summaryrefslogtreecommitdiff
path: root/ace/Timer_Heap_T.h
blob: 784e57acfbc1831c9e0603d26e31c5a9d96561b0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
/* -*- C++ -*- */
// $Id$

// ============================================================================
//
// = LIBRARY
//    ace
//
// = FILENAME
//    Timer_Heap_T.h
//
// = AUTHOR
//    Doug Schmidt
//
// ============================================================================

#ifndef ACE_TIMER_HEAP_T_H
#define ACE_TIMER_HEAP_T_H

#include "ace/Timer_Queue_T.h"

#if !defined (ACE_LACKS_PRAGMA_ONCE)
# pragma once
#endif /* ACE_LACKS_PRAGMA_ONCE */

#include "ace/Free_List.h"
#include "ace/Containers.h"

// Forward declaration
template <class TYPE, class FUNCTOR, class ACE_LOCK>
class ACE_Timer_Heap_T;

template <class TYPE, class FUNCTOR, class ACE_LOCK>
class ACE_Timer_Heap_Iterator_T : public ACE_Timer_Queue_Iterator_T<TYPE, FUNCTOR, ACE_LOCK>
{
  // = TITLE
  //     Iterates over an <ACE_Timer_Heap_T>.
  //
  // = DESCRIPTION
  //     This is a generic iterator that can be used to visit every
  //     node of a timer queue.  Be aware that it doesn't transverse
  //     in the order of timeout values.
public:
  ACE_Timer_Heap_Iterator_T (ACE_Timer_Heap_T<TYPE, FUNCTOR, ACE_LOCK> &);
  // Constructor.

  ~ACE_Timer_Heap_Iterator_T (void);
  // Destructor.

  virtual void first (void);
  // Positions the iterator at the earliest node in the Timer Queue

  virtual void next (void);
  // Positions the iterator at the next node in the Timer Queue

  virtual int isdone (void);
  // Returns true when there are no more nodes in the sequence

  virtual ACE_Timer_Node_T<TYPE> *item (void);
  // Returns the node at the current position in the sequence

protected:
  ACE_Timer_Heap_T<TYPE, FUNCTOR, ACE_LOCK> &timer_heap_;
  // Pointer to the <ACE_Timer_Heap> that we are iterating over.

  size_t position_;
  // Position in the array where the iterator is at
};

template <class TYPE, class FUNCTOR, class ACE_LOCK>
class ACE_Timer_Heap_T : public ACE_Timer_Queue_T<TYPE, FUNCTOR, ACE_LOCK>
{
  // = TITLE
  //      Provides a very fast and predictable timer implementation.
  //
  // = DESCRIPTION
  //      This implementation uses a heap-based callout queue of
  //      absolute times.  Therefore, in the average and worst case,
  //      scheduling, canceling, and expiring timers is O(log N) (where
  //      N is the total number of timers).  In addition, we can also
  //      preallocate as many <ACE_Timer_Nodes> as there are slots in
  //      the heap.  This allows us to completely remove the need for
  //      dynamic memory allocation, which is important for real-time
  //      systems.
public:
  typedef ACE_Timer_Heap_Iterator_T<TYPE, FUNCTOR, ACE_LOCK> HEAP_ITERATOR;
  friend class ACE_Timer_Heap_Iterator_T<TYPE, FUNCTOR, ACE_LOCK>;

  typedef ACE_Timer_Queue_T<TYPE, FUNCTOR, ACE_LOCK> INHERITED;

  // = Initialization and termination methods.
  ACE_Timer_Heap_T (size_t size,
                    int preallocated = 0,
                    FUNCTOR *upcall_functor = 0,
                    ACE_Free_List<ACE_Timer_Node_T <TYPE> > *freelist = 0);
  // The Constructor creates a heap with <size> elements.  If
  // <preallocated> is non-0 then we'll pre-allocate all the memory
  // for the <ACE_Timer_Nodes>.  This saves time and is more
  // predictable (though it requires more space).  Otherwise, we'll
  // just allocate the nodes as we need them.  This can also take in a
  // upcall functor and freelist (if 0, then defaults will be created)

