1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
|
// $Id$
#if !defined (ACE_TIMER_HEAP_T_C)
#define ACE_TIMER_HEAP_T_C
#define ACE_BUILD_DLL
#include "ace/Timer_Heap_T.h"
ACE_RCSID(ace, Timer_Heap_T, "$Id$")
// Define some simple macros to clarify the code.
#define ACE_HEAP_PARENT(X) (X == 0 ? 0 : (((X) - 1) / 2))
#define ACE_HEAP_LCHILD(X) (((X)+(X))+1)
// Constructor that takes in an <ACE_Timer_Heap_T> to iterate over.
template <class TYPE, class FUNCTOR, class ACE_LOCK>
ACE_Timer_Heap_Iterator_T<TYPE, FUNCTOR, ACE_LOCK>::ACE_Timer_Heap_Iterator_T (ACE_Timer_Heap_T<TYPE, FUNCTOR, ACE_LOCK> &heap)
: timer_heap_ (heap)
{
ACE_TRACE ("ACE_Timer_Heap_Iterator::ACE_Timer_Heap_Iterator");
this->first();
}
template <class TYPE, class FUNCTOR, class ACE_LOCK>
ACE_Timer_Heap_Iterator_T<TYPE, FUNCTOR, ACE_LOCK>::~ACE_Timer_Heap_Iterator_T (void)
{
}
// Positions the iterator at the first node in the heap array
template <class TYPE, class FUNCTOR, class ACE_LOCK> void
ACE_Timer_Heap_Iterator_T<TYPE, FUNCTOR, ACE_LOCK>::first (void)
{
this->position_ = 0;
}
// Positions the iterator at the next node in the heap array
template <class TYPE, class FUNCTOR, class ACE_LOCK> void
ACE_Timer_Heap_Iterator_T<TYPE, FUNCTOR, ACE_LOCK>::next (void)
{
if (this->position_ != this->timer_heap_.cur_size_)
this->position_++;
}
// Returns true the <position_> is at the end of the heap array
template <class TYPE, class FUNCTOR, class ACE_LOCK> int
ACE_Timer_Heap_Iterator_T<TYPE, FUNCTOR, ACE_LOCK>::isdone (void)
{
return this->position_ == this->timer_heap_.cur_size_;
}
// Returns the node at the current position in the heap or 0 if at the end
template <class TYPE, class FUNCTOR, class ACE_LOCK> ACE_Timer_Node_T<TYPE> *
ACE_Timer_Heap_Iterator_T<TYPE, FUNCTOR, ACE_LOCK>::item (void)
{
if (this->position_ != this->timer_heap_.cur_size_)
return this->timer_heap_.heap_[this->position_];
return 0;
}
// Constructor
template <class TYPE, class FUNCTOR, class ACE_LOCK>
ACE_Timer_Heap_T<TYPE, FUNCTOR, ACE_LOCK>::ACE_Timer_Heap_T (size_t size,
int preallocate,
FUNCTOR *upcall_functor,
ACE_Free_List<ACE_Timer_Node_T <TYPE> > *freelist)
: ACE_Timer_Queue_T<TYPE,FUNCTOR,ACE_LOCK> (upcall_functor, freelist),
max_size_ (size),
cur_size_ (0),
timer_ids_freelist_ (1),
preallocated_nodes_ (0),
preallocated_nodes_freelist_ (0)
{
ACE_TRACE ("ACE_Timer_Heap_T::ACE_Timer_Heap_T");
// Create the heap array.
