfo_t * = 0,
ucontext_t * = 0);
// Called when object is signaled by OS (either via UNIX signals or
// when a Win32 object becomes signaled).
private:
TYPE is_set_;
// Keeps track of our state.
ACE_LOCK lock_;
// Protect the state from race conditions.
};
template <class ACE_LOCK, class TYPE>
class ACE_Atomic_Op
{
// = TITLE
// Transparently parameterizes synchronization into basic
// arithmetic operations.
//
// = DESCRIPTION
// This class is described in an article in the July/August 1994
// issue of the C++ Report magazine. It implements a
// templatized version of the Decorator pattern from the GoF book.
public:
// = Initialization methods.
ACE_Atomic_Op (void);
// Initialize <value_> to 0.
ACE_Atomic_Op (const TYPE &c);
// Initialize <value_> to c.
// = Accessors.
TYPE operator++ (void);
// Atomically pre-increment <value_>.
TYPE operator++ (int);
// Atomically post-increment <value_>.
TYPE operator+= (const TYPE &i);
// Atomically increment <value_> by i.
TYPE operator-- (void);
// Atomically pre-decrement <value_>.
TYPE operator-- (int);
// Atomically post-decrement <value_>.
TYPE operator-= (const TYPE &i);
// Atomically decrement <value_> by i.
int operator== (const TYPE &i) const;
// Atomically compare <value_> with i.
int operator!= (const TYPE &i) const;
// Atomically compare <value_> with i.
int operator>= (const TYPE &i) const;
// Atomically check if <value_> greater than or equal to i.
int operator> (const TYPE &rhs) const;
// Atomically check if <value_> greater than i.
int operator<= (const TYPE &rhs) const;
// Atomically check if <value_> less than or equal to i.
int operator< (const TYPE &rhs) const;
// Atomically check if <value_> less than i.
void operator= (const TYPE &i);
// Atomically assign i to <value_>.
void operator= (const ACE_Atomic_Op<ACE_LOCK, TYPE> &rhs);
// Atomically assign <rhs> to <value_>.
TYPE value (void) const;
// Explicitly return <value_>.
void dump (void) const;
// Dump the state of an object.
// ACE_ALLOC_HOOK_DECLARE;
// Declare the dynamic allocation hooks.
ACE_Atomic_Op (const ACE_Atomic_Op<ACE_LOCK, TYPE> &);
// Manage copying...
ACE_LOCK &mutex (void);
// Returns a reference to the underlying <ACE_LOCK>. This makes it
// possible to acquire the lock explicitly, which can be useful in
// some cases if you instantiate the <ACE_Atomic_Op> with an
// <ACE_Recursive_Mutex> or <ACE_Process_Mutex>. NOTE: the right
// name would be lock_, but HP/C++ will choke on that!
TYPE &value_i (void);
// Explicitly return <value_> (by reference). This gives the user
// full, unrestricted access to the underlying value. This method
// will usually be used in conjunction with explicit access to the
// lock. Use with care ;-)
private:
ACE_LOCK mutex_;
// Type of synchronization mechanism.
TYPE value_;
// Current object decorated by the atomic op.
};
template <class TYPE>
class ACE_TSS
{
// = TITLE
// Allows objects that are "physically" in thread specific
// storage (i.e., private to a thread) to be accessed as though
// they were "logically" global to a program.
//
// = DESCRIPTION
// This class is a wrapper around the OS thread library
// thread-specific functions. It uses the <C++ operator->> to
// shield applications from the details of accessing
// thread-specific storage.
//
// NOTE: TYPE cannot be a built-in type, but instead must be a
// user-defined class. (Some compilers will allow a built-in
// type, but shouldn't. Sun C++ won't, properly detecting the
// improper return type from <operator->>.) See template class
// ACE_TSS_Type_Adapter, below, for adapting built-in types to
// work with ACE_TSS.
public:
// = Initialization and termination methods.
ACE_TSS (TYPE *ts_obj = 0);
// If caller has passed us a non-NULL ts_obj *, then we'll just use
// this to initialize the thread-specific value (but only for the
// calling thread). Thus, subsequent calls to <operator->> in this
// thread will return this value. This is useful since it enables
// us to assign objects to thread-specific data that have
// arbitrarily complex constructors.
virtual ~ACE_TSS (void);
// Deregister with thread-key administration.
// = Accessors.
TYPE *ts_object (void) const;
// Get the thread-specific object for the key associated with this
// object. Returns 0 if the data has never been initialized,
// otherwise returns a pointer to the data.
