1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
|
#include "ace/Time_Value.h"
ACE_RCSID (ace,
Time_Value,
"$Id$")
#if !defined (__ACE_INLINE__)
#include "ace/Time_Value.inl"
#endif /* __ACE_INLINE__ */
// Static constant representing `zero-time'.
// Note: this object requires static construction.
const ACE_Time_Value ACE_Time_Value::zero;
// Constant for maximum time representable. Note that this time
// is not intended for use with select () or other calls that may
// have *their own* implementation-specific maximum time representations.
// Its primary use is in time computations such as those used by the
// dynamic subpriority strategies in the ACE_Dynamic_Message_Queue class.
// Note: this object requires static construction.
const ACE_Time_Value ACE_Time_Value::max_time (LONG_MAX,
ACE_ONE_SECOND_IN_USECS - 1);
ACE_ALLOC_HOOK_DEFINE (ACE_Time_Value)
// Increment microseconds (the only reason this is here is to allow
// the use of ACE_Atomic_Op with ACE_Time_Value).
ACE_Time_Value
ACE_Time_Value::operator ++ (int)
{
// ACE_OS_TRACE ("ACE_Time_Value::operator ++ (int)");
ACE_Time_Value tv (*this);
++*this;
return tv;
}
ACE_Time_Value &
ACE_Time_Value::operator ++ (void)
{
// ACE_OS_TRACE ("ACE_Time_Value::operator ++ (void)");
this->usec (this->usec () + 1);
this->normalize ();
return *this;
}
// Decrement microseconds (the only reason this is here is / to allow
// the use of ACE_Atomic_Op with ACE_Time_Value).
ACE_Time_Value
ACE_Time_Value::operator -- (int)
{
// ACE_OS_TRACE ("ACE_Time_Value::operator -- (int)");
ACE_Time_Value tv (*this);
--*this;
return tv;
}
ACE_Time_Value &
ACE_Time_Value::operator -- (void)
{
// ACE_OS_TRACE ("ACE_Time_Value::operator -- (void)");
this->usec (this->usec () - 1);
this->normalize ();
return *this;
}
#if defined (ACE_WIN32)
// Static constant to remove time skew between FILETIME and POSIX
// time. POSIX and Win32 use different epochs (Jan. 1, 1970 v.s.
// Jan. 1, 1601). The following constant defines the difference
// in 100ns ticks.
//
// In the beginning (Jan. 1, 1601), there was no time and no computer.
// And Bill said: "Let there be time," and there was time....
# if defined (ACE_LACKS_LONGLONG_T)
const ACE_U_LongLong ACE_Time_Value::FILETIME_to_timval_skew =
ACE_U_LongLong (0xd53e8000, 0x19db1de);
# else
const DWORDLONG ACE_Time_Value::FILETIME_to_timval_skew =
ACE_INT64_LITERAL (0x19db1ded53e8000);
# endif
// Initializes the ACE_Time_Value object from a Win32 FILETIME
ACE_Time_Value::ACE_Time_Value (const FILETIME &file_time)
{
// // ACE_OS_TRACE ("ACE_Time_Value::ACE_Time_Value");
this->set (file_time);
}
void ACE_Time_Value::set (const FILETIME &file_time)
{
// Initializes the ACE_Time_Value object from a Win32 FILETIME
#if defined (ACE_LACKS_LONGLONG_T)
ACE_U_LongLong LL_100ns(file_time.dwLowDateTime, file_time.dwHighDateTime);
LL_100ns -= ACE_Time_Value::FILETIME_to_timval_skew;
// Convert 100ns units to seconds;
this->tv_.tv_sec = (long) (LL_100ns / ((double) (10000 * 1000)));
// Convert remainder to microseconds;
this->tv_.tv_usec = (long)((LL_100ns % ((ACE_UINT32)(10000 * 1000))) / 10);
#else
// Don't use a struct initializer, gcc don't like it.
ULARGE_INTEGER _100ns;
_100ns.LowPart = file_time.dwLowDateTime;
_100ns.HighPart = file_time.dwHighDateTime;
_100ns.QuadPart -= ACE_Time_Value::FILETIME_to_timval_skew;
// Convert 100ns units to seconds;
this->tv_.tv_sec = (long) (_100ns.QuadPart / (10000 * 1000));
// Convert remainder to microseconds;
this->tv_.tv_usec = (long) ((_100ns.QuadPart % (10000 * 1000)) / 10);
#endif // ACE_LACKS_LONGLONG_T
this->normalize ();
}
// Returns the value of the object as a Win32 FILETIME.