ACE_NEW (this->heap_, (ACE_Timer_Node_T<TYPE> *[size]));
// Create the parallel
ACE_NEW (this->timer_ids_, long[size]);
// Initialize the "freelist," which uses negative values to
// distinguish freelist elements from "pointers" into the <heap_>
// array.
for (size_t i = 0; i < size; i++)
this->timer_ids_[i] = -((long) (i + 1));
if (preallocate)
{
ACE_NEW (this->preallocated_nodes_,
(ACE_Timer_Node_T<TYPE>[size]));
// Add allocated array to set of such arrays for deletion
// on cleanup.
this->preallocated_node_set_.insert (this->preallocated_nodes_);
// Form the freelist by linking the next_ pointers together.
for (size_t j = 1; j < size; j++)
this->preallocated_nodes_[j - 1].set_next (&this->preallocated_nodes_[j]);
// NULL-terminate the freelist.
this->preallocated_nodes_[size - 1].set_next (0);
// Assign the freelist pointer to the front of the list.
this->preallocated_nodes_freelist_ =
&this->preallocated_nodes_[0];
}
iterator_ = new HEAP_ITERATOR(*this);
}
template <class TYPE, class FUNCTOR, class ACE_LOCK>
ACE_Timer_Heap_T<TYPE, FUNCTOR, ACE_LOCK>::ACE_Timer_Heap_T (FUNCTOR *upcall_functor,
ACE_Free_List<ACE_Timer_Node_T <TYPE> > *freelist)
: ACE_Timer_Queue_T<TYPE,FUNCTOR,ACE_LOCK> (upcall_functor, freelist),
max_size_ (ACE_DEFAULT_TIMERS),
cur_size_ (0),
timer_ids_freelist_ (1),
preallocated_nodes_ (0),
preallocated_nodes_freelist_ (0)
{
ACE_TRACE ("ACE_Timer_Heap_T::ACE_Timer_Heap_T");
// Create the heap array.
ACE_NEW (this->heap_, (ACE_Timer_Node_T<TYPE> *[this->max_size_]));
// Create the parallel
ACE_NEW (this->timer_ids_, long[this->max_size_]);
// Initialize the "freelist," which uses negative values to
// distinguish freelist elements from "pointers" into the <heap_>
// array.
for (size_t i = 0; i < this->max_size_; i++)
this->timer_ids_[i] = -((long) (i + 1));
iterator_ = new HEAP_ITERATOR(*this);
}
template <class TYPE, class FUNCTOR, class ACE_LOCK>
ACE_Timer_Heap_T<TYPE, FUNCTOR, ACE_LOCK>::~ACE_Timer_Heap_T (void)
{
ACE_TRACE ("ACE_Timer_Heap::~ACE_Timer_Heap");
delete iterator_;
// Clean up all the nodes still in the queue
for (size_t i = 0; i < this->cur_size_; i++)
{
this->upcall_functor ().deletion (*this,
this->heap_[i]->get_type (),
this->heap_[i]->get_act ());
this->free_node (this->heap_[i]);
}
delete [] this->heap_;
delete [] this->timer_ids_;
// clean up any preallocated timer nodes
if (preallocated_nodes_ != 0)
{
ACE_Unbounded_Set_Iterator<ACE_Timer_Node_T<TYPE> *>
set_iterator (this->preallocated_node_set_);
for (ACE_Timer_Node_T<TYPE> **entry = 0;
set_iterator.next (entry) !=0;
set_iterator.advance ())
delete [] *entry;
}
}
template <class TYPE, class FUNCTOR, class ACE_LOCK> int
ACE_Timer_Heap_T<TYPE, FUNCTOR, ACE_LOCK>::pop_freelist (void)
{
ACE_TRACE ("ACE_Timer_Heap::pop_freelist");
// We need to truncate this to <int> for backwards compatibility.
int new_id = (int) this->timer_ids_freelist_;
// The freelist values in the <timer_ids_> are negative, so we need
// to negate them to get the next freelist "pointer."
this->timer_ids_freelist_ = -this->timer_ids_[this->timer_ids_freelist_];
return new_id;
}
template <class TYPE, class FUNCTOR, class ACE_LOCK> void
ACE_Timer_Heap_T<TYPE, FUNCTOR, ACE_LOCK>::push_freelist (int old_id)
{
ACE_TRACE ("ACE_Timer_Heap::push_freelist");
// The freelist values in the <timer_ids_> are negative, so we need
// to negate them to get the next freelist "pointer."