TYPE *ts_object (TYPE *);
// Set the thread-specific object for the key associated with this
// object.
TYPE *operator-> () const;
// Use a "smart pointer" to get the thread-specific object
// associated with the <key_>.
operator TYPE *(void) const;
// Return or create and return the calling threads TYPE object.
virtual TYPE *make_TSS_TYPE (void) const;
// Hook for construction parameters.
// = Utility methods.
void dump (void) const;
// Dump the state of an object.
// ACE_ALLOC_HOOK_DECLARE;
// Declare the dynamic allocation hooks.
protected:
TYPE *ts_get (void) const;
// Actually implements the code that retrieves the object from
// thread-specific storage.
int ts_init (void) const;
// Factors out common code for initializing TSS. This must NOT be
// called with the lock held...
#if !(defined (ACE_HAS_THREADS) && (defined (ACE_HAS_THREAD_SPECIFIC_STORAGE) || defined (ACE_HAS_TSS_EMULATION)))
TYPE *type_;
// This implementation only works for non-threading systems...
#else
ACE_Thread_Mutex keylock_;
// Avoid race conditions during initialization.
int once_;
// "First time in" flag.
ACE_thread_key_t key_;
// Key for the thread-specific error data.
static void cleanup (void *ptr);
// "Destructor" that deletes internal TYPE * when thread exits.
#endif /* defined (ACE_HAS_THREADS) && (defined (ACE_HAS_THREAD_SPECIFIC_STORAGE) || defined (ACE_HAS_TSS_EMULATION)) */
// = Disallow copying...
ACE_UNIMPLEMENTED_FUNC (void operator= (const ACE_TSS<TYPE> &))
ACE_UNIMPLEMENTED_FUNC (ACE_TSS (const ACE_TSS<TYPE> &))
};
template <class TYPE>
class ACE_TSS_Type_Adapter
{
// = TITLE
// Adapter that allows built-in types to be used with ACE_TSS.
//
// = DESCRIPTION
// Wraps a value of a built-in type, providing conversions to
// and from the type. Example use with ACE_TSS:
//
// ACE_TSS<ACE_TSS_Type_Adapter<int> > i;
// *i = 37;
// ACE_OS::fprintf (stderr, "%d\n", *i);
//
// Unfortunately, though, some compilers have trouble with the
// implicit type conversions. This seems to work better:
//
// ACE_TSS<ACE_TSS_Type_Adapter<int> > i;
// i->operator int & () = 37;
// ACE_OS::fprintf (stderr, "%d\n", i->operator int ());
public:
ACE_TSS_Type_Adapter (const TYPE value = 0): value_ (value) {}
// Constructor. Inlined here so that it should _always_ be inlined.
operator TYPE () const { return value_; };
// TYPE conversion. Inlined here so that it should _always_ be
// inlined.
operator TYPE &() { return value_; };
// TYPE & conversion. Inlined here so that it should _always_ be
// inlined.
private:
TYPE value_;
// The wrapped value.
};
template <class ACE_LOCK>
class ACE_Guard
{
// = TITLE
// This data structure is meant to be used within a method or
// function... It performs automatic aquisition and release of
// a parameterized synchronization object <ACE_LOCK>.
//
// = DESCRIPTION
// The <ACE_LOCK> class given as an actual parameter must provide at
// the very least the <acquire>, <tryacquire>, <release>, and
// <remove> methods.
public:
// = Initialization and termination methods.
ACE_Guard (ACE_LOCK &l);
ACE_Guard (ACE_LOCK &l, int block);
// Implicitly and automatically acquire (or try to acquire) the
// lock.
~ACE_Guard (void);
// Implicitly release the lock.
// = Lock accessors.
int acquire (void);
// Explicitly acquire the lock.
int tryacquire (void);
// Conditionally acquire the lock (i.e., won't block).
int release (void);
// Explicitly release the lock, but only if it is held!
// = Utility methods.
int locked (void);
// 1 if locked, 0 if couldn't acquire the lock
// (errno will contain the reason for this).
int remove (void);
// Explicitly remove the lock.
void dump (void) const;
// Dump the state of an object.
// ACE_ALLOC_HOOK_DECLARE;
// Declare the dynamic allocation hooks.
protected:
ACE_Guard (ACE_LOCK *lock): lock_ (lock) {}
// Helper, meant for subclass only.
