summaryrefslogtreecommitdiff
path: root/ace/Timer_Queue.cpp
blob: 21625ced2ef1561931b94415ed6167f875d31e0c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
// Timer_Queue.cpp
// $Id$

#define ACE_BUILD_DLL
#include "ace/Timer_Queue.h"

#if !defined (__ACE_INLINE__)
#include "ace/Timer_Queue.i"
#endif /* __ACE_INLINE__ */

ACE_ALLOC_HOOK_DEFINE(ACE_Timer_Node)

void
ACE_Timer_Node::dump (void) const
{
  ACE_TRACE ("ACE_Timer_Node::dump");
}

ACE_Timer_Node::ACE_Timer_Node (ACE_Event_Handler *h, 
				const void *a, 
				const ACE_Time_Value &t, 
				const ACE_Time_Value &i, 
				ACE_Timer_Node *n,
				int timer_id)
  : handler_ (h), 
    arg_ (a), 
    timer_value_ (t), 
    interval_ (i), 
    next_ (n),
    timer_id_ (timer_id)
{
  ACE_TRACE ("ACE_Timer_Node::ACE_Timer_Node");
}

ACE_ALLOC_HOOK_DEFINE(ACE_Timer_Queue)

void
ACE_Timer_Queue::dump (void) const
{
  ACE_TRACE ("ACE_Timer_Queue::dump");
  ACE_DEBUG ((LM_DEBUG, ACE_BEGIN_DUMP, this));
  this->timer_skew_.dump ();
  ACE_DEBUG ((LM_DEBUG, ACE_END_DUMP));    
}

// Create an empty queue.

ACE_Timer_Queue::ACE_Timer_Queue (void)
  : head_ (0),
    timer_id_ (0),
    timer_skew_ (0, ACE_TIMER_SKEW)
{
  ACE_TRACE ("ACE_Timer_Queue::ACE_Timer_Queue");
}

// Checks if queue is empty. 

int 
ACE_Timer_Queue::is_empty (void) const
{
  ACE_TRACE ("ACE_Timer_Queue::is_empty");
  return this->head_ == 0;
}

// Returns earliest time in a non-empty queue. 

const ACE_Time_Value &
ACE_Timer_Queue::earliest_time (void) const
{
  ACE_TRACE ("ACE_Timer_Queue::earliest_time");
  return this->head_->timer_value_;
}

// Remove all remaining items in the queue. 

ACE_Timer_Queue::~ACE_Timer_Queue (void)
{
  ACE_TRACE ("ACE_Timer_Queue::~ACE_Timer_Queue");
  ACE_MT (ACE_GUARD (ACE_Recursive_Thread_Mutex, ace_mon, this->lock_));
  
  ACE_Timer_Node *curr = this->head_;
  
  while (curr != 0)
    {
      ACE_Timer_Node *next = curr->next_;
      delete curr;
      curr = next;
    }
}

// Reschedule a periodic timer.  This function must be called with the
// mutex lock held.

void 
ACE_Timer_Queue::reschedule (ACE_Timer_Node *expired)
{
  ACE_TRACE ("ACE_Timer_Queue::reschedule");
  if (this->is_empty () || expired->timer_value_ < this->earliest_time ())
    {
      expired->next_ = this->head_;
      this->head_ = expired;
    }
  else
    {
      ACE_Timer_Node *prev = this->head_;
      ACE_Timer_Node *after  = this->head_->next_;

      // Locate the proper position in the queue. 

      while (after != 0 
	     && expired->timer_value_ > after->timer_value_)
	{
	  prev = after;
	  after  = after->next_;
	}

      expired->next_ = after;
      prev->next_  = expired;
    }
}

// Insert a new handler that expires at time future_time; if interval
// is > 0, the handler will be reinvoked periodically.

int
ACE_Timer_Queue::schedule (ACE_Event_Handler *handler,
			   const void *arg,
			   const ACE_Time_Value	&future_time, 
			   const ACE_Time_Value	&interval)
{
  ACE_TRACE ("ACE_Timer_Queue::schedule");
  ACE_MT (ACE_GUARD_RETURN (ACE_Recursive_Thread_Mutex, ace_mon, this->lock_, -1));

  // Increment the sequence number (it will wrap around).
  this->timer_id_++;

  if (this->is_empty () || future_time < this->earliest_time ())
    {
      // Place at the beginning of the list.
      ACE_NEW_RETURN (this->head_, 
		      ACE_Timer_Node (handler, 
				      arg, 
				      future_time,
				      interval, 
				      this->head_,
				      this->timer_id_),
		      -1);
      return this->head_ ? this->timer_id_ : -1;
    }
  else // Place in the middle of the list somewhere.
    {
      ACE_Timer_Node *prev = this->head_;
      ACE_Timer_Node *after = this->head_->next_;

      while (after != 0 && future_time > after->timer_value_)
	{
	  prev = after;
	  after = after->next_;
	}

      ACE_NEW_RETURN (prev->next_,
		      ACE_Timer_Node (handler, 
				      arg, 
				      future_time,
				      interval, 
				      after,
				      this->timer_id_),
		      -1);
      return prev->next_ ? this->timer_id_ : -1;
    }
}