this->timer_ids_[old_id] = -this->timer_ids_freelist_;
this->timer_ids_freelist_ = old_id;
}
template <class TYPE, class FUNCTOR, class ACE_LOCK> int
ACE_Timer_Heap_T<TYPE, FUNCTOR, ACE_LOCK>::timer_id (void)
{
ACE_TRACE ("ACE_Timer_Heap::timer_id");
// Return the next item off the freelist and use it as the timer id.
return this->pop_freelist ();
}
// Checks if queue is empty.
template <class TYPE, class FUNCTOR, class ACE_LOCK> int
ACE_Timer_Heap_T<TYPE, FUNCTOR, ACE_LOCK>::is_empty (void) const
{
ACE_TRACE ("ACE_Timer_Heap::is_empty");
return this->cur_size_ == 0;
}
template <class TYPE, class FUNCTOR, class ACE_LOCK> ACE_Timer_Queue_Iterator_T<TYPE, FUNCTOR, ACE_LOCK> &
ACE_Timer_Heap_T<TYPE, FUNCTOR, ACE_LOCK>::iter (void)
{
this->iterator_->first ();
return *this->iterator_;
}
// Returns earliest time in a non-empty queue.
template <class TYPE, class FUNCTOR, class ACE_LOCK> const ACE_Time_Value &
ACE_Timer_Heap_T<TYPE, FUNCTOR, ACE_LOCK>::earliest_time (void) const
{
ACE_TRACE ("ACE_Timer_Heap::earliest_time");
return this->heap_[0]->get_timer_value ();
}
template <class TYPE, class FUNCTOR, class ACE_LOCK> void
ACE_Timer_Heap_T<TYPE, FUNCTOR, ACE_LOCK>::dump (void) const
{
ACE_TRACE ("ACE_Timer_Heap::dump");
ACE_DEBUG ((LM_DEBUG, ACE_BEGIN_DUMP, this));
ACE_DEBUG ((LM_DEBUG, ASYS_TEXT ("\nmax_size_ = %d"), this->max_size_));
ACE_DEBUG ((LM_DEBUG, ASYS_TEXT ("\ncur_size_ = %d"), this->cur_size_));
ACE_DEBUG ((LM_DEBUG, ASYS_TEXT ("\nheap_ = \n")));
for (size_t i = 0; i < this->cur_size_; i++)
{
ACE_DEBUG ((LM_DEBUG, ASYS_TEXT ("%d\n"), i));
this->heap_[i]->dump ();
}
ACE_DEBUG ((LM_DEBUG, ASYS_TEXT ("\ntimer_ids_ = \n")));
for (size_t j = 0; j < this->cur_size_; j++)
ACE_DEBUG ((LM_DEBUG, ASYS_TEXT ("%d\t%d\n"), j, this->timer_ids_[j]));
ACE_DEBUG ((LM_DEBUG, ACE_END_DUMP));
}
template <class TYPE, class FUNCTOR, class ACE_LOCK> void
ACE_Timer_Heap_T<TYPE, FUNCTOR, ACE_LOCK>::copy (int index, ACE_Timer_Node_T<TYPE> *moved_node)
{
// Insert <moved_node> into its new location in the heap.
this->heap_[index] = moved_node;
ACE_ASSERT (moved_node->get_timer_id () >= 0
&& moved_node->get_timer_id () < (int) this->max_size_);
// Update the corresponding slot in the parallel <timer_ids_> array.
this->timer_ids_[moved_node->get_timer_id ()] = index;
}
template <class TYPE, class FUNCTOR, class ACE_LOCK> ACE_Timer_Node_T<TYPE> *
ACE_Timer_Heap_T<TYPE, FUNCTOR, ACE_LOCK>::remove (size_t index)
{
ACE_Timer_Node_T<TYPE> *removed_node = this->heap_[index];
// Return this timer id to the freelist.