ACE_Time_Value::operator FILETIME () const
{
FILETIME file_time;
// ACE_OS_TRACE ("ACE_Time_Value::operator FILETIME");
#if defined (ACE_LACKS_LONGLONG_T)
ACE_U_LongLong LL_sec(this->tv_.tv_sec);
ACE_U_LongLong LL_usec(this->tv_.tv_usec);
ACE_U_LongLong LL_100ns = LL_sec * (ACE_UINT32)(10000 * 1000) +
LL_usec * (ACE_UINT32)10 +
ACE_Time_Value::FILETIME_to_timval_skew;
file_time.dwLowDateTime = LL_100ns.lo();
file_time.dwHighDateTime = LL_100ns.hi();
#else
ULARGE_INTEGER _100ns;
_100ns.QuadPart = (((DWORDLONG) this->tv_.tv_sec * (10000 * 1000) +
this->tv_.tv_usec * 10) +
ACE_Time_Value::FILETIME_to_timval_skew);
file_time.dwLowDateTime = _100ns.LowPart;
file_time.dwHighDateTime = _100ns.HighPart;
#endif //ACE_LACKS_LONGLONG_T
return file_time;
}
#endif /* ACE_WIN32 */
void
ACE_Time_Value::dump (void) const
{
#if defined (ACE_HAS_DUMP)
// ACE_OS_TRACE ("ACE_Time_Value::dump");
#if 0
ACE_DEBUG ((LM_DEBUG, ACE_BEGIN_DUMP, this));
ACE_DEBUG ((LM_DEBUG, ACE_LIB_TEXT ("\ntv_sec_ = %d"), this->tv_.tv_sec));
ACE_DEBUG ((LM_DEBUG, ACE_LIB_TEXT ("\ntv_usec_ = %d\n"), this->tv_.tv_usec));
ACE_DEBUG ((LM_DEBUG, ACE_END_DUMP));
#endif /* 0 */
#endif /* ACE_HAS_DUMP */
}
void
ACE_Time_Value::normalize (void)
{
// // ACE_OS_TRACE ("ACE_Time_Value::normalize");
// From Hans Rohnert...
if (this->tv_.tv_usec >= ACE_ONE_SECOND_IN_USECS)
{
/*! \todo This loop needs some optimization.
*/
do
{
++this->tv_.tv_sec;
this->tv_.tv_usec -= ACE_ONE_SECOND_IN_USECS;
}
while (this->tv_.tv_usec >= ACE_ONE_SECOND_IN_USECS);
}
else if (this->tv_.tv_usec <= -ACE_ONE_SECOND_IN_USECS)
{
/*! \todo This loop needs some optimization.
*/
do
{
--this->tv_.tv_sec;
this->tv_.tv_usec += ACE_ONE_SECOND_IN_USECS;
}
while (this->tv_.tv_usec <= -ACE_ONE_SECOND_IN_USECS);
}
if (this->tv_.tv_sec >= 1 && this->tv_.tv_usec < 0)
{
--this->tv_.tv_sec;
this->tv_.tv_usec += ACE_ONE_SECOND_IN_USECS;
}
// tv_sec in qnxnto is unsigned
#if !defined ( __QNXNTO__)
else if (this->tv_.tv_sec < 0 && this->tv_.tv_usec > 0)
{
++this->tv_.tv_sec;
this->tv_.tv_usec -= ACE_ONE_SECOND_IN_USECS;
}
#endif /* __QNXNTO__ */
}
ACE_Time_Value &
ACE_Time_Value::operator *= (double d)
{
// double is long enough (16 digits) to not lose the accuracy.
double time_total =
(this->sec ()
+ static_cast<double> (this->usec ()) / ACE_ONE_SECOND_IN_USECS) * d;
// shall we saturate the result?
static const double max_int = ACE_INT32_MAX + 0.999999;
static const double min_int = ACE_INT32_MIN - 0.999999;
if (time_total > max_int)
time_total = max_int;
if (time_total < min_int)
time_total = min_int;
const long time_sec = static_cast<long> (time_total);
time_total -= time_sec;
time_total *= ACE_ONE_SECOND_IN_USECS;
long time_usec = static_cast<long> (time_total);
// round up the result to save the last usec
if (time_usec > 0 && (time_total - time_usec) >= 0.5)
++time_usec;
else if (time_usec < 0 && (time_total - time_usec) <= -0.5)
--time_usec;
this->set (time_sec, time_usec);
this->normalize (); // protect against future changes in normalization
return *this;
}
|