ACE_LOCK *lock_;
// Pointer to the ACE_LOCK we're guarding.
int owner_;
// Keeps track of whether we acquired the lock or failed.
private:
// = Prevent assignment and initialization.
ACE_UNIMPLEMENTED_FUNC (void operator= (const ACE_Guard<ACE_LOCK> &))
ACE_UNIMPLEMENTED_FUNC (ACE_Guard (const ACE_Guard<ACE_LOCK> &))
};
template <class ACE_LOCK>
class ACE_Write_Guard : public ACE_Guard<ACE_LOCK>
{
// = TITLE
// This class is similar to class <ACE_Guard>, though it
// acquires/releases a write lock automatically (naturally, the
// <ACE_LOCK> it is instantiated with must support the appropriate
// API).
public:
// = Initialization method.
ACE_Write_Guard (ACE_LOCK &m);
// Implicitly and automatically acquire a write lock.
ACE_Write_Guard (ACE_LOCK &m, int block);
// Implicitly and automatically acquire (or try to acquire) a write
// lock.
// = Lock accessors.
int acquire_write (void);
// Explicitly acquire the write lock.
int acquire (void);
// Explicitly acquire the write lock.
int tryacquire_write (void);
// Conditionally acquire the write lock (i.e., won't block).
int tryacquire (void);
// Conditionally acquire the write lock (i.e., won't block).
// = Utility methods.
void dump (void) const;
// Dump the state of an object.
// ACE_ALLOC_HOOK_DECLARE;
// Declare the dynamic allocation hooks.
};
template <class ACE_LOCK>
class ACE_Read_Guard : public ACE_Guard<ACE_LOCK>
{
// = TITLE
// This class is similar to class <ACE_Guard>, though it
// acquires/releases a read lock automatically (naturally, the
// <ACE_LOCK> it is instantiated with must support the appropriate
// API).
public:
// = Initialization methods.
ACE_Read_Guard (ACE_LOCK& m);
// Implicitly and automatically acquire a read lock.
ACE_Read_Guard (ACE_LOCK &m, int block);
// Implicitly and automatically acquire (or try to acquire) a read
// lock.
// = Lock accessors.
int acquire_read (void);
// Explicitly acquire the read lock.
int acquire (void);
// Explicitly acquire the read lock.
int tryacquire_read (void);
// Conditionally acquire the read lock (i.e., won't block).
int tryacquire (void);
// Conditionally acquire the read lock (i.e., won't block).
// = Utility methods.
void dump (void) const;
// Dump the state of an object.
// ACE_ALLOC_HOOK_DECLARE;
// Declare the dynamic allocation hooks.
};
#if !(defined (ACE_HAS_THREADS) && (defined (ACE_HAS_THREAD_SPECIFIC_STORAGE) || defined (ACE_HAS_TSS_EMULATION)))
#define ACE_TSS_Guard ACE_Guard
#define ACE_TSS_Write_GUARD ACE_Write_Guard
#define ACE_TSS_Read_GUARD ACE_Read_Guard
#else
/* ACE platform supports some form of threading and
thread-specific storage. */
template <class ACE_LOCK>
class ACE_TSS_Guard
{
// = TITLE
// This data structure is meant to be used within a method or
// function... It performs automatic aquisition and release of
// a synchronization object. Moreover, it ensures that the lock
// is released even if a thread exits via <thr_exit>!
public:
// = Initialization and termination methods.
ACE_TSS_Guard (ACE_LOCK &lock, int block = 1);
// Implicitly and automatically acquire the thread-specific lock.
~ACE_TSS_Guard (void);
// Implicitly release the thread-specific lock.
// = Lock accessors.
int acquire (void);
// Explicitly acquire the thread-specific lock.
int tryacquire (void);
// Conditionally acquire the thread-specific lock (i.e., won't
// block).
int release (void);
// Explicitly release the thread-specific lock.
// = Utility methods.
int remove (void);
// Explicitly release the thread-specific lock.
void dump (void) const;
// Dump the state of an object.
// ACE_ALLOC_HOOK_DECLARE;
// Declare the dynamic allocation hooks.
protected:
ACE_TSS_Guard (void);
// Helper, meant for subclass only.
void init_key (void);
// Initialize the key.
static void cleanup (void *ptr);
// Called when thread exits to clean up the lock.
ACE_thread_key_t key_;
// Thread-specific key...
private:
// = Prevent assignment and initialization.