this->push_freelist (removed_node->get_timer_id ());
// Decrement the size of the heap by one since we're removing the
// "index"th node.
this->cur_size_--;
// Only try to reheapify if we're not deleting the last entry.
if (index < this->cur_size_)
{
ACE_Timer_Node_T<TYPE> *moved_node = this->heap_[this->cur_size_];
// Move the end node to the location being removed and update
// the corresponding slot in the parallel <timer_ids> array.
this->copy (index, moved_node);
// If the <moved_node->time_value_> is great than or equal its
// parent it needs be moved down the heap.
size_t parent = ACE_HEAP_PARENT (index);
if (moved_node->get_timer_value () >= this->heap_[parent]->get_timer_value ())
this->reheap_down (moved_node, index, ACE_HEAP_LCHILD (index));
else
this->reheap_up (moved_node, index, parent);
}
return removed_node;
}
template <class TYPE, class FUNCTOR, class ACE_LOCK> void
ACE_Timer_Heap_T<TYPE, FUNCTOR, ACE_LOCK>::reheap_down (ACE_Timer_Node_T<TYPE> *moved_node,
size_t index,
size_t child)
{
// Restore the heap property after a deletion.
while (child < this->cur_size_)
{
// Choose the smaller of the two children.
if (child + 1 < this->cur_size_
&& this->heap_[child + 1]->get_timer_value () < this->heap_[child]->get_timer_value ())
child++;
// Perform a <copy> if the child has a larger timeout value than
// the <moved_node>.
if (this->heap_[child]->get_timer_value () < moved_node->get_timer_value ())
{
this->copy (index, this->heap_[child]);
index = child;
child = ACE_HEAP_LCHILD (child);
}
else
// We've found our location in the heap.
break;
}
this->copy (index, moved_node);
}
template <class TYPE, class FUNCTOR, class ACE_LOCK> void
ACE_Timer_Heap_T<TYPE, FUNCTOR, ACE_LOCK>::reheap_up (ACE_Timer_Node_T<TYPE> *moved_node,
size_t index,
size_t parent)
{
// Restore the heap property after an insertion.
while (index > 0)
{
// If the parent node is greater than the <moved_node> we need
// to copy it down.
if (moved_node->get_timer_value () < this->heap_[parent]->get_timer_value ())
{
this->copy (index, this->heap_[parent]);
index = parent;
parent = ACE_HEAP_PARENT (index);
}
else
break;
}
// Insert the new node into its proper resting place in the heap and
// update the corresponding slot in the parallel <timer_ids> array.
this->copy (index, moved_node);
}
template <class TYPE, class FUNCTOR, class ACE_LOCK> void
ACE_Timer_Heap_T<TYPE, FUNCTOR, ACE_LOCK>::insert (ACE_Timer_Node_T<TYPE> *new_node)
{
if (this->cur_size_ + 2 >= max_size_)
this->grow_heap ();
this->reheap_up (new_node,
this->cur_size_,
ACE_HEAP_PARENT (this->cur_size_));
this->cur_size_++;
}
template <class TYPE, class FUNCTOR, class ACE_LOCK> void
ACE_Timer_Heap_T<TYPE, FUNCTOR, ACE_LOCK>::grow_heap (void)
{
// All the containers will double in size from max_size_
size_t new_size = max_size_ * 2;
// First grow the heap itself.
ACE_Timer_Node_T<TYPE> **new_heap;
ACE_NEW (new_heap, (ACE_Timer_Node_T<TYPE> *[new_size]));
ACE_OS::memcpy (new_heap, this->heap_,
max_size_ * sizeof *new_heap);
delete [] this->heap_;
this->heap_ = new_heap;
// Grow the array of timer ids.
long *new_timer_ids;
ACE_NEW (new_timer_ids, long[new_size]);
ACE_OS::memcpy (new_timer_ids,
this->timer_ids_,
max_size_ * sizeof (long));
delete [] timer_ids_;
this->timer_ids_ = new_timer_ids;
// and add the new elements to the end of the "freelist"
for (size_t i = this->max_size_; i < new_size; i++)
this->timer_ids_[i] = -((long) (i + 1));
// Grow the preallocation array (if using preallocation)
if (this->preallocated_nodes_ != 0)
{
// Create a new array with max_size elements to link in
// to existing list.