  ACE_Timer_Heap_T (FUNCTOR *upcall_functor = 0, ACE_Free_List<ACE_Timer_Node_T <TYPE> > *freelist = 0);
  // Default constructor. <upcall_functor> is the instance of the
  // FUNCTOR to be used by the queue. If <upcall_functor> is 0, Timer
  // Heap will create a default FUNCTOR.  <freelist> the freelist of
  // timer nodes.  If 0, then a default freelist will be created.  The default
  // size will be ACE_DEFAULT_TIMERS and there will be no preallocation.

  virtual ~ACE_Timer_Heap_T (void);
  // Destructor.

  virtual int is_empty (void) const;
  // True if heap is empty, else false.

  virtual const ACE_Time_Value &earliest_time (void) const;
  // Returns the time of the earlier node in the Timer_Queue.

  virtual long schedule (const TYPE &type,
                         const void *act,
                         const ACE_Time_Value &delay,
                         const ACE_Time_Value &interval = ACE_Time_Value::zero);
  // Schedule <type> that will expire after <delay> amount of time.
  // If it expires then <act> is passed in as the value to the
  // <functor>.  If <interval> is != to <ACE_Time_Value::zero> then it
  // is used to reschedule the <type> automatically.  This method
  // returns a <timer_id> that uniquely identifies the the <type>
  // entry in an internal list.  This <timer_id> can be used to cancel
  // the timer before it expires.  The cancellation ensures that
  // <timer_ids> are unique up to values of greater than 2 billion
  // timers.  As long as timers don't stay around longer than this
  // there should be no problems with accidentally deleting the wrong
  // timer.  Returns -1 on failure (which is guaranteed never to be a
  // valid <timer_id>).

  virtual int cancel (const TYPE &type,
                      int dont_call_handle_close = 1);
  // Cancel all timer associated with <type>.  If <dont_call> is 0
  // then the <functor> will be invoked.  Returns number of timers
  // cancelled.

  virtual int cancel (long timer_id,
                      const void **act = 0,
                      int dont_call_handle_close = 1);
  // Cancel the single timer that matches the <timer_id> value (which
  // was returned from the <schedule> method).  If act is non-NULL
  // then it will be set to point to the ``magic cookie'' argument
  // passed in when the timer was registered.  This makes it possible
  // to free up the memory and avoid memory leaks.  If <dont_call> is
  // 0 then the <functor> will be invoked.  Returns 1 if cancellation
  // succeeded and 0 if the <timer_id> wasn't found.

  virtual ACE_Timer_Queue_Iterator_T<TYPE, FUNCTOR, ACE_LOCK> &iter (void);
  // Returns a pointer to this <ACE_Timer_Queue>'s iterator.

  ACE_Timer_Node_T <TYPE> *remove_first (void);
  // Removes the earliest node from the queue and returns it

  virtual void dump (void) const;
  // Dump the state of an object.

  virtual ACE_Timer_Node_T<TYPE> *get_first (void);
  // Reads the earliest node from the queue and returns it.

protected:
  virtual void reschedule (ACE_Timer_Node_T<TYPE> *);
  // Reschedule an "interval" <ACE_Timer_Node>.

  virtual ACE_Timer_Node_T<TYPE> *alloc_node (void);
  // Factory method that allocates a new node (uses operator new if
  // we're *not* preallocating, otherwise uses an internal freelist).

  virtual void free_node (ACE_Timer_Node_T<TYPE> *);
  // Factory method that frees a previously allocated node (uses
  // operatord delete if we're *not* preallocating, otherwise uses an
  // internal freelist).

private:
  ACE_Timer_Node_T<TYPE> *remove (size_t index);
  // Remove and return the <index>th <ACE_Timer_Node> and restore the
  // heap property.

  void insert (ACE_Timer_Node_T<TYPE> *new_node);
  // Insert <new_node> into the heap and restore the heap property.