ACE_UNIMPLEMENTED_FUNC (void operator= (const ACE_TSS_Guard<ACE_LOCK> &))
ACE_UNIMPLEMENTED_FUNC (ACE_TSS_Guard (const ACE_TSS_Guard<ACE_LOCK> &))
};
template <class ACE_LOCK>
class ACE_TSS_Write_Guard : public ACE_TSS_Guard<ACE_LOCK>
{
// = TITLE
// This class is similar to class ACE_TSS_Guard, though it
// acquires/releases a write-lock automatically (naturally, the
// ACE_LOCK it is instantiated with must support the appropriate
// API).
public:
// = Initialization method.
ACE_TSS_Write_Guard (ACE_LOCK &lock, int block = 1);
// Implicitly and automatically acquire the thread-specific write lock.
// = Lock accessors.
int acquire_write (void);
// Explicitly acquire the thread-specific write lock.
int acquire (void);
// Explicitly acquire the thread-specific write lock.
int tryacquire_write (void);
// Conditionally acquire the thread-specific write lock (i.e., won't block).
int tryacquire (void);
// Conditionally acquire the thread-specific write lock (i.e., won't block).
// = Utility methods.
void dump (void) const;
// Dump the state of an object.
// ACE_ALLOC_HOOK_DECLARE;
// Declare the dynamic allocation hooks.
};
template <class ACE_LOCK>
class ACE_TSS_Read_Guard : public ACE_TSS_Guard<ACE_LOCK>
{
// = TITLE
// This class is similar to class <ACE_TSS_Guard>, though it
// acquires/releases a read lock automatically (naturally, the
// <ACE_LOCK> it is instantiated with must support the
// appropriate API).
public:
// = Initialization method.
ACE_TSS_Read_Guard (ACE_LOCK &lock, int block = 1);
// Implicitly and automatically acquire the thread-specific read lock.
// = Lock accessors.
int acquire_read (void);
// Explicitly acquire the thread-specific read lock.
int acquire (void);
// Explicitly acquire the thread-specific read lock.
int tryacquire_read (void);
// Conditionally acquire the thread-specific read lock (i.e., won't
// block).
int tryacquire (void);
// Conditionally acquire the thread-specific read lock (i.e., won't
// block).
// = Utility methods.
void dump (void) const;
// Dump the state of an object.
// ACE_ALLOC_HOOK_DECLARE;
// Declare the dynamic allocation hooks.
};
#endif /* !(defined (ACE_HAS_THREADS) && (defined (ACE_HAS_THREAD_SPECIFIC_STORAGE) || defined (ACE_HAS_TSS_EMULATION))) */
#if defined (ACE_HAS_THREADS) /* ACE platform supports some form of threading. */
template <class MUTEX>
class ACE_Condition
{
// = TITLE
// ACE_Condition variable wrapper, which allows threads to block
// until shared data changes state.
//
// = DESCRIPTION
// A condition variable enables threads to atomically block and
// test the condition under the protection of a mutual exclu-
// sion lock (mutex) until the condition is satisfied. That is,
// the mutex must have been held by the thread before calling
// wait or signal on the condition. If the condition is false,
// a thread blocks on a condition variable and atomically
// releases the mutex that is waiting for the condition to
// change. If another thread changes the condition, it may wake
// up waiting threads by signaling the associated condition
// variable. The waiting threads, upon awakening, reacquire the
// mutex and re-evaluate the condition.
//
// Note, you can only parameterize <ACE_Condition> with
// <ACE_Thread_Mutex> or <ACE_Null_Mutex>.
public:
// = Initialiation and termination methods.
ACE_Condition (MUTEX &m, int type = USYNC_THREAD,
const ACE_TCHAR *name = 0, void *arg = 0);
// Initialize the condition variable.
~ACE_Condition (void);
// Implicitly destroy the condition variable.
// = Lock accessors.
int wait (const ACE_Time_Value *abstime);
// Block on condition, or until absolute time-of-day has passed. If
// abstime == 0 use "blocking" <wait> semantics. Else, if <abstime>
// != 0 and the call times out before the condition is signaled
// <wait> returns -1 and sets errno to ETIME.
int wait (void);
// Block on condition.
int wait (MUTEX &mutex, const ACE_Time_Value *abstime = 0);
// Block on condition or until absolute time-of-day has passed. If
// abstime == 0 use "blocking" wait() semantics on the <mutex>
// passed as a parameter (this is useful if you need to store the
// <Condition> in shared memory). Else, if <abstime> != 0 and the
// call times out before the condition is signaled <wait> returns -1
// and sets errno to ETIME.
int signal (void);
// Signal one waiting thread.
int broadcast (void);
// Signal *all* waiting threads.