ACE_NEW (this->preallocated_nodes_,
(ACE_Timer_Node_T<TYPE>[this->max_size_]));
// Add it to the set for later deletion
this->preallocated_node_set_.insert (this->preallocated_nodes_);
// link new nodes together (as for original list).
for (size_t k = 1; k < this->max_size_; k++)
this->preallocated_nodes_[k - 1].set_next (&this->preallocated_nodes_[k]);
// NULL-terminate the new list.
this->preallocated_nodes_[this->max_size_ - 1].set_next (0);
// link new array to the end of the existling list
if (this->preallocated_nodes_freelist_ == 0)
this->preallocated_nodes_freelist_ = &preallocated_nodes_[0];
else
{
ACE_Timer_Node_T<TYPE> *previous = this->preallocated_nodes_freelist_;
for (ACE_Timer_Node_T<TYPE> *current = this->preallocated_nodes_freelist_->get_next ();
current != 0;
current = current->get_next ())
previous = current;
previous->set_next (&this->preallocated_nodes_[0]);
}
}
this->max_size_ = new_size;
}
// Reschedule a periodic timer. This function must be called with the
// mutex lock held.
template <class TYPE, class FUNCTOR, class ACE_LOCK> void
ACE_Timer_Heap_T<TYPE, FUNCTOR, ACE_LOCK>::reschedule (ACE_Timer_Node_T<TYPE> *expired)
{
ACE_TRACE ("ACE_Timer_Heap::reschedule");
// If we are rescheduling then we have freed our timer id so we need
// to reacquire it.
// NOTE: we rely on the fact that we will get the same timer id we just
// freed.
int timerId = this->timer_id ();
ACE_ASSERT(timerId == expired->get_timer_id ()); // Just to be safe...
// Restore the heap property.
this->insert (expired);
}
template <class TYPE, class FUNCTOR, class ACE_LOCK> ACE_Timer_Node_T<TYPE> *
ACE_Timer_Heap_T<TYPE, FUNCTOR, ACE_LOCK>::alloc_node (void)
{
ACE_Timer_Node_T<TYPE> *temp;
// Only allocate a node if we are *not* using the preallocated heap.
if (this->preallocated_nodes_ == 0)
ACE_NEW_RETURN (temp,
(ACE_Timer_Node_T<TYPE>),
0);
else
{
// check to see if the heap needs to grow
if (this->preallocated_nodes_freelist_ == 0)
this->grow_heap ();
temp = this->preallocated_nodes_freelist_;
// Remove the first element from the freelist.
this->preallocated_nodes_freelist_ =
this->preallocated_nodes_freelist_->get_next ();
}
return temp;
}
template <class TYPE, class FUNCTOR, class ACE_LOCK> void
ACE_Timer_Heap_T<TYPE, FUNCTOR, ACE_LOCK>::free_node (ACE_Timer_Node_T<TYPE> *node)
{
// Only free up a node if we are *not* using the preallocated heap.
if (this->preallocated_nodes_ == 0)
delete node;
else
{
node->set_next (this->preallocated_nodes_freelist_);
this->preallocated_nodes_freelist_ = node;
}
}
// Insert a new timer that expires at time future_time; if interval is
// > 0, the handler will be reinvoked periodically.
template <class TYPE, class FUNCTOR, class ACE_LOCK> long
ACE_Timer_Heap_T<TYPE, FUNCTOR, ACE_LOCK>::schedule (const TYPE &type,
const void *act,
const ACE_Time_Value &future_time,
const ACE_Time_Value &interval)
{
ACE_TRACE ("ACE_Timer_Heap::schedule");
ACE_MT (ACE_GUARD_RETURN (ACE_LOCK, ace_mon, this->mutex_, -1));
if (this->cur_size_ < this->max_size_)
{
// Obtain the next unique sequence number.
int timer_id = this->timer_id ();
// Obtain the memory to the new node.