  void grow_heap (void);
  // Doubles the size of the heap and the corresponding timer_ids array.
  // If preallocation is used, will also double the size of the
  // preallocated array of ACE_Timer_Nodes.

  void reheap_up (ACE_Timer_Node_T<TYPE> *new_node,
                  size_t index,
                  size_t parent);
  // Restore the heap property, starting at <index>.

  void reheap_down (ACE_Timer_Node_T<TYPE> *moved_node,
                    size_t index,
                    size_t child);
  // Restore the heap property, starting at <index>.

  void copy (int index, ACE_Timer_Node_T<TYPE> *moved_node);
  // Copy <moved_node> into the <index> slot of <heap_> and move
  // <index> into the corresponding slot in the <timer_id_> array.

  int timer_id (void);
  // Returns a timer id that uniquely identifies this timer.  This id
  // can be used to cancel a timer via the <cancel (int)> method.  The
  // timer id returned from this method will never == -1 to avoid
  // conflicts with other failure return values.

  int pop_freelist (void);
  // Pops and returns a new timer id from the freelist.

  void push_freelist (int old_id);
  // Pushes <old_id> onto the freelist.

  size_t max_size_;
  // Maximum size of the heap.

  size_t cur_size_;
  // Current size of the heap.

  HEAP_ITERATOR *iterator_;
  // Iterator used to expire timers.

  ACE_Timer_Node_T<TYPE> **heap_;
  // Current contents of the Heap, which is organized as a "heap" of
  // <ACE_Timer_Node> *'s.  In this context, a heap is a "partially
  // ordered, almost complete" binary tree, which is stored in an
  // array.

  long *timer_ids_;
  // An array of "pointers" that allows each <ACE_Timer_Node> in the
  // <heap_> to be located in O(1) time.  Basically, <timer_id_[i]>
  // contains the index in the <heap_> array where an <ACE_Timer_Node>
  // * with timer id <i> resides.  Thus, the timer id passed back from
  // <schedule> is really an index into the <timer_ids> array.  The
  // <timer_ids_> array serves two purposes: negative values are
  // treated as "pointers" for the <freelist_>, whereas positive
  // values are treated as "pointers" into the <heap_> array.

  long timer_ids_freelist_;
  // "Pointer" to the first element in the freelist contained within
  // the <timer_ids_> array, which is organized as a stack.

  ACE_Timer_Node_T<TYPE> *preallocated_nodes_;
  // If this is non-0, then we preallocate <max_size_> number of
  // <ACE_Timer_Node> objects in order to reduce dynamic allocation
  // costs.  In auto-growing implementation, this points to the
  // last array of nodes allocated.

  ACE_Timer_Node_T<TYPE> *preallocated_nodes_freelist_;
  // This points to the head of the <preallocated_nodes_> freelist,
  // which is organized as a stack.

  ACE_Unbounded_Set<ACE_Timer_Node_T<TYPE> *> preallocated_node_set_;
  // Set of pointers to the arrays of preallocated timer nodes.
  // Used to delete the allocated memory when required.

  // = Don't allow these operations for now.
  ACE_UNIMPLEMENTED_FUNC (ACE_Timer_Heap_T (const ACE_Timer_Heap_T<TYPE, FUNCTOR, ACE_LOCK> &))
  ACE_UNIMPLEMENTED_FUNC (void operator= (const ACE_Timer_Heap_T<TYPE, FUNCTOR, ACE_LOCK> &))
};

#if defined (ACE_TEMPLATES_REQUIRE_SOURCE) && !defined(ACE_HAS_BROKEN_HPUX_TEMPLATES)
#include "ace/Timer_Heap_T.cpp"
#endif /* ACE_TEMPLATES_REQUIRE_SOURCE && !ACE_HAS_BROKEN_HPUX_TEMPLATES */

#if defined (ACE_TEMPLATES_REQUIRE_PRAGMA)
#pragma implementation ("Timer_Heap_T.cpp")
#endif /* ACE_TEMPLATES_REQUIRE_PRAGMA */

#endif /* ACE_TIMER_HEAP_T_H */