// Locate and remove the single <ACE_Event_Handler> with a value of
// <timer_id> from the timer queue.

int
ACE_Timer_Queue::cancel (int timer_id, const void **arg)
{
  ACE_TRACE ("ACE_Timer_Queue::cancel");
  ACE_MT (ACE_GUARD_RETURN (ACE_Recursive_Thread_Mutex, ace_mon, this->lock_, -1));

  ACE_Timer_Node *prev = 0;
  ACE_Timer_Node *curr = 0;

  // Try to locate the ACE_Timer_Node that matches the timer_id.

  for (curr = this->head_; 
       curr != 0 && curr->timer_id_ != timer_id;
       curr = curr->next_)
    prev = curr;

  if (curr != 0)
    {
      if (prev == 0)
	this->head_ = curr->next_;
      else
	prev->next_ = curr->next_;

      if (arg != 0)
	*arg = curr->arg_;

      delete curr;
      return 0;
    }
  else
    return -1;
}

// Locate and remove all values of <handler> from the timer queue.

int
ACE_Timer_Queue::cancel (ACE_Event_Handler *handler)
{
  ACE_TRACE ("ACE_Timer_Queue::cancel");
  ACE_MT (ACE_GUARD_RETURN (ACE_Recursive_Thread_Mutex, ace_mon, this->lock_, -1));

  ACE_Timer_Node *prev = 0;
  ACE_Timer_Node *curr = this->head_;

  while (curr != 0)
    {
      if (curr->handler_ == handler)
	{
	  if (prev == 0)
	    {
	      this->head_ = curr->next_;
	      delete curr;
	      curr = this->head_;
	    }
	  else
	    {
	      prev->next_ = curr->next_;
	      delete curr;
	      curr = prev->next_;
	    }
	}
      else
	{
	  prev = curr;
	  curr = curr->next_;
	}
    }

  return 0;
}

// Run the <handle_timeout> method for all Timers whose values are <=
// <cur_time>.

int
ACE_Timer_Queue::expire (const ACE_Time_Value &cur_time)
{
  ACE_TRACE ("ACE_Timer_Queue::expire");
  ACE_MT (ACE_GUARD_RETURN (ACE_Recursive_Thread_Mutex, ace_mon, this->lock_, -1));

  for (;;)
    {
      if (this->is_empty () || this->earliest_time () > cur_time)
	break; // There aren't any more timers eligible to expire.

      ACE_Timer_Node *expired = this->head_;
      ACE_Event_Handler *handler = 
	(ACE_Event_Handler *) expired->handler_;
      const void *arg = expired->arg_;
      int reclaim = 1;
      int result;

      this->head_ = this->head_->next_;

      // Check whether this is an interval timer.
      if (expired->interval_ > ACE_Time_Value::zero)
	{
	  // Make sure that we skip past values that have already
	  // "expired".
	  do
	    expired->timer_value_ += expired->interval_;
	  while (expired->timer_value_ <= cur_time);

	  // Since this is an interval timer, we need to reschedule
	  // it.
	  this->reschedule (expired);
	  reclaim = 0;
	}

      // Perform the callback.
      result = handler->handle_timeout (cur_time, arg);

      if (result == -1)
	this->cancel (handler);

      if (reclaim)
	delete expired;
    }
  return 0;
}

// Determines the maximum amount of time that the Reactor must wait
// before timing out.  This is computed as the smaller of (1) the
// amount the caller requested when calling handle_events() and (2)
// the earliest time registered in the Timer Queue (if any).  Must be
// called with locks held since it returns a pointer to a Time_Value
// object stored in the Timer_Queue object itself.  If the lock isn't
// held we'll have reentrancy problems!)

ACE_Time_Value *
ACE_Timer_Queue::calculate_timeout (ACE_Time_Value *max_wait_time)
{
  ACE_TRACE ("ACE_Timer_Queue::calculate_timeout");
  ACE_MT (ACE_GUARD_RETURN (ACE_Recursive_Thread_Mutex, ace_mon, this->lock_, max_wait_time));

  if (this->is_empty ())
    // Nothing on the Timer_Queue, so use whatever the caller gave us.
    return max_wait_time; 
  else
    {
      ACE_Time_Value cur_time = ACE_OS::gettimeofday ();

      if (this->earliest_time () > cur_time)
        {
	  // The earliest item on the Timer_Queue is still in the
	  // future.  Therefore, use the smaller of (1) caller's wait
	  // time or (2) the delta time between now and the earliest
	  // time on the Timer_Queue.

          this->timeout_ = this->earliest_time () - cur_time;
          if (max_wait_time == 0 || *max_wait_time > timeout_)
            return &this->timeout_;
	  else
	    return max_wait_time;
        }
      else 	  
        {
	  // The earliest item on the Timer_Queue is now in the past.
	  // Therefore, we've got to "poll" the Reactor, i.e., it must
	  // just check the descriptors and then dispatch timers, etc.
          this->timeout_ = ACE_Time_Value::zero;
	  return &this->timeout_;
        }
    }
}