summaryrefslogtreecommitdiff
path: root/ace/Timer_Queue.cpp
blob: 738ea7a426374a1d9372143066c15ac589114b4d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
// Timer_Queue.cpp
// $Id$

#define ACE_BUILD_DLL
#include "ace/Timer_Queue.h"

#if !defined (__ACE_INLINE__)
#include "ace/Timer_Queue.i"
#endif /* __ACE_INLINE__ */

ACE_ALLOC_HOOK_DEFINE(ACE_Timer_Node)

void
ACE_Timer_Node::dump (void) const
{
  ACE_TRACE ("ACE_Timer_Node::dump");
  ACE_DEBUG ((LM_DEBUG, ACE_BEGIN_DUMP, this));
  ACE_DEBUG ((LM_DEBUG, "\nhandler_ = %x", this->handler_));
  ACE_DEBUG ((LM_DEBUG, "\narg_ = %x", this->arg_));
  this->timer_value_.dump ();
  this->interval_.dump ();
  ACE_DEBUG ((LM_DEBUG, "\nnext_ = %x", this->next_));
  ACE_DEBUG ((LM_DEBUG, "\ntimer_id_ = %d", this->timer_id_));
  ACE_DEBUG ((LM_DEBUG, ACE_END_DUMP));
}

ACE_Timer_Node::ACE_Timer_Node (void)
{
  ACE_TRACE ("ACE_Timer_Node::ACE_Timer_Node");
}

ACE_Timer_Node::ACE_Timer_Node (ACE_Event_Handler *h, 
				const void *a, 
				const ACE_Time_Value &t, 
				const ACE_Time_Value &i, 
				ACE_Timer_Node *n,
				int timer_id)
  : handler_ (h), 
    arg_ (a), 
    timer_value_ (t), 
    interval_ (i), 
    next_ (n),
    timer_id_ (timer_id)
{
  ACE_TRACE ("ACE_Timer_Node::ACE_Timer_Node");
}

ACE_Timer_Queue_Iterator::ACE_Timer_Queue_Iterator (void)
{
}

ACE_Timer_Queue_Iterator::~ACE_Timer_Queue_Iterator (void)
{
}

// Determines the minimum amount of time that the Reactor must wait
// before timing out.  This is computed as the smaller of (1) the
// amount the caller requested when calling handle_events() and (2)
// the earliest time registered in the Timer Queue (if any).  Must be
// called with an external lock held since it returns a pointer to a
// Time_Value object stored in the Timer_Queue object itself.  If some
// external lock isn't held we'll have reentrancy problems!

ACE_Time_Value *
ACE_Timer_Queue::calculate_timeout (ACE_Time_Value *max_wait_time)
{
  ACE_TRACE ("ACE_Timer_List::calculate_timeout");
  ACE_MT (ACE_GUARD_RETURN (ACE_Recursive_Thread_Mutex, ace_mon, this->lock_, max_wait_time));

  if (this->is_empty ())
    // Nothing on the Timer_Queue, so use whatever the caller gave us.
    return max_wait_time; 
  else
    {
      ACE_Time_Value cur_time = this->gettimeofday ();

      if (this->earliest_time () > cur_time)
        {
	  // The earliest item on the Timer_Queue is still in the
	  // future.  Therefore, use the smaller of (1) caller's wait
	  // time or (2) the delta time between now and the earliest
	  // time on the Timer_Queue.

          this->timeout_ = this->earliest_time () - cur_time;
          if (max_wait_time == 0 || *max_wait_time > timeout_)
            return &this->timeout_;
	  else
	    return max_wait_time;
        }
      else 	  
        {
	  // The earliest item on the Timer_Queue is now in the past.
	  // Therefore, we've got to "poll" the Reactor, i.e., it must
	  // just check the descriptors and then dispatch timers, etc.
          this->timeout_ = ACE_Time_Value::zero;
	  return &this->timeout_;
        }
    }
}

void
ACE_Timer_Queue::dump (void) const
{
  ACE_TRACE ("ACE_Timer_Queue::dump");
  ACE_DEBUG ((LM_DEBUG, ACE_BEGIN_DUMP, this));
  this->timeout_.dump ();
  this->timer_skew_.dump ();
  ACE_DEBUG ((LM_DEBUG, ACE_END_DUMP));    
}

ACE_Timer_Queue::ACE_Timer_Queue (void)
  : timer_skew_ (0, ACE_TIMER_SKEW)

{
  ACE_TRACE ("ACE_Timer_Queue::ACE_Timer_Queue");
}

ACE_Timer_Queue::~ACE_Timer_Queue (void)
{
  ACE_TRACE ("ACE_Timer_Queue::~ACE_Timer_Queue");
}

// Run the <handle_timeout> method for all Timers whose values are <=
// <cur_time>.

int
ACE_Timer_Queue::expire (const ACE_Time_Value &cur_time)
{
  ACE_TRACE ("ACE_Timer_List::expire");
  ACE_MT (ACE_GUARD_RETURN (ACE_Recursive_Thread_Mutex, ace_mon, this->lock_, -1));

  int number_of_timers_expired = 0;

  ACE_Timer_Queue_Iterator &iter = this->iter ();

  // Keep looping while there are timers remaining and the earliest
  // timer is <= the <cur_time> passed in to the method.

  for (ACE_Timer_Node *expired;
       iter.next (expired, cur_time) != 0;
       )
    {
      ACE_Event_Handler *handler = 
	(ACE_Event_Handler *) expired->handler_;
      const void *arg = expired->arg_;
      int reclaim = 1;
      
      // Check if this is an interval timer.
      if (expired->interval_ > ACE_Time_Value::zero)
	{
	  // Make sure that we skip past values that have already
	  // "expired".
	  do
	    expired->timer_value_ += expired->interval_;
	  while (expired->timer_value_ <= cur_time);

	  // Since this is an interval timer, we need to reschedule
	  // it.
	  this->reschedule (expired);
	  reclaim = 0;
	}

      // Perform the callback.
      if (handler->handle_timeout (cur_time, arg) == -1)
	this->cancel (handler);

      if (reclaim)
	// Call the factory method to free up the node.
	this->free_node (expired);

      number_of_timers_expired++;
    }

  return number_of_timers_expired;
}

ACE_Time_Value
ACE_Timer_Queue::gettimeofday (void)
{
  return ACE_OS::gettimeofday ();
}