// = Utility methods.
int remove (void);
// Explicitly destroy the condition variable.
MUTEX &mutex (void);
// Returns a reference to the underlying mutex_;
void dump (void) const;
// Dump the state of an object.
// ACE_ALLOC_HOOK_DECLARE;
// Declare the dynamic allocation hooks.
protected:
#if defined (CHORUS)
ACE_cond_t *process_cond_;
// This condition resides in shared memory.
const ACE_TCHAR *condname_;
// Remember the name of the condition if we created it so we can
// unlink it when we go away (only the actor that initialized the
// memory can destroy it).
#endif /* CHORUS */
ACE_cond_t cond_;
// Condition variable.
MUTEX &mutex_;
// Reference to mutex lock.
private:
// = Prevent assignment and initialization.
ACE_UNIMPLEMENTED_FUNC (void operator= (const ACE_Condition<MUTEX> &))
ACE_UNIMPLEMENTED_FUNC (ACE_Condition (const ACE_Condition<MUTEX> &))
};
template <class MUTEX>
class ACE_Thread_Condition : public ACE_Condition<MUTEX>
{
// = TITLE
// ACE_Condition variable wrapper that works within processes.
//
// = DESCRIPTION
// A condition variable enables threads to atomically block and
// test the condition under the protection of a mutual exclu-
// sion lock (mutex) until the condition is satisfied. That is,
// the mutex must have been held by the thread before calling
// wait or signal on the condition. If the condition is false,
// a thread blocks on a condition variable and atomically
// releases the mutex that is waiting for the condition to
// change. If another thread changes the condition, it may wake
// up waiting threads by signaling the associated condition
// variable. The waiting threads, upon awakening, reacquire the
// mutex and re-evaluate the condition.
public:
// = Initialization method.
ACE_Thread_Condition (MUTEX &m, const ACE_TCHAR *name = 0, void *arg = 0);
void dump (void) const;
// Dump the state of an object.
// ACE_ALLOC_HOOK_DECLARE;
// Declare the dynamic allocation hooks.
};
#endif /* ACE_HAS_THREADS */
#if defined (ACE_HAS_TEMPLATE_TYPEDEFS)
class ACE_Export ACE_NULL_SYNCH
{
// = TITLE
// Implement a do nothing Synchronization wrapper that
// typedefs the <ACE_Condition> and <ACE_Mutex> to the Null* versions.
public:
typedef ACE_Null_Mutex MUTEX;
typedef ACE_Null_Mutex NULL_MUTEX;
typedef ACE_Null_Mutex PROCESS_MUTEX;
typedef ACE_Null_Mutex RECURSIVE_MUTEX;
typedef ACE_Null_Mutex RW_MUTEX;
typedef ACE_Null_Condition CONDITION;
typedef ACE_Null_Semaphore SEMAPHORE;
typedef ACE_Null_Mutex NULL_SEMAPHORE;
};
#if defined (ACE_HAS_THREADS)
class ACE_Export ACE_MT_SYNCH
{
// = TITLE
// Implement a default thread safe synchronization wrapper that
// typedefs the <ACE_Condition> and <ACE_Mutex> to the
// <ACE_Condition> and <ACE_Mutex> versions. Note that this
// should be a template, but SunC++ 4.0.1 complains about
// this...