ACE_Timer_Node_T<TYPE> *temp = this->alloc_node ();
if (temp)
{
temp->set (type,
act,
future_time,
interval,
0,
timer_id);
this->insert (temp);
return timer_id;
}
}
// Failure return.
errno = ENOMEM;
return -1;
}
// Locate and remove the single timer with a value of <timer_id> from
// the timer queue.
template <class TYPE, class FUNCTOR, class ACE_LOCK> int
ACE_Timer_Heap_T<TYPE, FUNCTOR, ACE_LOCK>::cancel (long timer_id,
const void **act,
int dont_call)
{
ACE_TRACE ("ACE_Timer_Heap::cancel");
ACE_MT (ACE_GUARD_RETURN (ACE_LOCK, ace_mon, this->mutex_, -1));
// Locate the ACE_Timer_Node that corresponds to the timer_id.
// Check to see if the timer_id is out of range
if (timer_id < 0 || (size_t)timer_id > this->max_size_)
return 0;
long timer_node_slot = this->timer_ids_[timer_id];
if (timer_node_slot < 0) // Check to see if timer_id is still valid.
return 0;
if (timer_id != this->heap_[timer_node_slot]->get_timer_id ())
{
ACE_ASSERT (timer_id == this->heap_[timer_node_slot]->get_timer_id ());
return 0;
}
else
{
ACE_Timer_Node_T<TYPE> *temp = this->remove (timer_node_slot);
if (dont_call == 0)
// Call the close hook.
this->upcall_functor ().cancellation (*this, temp->get_type ());
if (act != 0)
*act = temp->get_act ();
this->free_node (temp);
return 1;
}
}
// Locate and remove all values of <type> from the timer queue.
template <class TYPE, class FUNCTOR, class ACE_LOCK> int
ACE_Timer_Heap_T<TYPE, FUNCTOR, ACE_LOCK>::cancel (const TYPE &type,
int dont_call)
{
ACE_TRACE ("ACE_Timer_Heap::cancel");
ACE_MT (ACE_GUARD_RETURN (ACE_LOCK, ace_mon, this->mutex_, -1));
int number_of_cancellations = 0;
// Try to locate the ACE_Timer_Node that matches the timer_id.
for (size_t i = 0; i < this->cur_size_; )
{
if (this->heap_[i]->get_type () == type)
{
ACE_Timer_Node_T<TYPE> *temp = this->remove (i);
number_of_cancellations++;
this->free_node (temp);
}
else
i++;
}
if (dont_call == 0)
this->upcall_functor ().cancellation (*this, type);
return number_of_cancellations;
}
// Returns the earliest node or returns 0 if the heap is empty.
template <class TYPE, class FUNCTOR, class ACE_LOCK> ACE_Timer_Node_T <TYPE> *
ACE_Timer_Heap_T<TYPE, FUNCTOR, ACE_LOCK>::remove_first (void)
{
ACE_TRACE ("ACE_Timer_Heap_T::remove_first");
if (this->cur_size_ == 0)
return 0;
return this->remove (0);
}
template <class TYPE, class FUNCTOR, class ACE_LOCK> ACE_Timer_Node_T <TYPE> *
ACE_Timer_Heap_T<TYPE, FUNCTOR, ACE_LOCK>::get_first (void)
{
ACE_TRACE ("ACE_Timer_Heap_T::get_first");
return this->cur_size_ == 0 ? 0 : this->heap_[0];
}
#endif /* ACE_TIMER_HEAP_T_C */
|