public:
typedef ACE_Thread_Mutex MUTEX;
typedef ACE_Null_Mutex NULL_MUTEX;
typedef ACE_Process_Mutex PROCESS_MUTEX;
typedef ACE_Recursive_Thread_Mutex RECURSIVE_MUTEX;
typedef ACE_RW_Thread_Mutex RW_MUTEX;
typedef ACE_Condition_Thread_Mutex CONDITION;
typedef ACE_Thread_Semaphore SEMAPHORE;
typedef ACE_Null_Semaphore NULL_SEMAPHORE;
};
#endif /* ACE_HAS_THREADS */
#define ACE_SYNCH_MUTEX ACE_SYNCH::MUTEX
#define ACE_SYNCH_NULL_MUTEX ACE_SYNCH::NULL_MUTEX
#define ACE_SYNCH_RECURSIVE_MUTEX ACE_SYNCH::RECURSIVE_MUTEX
#define ACE_SYNCH_RW_MUTEX ACE_SYNCH::RW_MUTEX
#define ACE_SYNCH_CONDITION ACE_SYNCH::CONDITION
#define ACE_SYNCH_NULL_SEMAPHORE ACE_SYNCH::NULL_SEMAPHORE
#define ACE_SYNCH_SEMAPHORE ACE_SYNCH::SEMAPHORE
#else /* !ACE_HAS_TEMPLATE_TYPEDEFS */
#if defined (ACE_HAS_OPTIMIZED_MESSAGE_QUEUE)
#define ACE_NULL_SYNCH ACE_Null_Mutex, ACE_Null_Condition, ACE_Null_Mutex
#define ACE_MT_SYNCH ACE_Thread_Mutex, ACE_Condition_Thread_Mutex, ACE_Thread_Semaphore
#else
#define ACE_NULL_SYNCH ACE_Null_Mutex, ACE_Null_Condition
#define ACE_MT_SYNCH ACE_Thread_Mutex, ACE_Condition_Thread_Mutex
#endif /* ACE_HAS_OPTIMIZED_MESSAGE_QUEUE */
#if defined (ACE_HAS_THREADS)
#define ACE_SYNCH_MUTEX ACE_Thread_Mutex
#define ACE_SYNCH_NULL_MUTEX ACE_Null_Mutex
#define ACE_SYNCH_RECURSIVE_MUTEX ACE_Recursive_Thread_Mutex
#define ACE_SYNCH_RW_MUTEX ACE_RW_Thread_Mutex
#define ACE_SYNCH_CONDITION ACE_Condition_Thread_Mutex
#define ACE_SYNCH_SEMAPHORE ACE_Thread_Semaphore
#define ACE_SYNCH_NULL_SEMAPHORE ACE_Null_Semaphore
#else /* ACE_HAS_THREADS */
#define ACE_SYNCH_MUTEX ACE_Null_Mutex
#define ACE_SYNCH_NULL_MUTEX ACE_Null_Mutex
#define ACE_SYNCH_RECURSIVE_MUTEX ACE_Null_Mutex
#define ACE_SYNCH_RW_MUTEX ACE_Null_Mutex
#define ACE_SYNCH_CONDITION ACE_Null_Condition
#define ACE_SYNCH_SEMAPHORE ACE_Null_Semaphore
#define ACE_SYNCH_NULL_SEMAPHORE ACE_Null_Mutex
#endif /* ACE_HAS_THREADS */
#endif /* ACE_HAS_TEMPLATE_TYPEDEFS */
// These are available on *all* platforms
#define ACE_SYNCH_PROCESS_SEMAPHORE ACE_Process_Semaphore
#define ACE_SYNCH_PROCESS_MUTEX ACE_Process_Mutex
#if defined (ACE_HAS_THREADS)
#define ACE_SYNCH ACE_MT_SYNCH
#else /* ACE_HAS_THREADS */
#define ACE_SYNCH ACE_NULL_SYNCH
#endif /* ACE_HAS_THREADS */
#if defined (__ACE_INLINE__)
#include "ace/Synch_T.i"
// On non-Win32 platforms, this code will be inlined
#if !defined (ACE_WIN32)
#include "ace/Atomic_Op.i"
#endif /* !ACE_WIN32 */
#endif /* __ACE_INLINE__ */
#if defined (ACE_TEMPLATES_REQUIRE_SOURCE)
#include "ace/Synch_T.cpp"
// On Win32 platforms, this code will be included as template source
// code and will not be inlined. Therefore, we first turn off
// ACE_INLINE, set it to be nothing, include the code, and then turn
// ACE_INLINE back to its original setting. All this nonsense is
// necessary, since the generic template code that needs to be
// specialized cannot be inlined, else the compiler will ignore the
// specialization code. Also, the specialization code *must* be
// inlined or the compiler will ignore the specializations.
#if defined (ACE_WIN32)
#undef ACE_INLINE
#define ACE_INLINE
#include "ace/Atomic_Op.i"
#undef ACE_INLINE
#if defined (__ACE_INLINE__)
#define ACE_INLINE inline
#else
#define ACE_INLINE
#endif /* __ACE_INLINE__ */
#endif /* ACE_WIN32 */
#endif /* ACE_TEMPLATES_REQUIRE_SOURCE */
#if defined (ACE_TEMPLATES_REQUIRE_PRAGMA)
#pragma implementation ("Synch_T.cpp")
#endif /* ACE_TEMPLATES_REQUIRE_PRAGMA */
#include "ace/post.h"
#endif /* ACE_SYNCH_T_H */
|