1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
|
/* -*- C++ -*- */
// $Id$
// ============================================================================
//
// = LIBRARY
// ace
//
// = FILENAME
// Timer_Queue.h
//
// = AUTHOR
// Doug Schmidt
//
// ============================================================================
#if !defined (ACE_TIMER_QUEUE_H)
#define ACE_TIMER_QUEUE_H
#include "ace/Event_Handler.h"
#include "ace/Time_Value.h"
#include "ace/Synch.h"
// Forward declaration.
class ACE_Timer_Queue;
// This should be nested within the ACE_Timer_Queue class but some C++
// compilers still don't like this...
class ACE_Export ACE_Timer_Node
// = TITLE
// Maintains the state associated with a Timer entry.
{
// = The use of friends should be replaced with accessors...
friend class ACE_Timer_Queue;
friend class ACE_Timer_List;
friend class ACE_Timer_List_Iterator;
friend class ACE_Timer_Heap;
friend class ACE_Timer_Heap_Iterator;
// = Initialization methods.
ACE_Timer_Node (ACE_Event_Handler *h,
const void *a,
const ACE_Time_Value &t,
const ACE_Time_Value &i,
ACE_Timer_Node *n,
int timer_id);
// Constructor.
ACE_Timer_Node (void);
// Default constructor.
ACE_Event_Handler *handler_;
// Handler to invoke <handle_timeout> on when a timeout occurs.
const void *arg_;
// Argument to pass to <handle_timeout>.
ACE_Time_Value timer_value_;
// Time until the timer expires.
ACE_Time_Value interval_;
// If this is a periodic timer this holds the time until the next
// timeout.
ACE_Timer_Node *next_;
// Pointer to next timer.
int timer_id_;
// Id of this timer (used to cancel timers before they expire).
ACE_ALLOC_HOOK_DECLARE;
// Declare the dynamic allocation hooks.
void dump (void) const;
// Dump the state of an object.
};
class ACE_Export ACE_Timer_Queue_Iterator
// = TITLE
// Generic interfae for iterating over a subclass of
// <ACE_Timer_Queue>.
//
// = DESCRIPTION
// This is a special type of iterator that "advances" by moving
// the head of the timer queue up by one every time.
{
public:
ACE_Timer_Queue_Iterator (void);
virtual ~ACE_Timer_Queue_Iterator (void);
virtual int next (ACE_Timer_Node *&timer_node,
const ACE_Time_Value &cur_time) = 0;
// Pass back the next <timer_node> that hasn't been seen yet, if its
// <time_value_> <= <cur_time>. In addition, moves the timer queue
// forward by one node. Returns 0 when all <timer_nodes> have been
// seen, else 1.
};
class ACE_Export ACE_Timer_Queue
// = TITLE
// Provides an interface to timers.
//
// = DESCRIPTION
// This implementation uses a linked list of absolute times.
// Therefore, in the average case, scheduling and canceling
// <ACE_Event_Handler> timers is O(N) (where N is the total
// number of timers) and expiring timers is O(K) (where K is
// the total number of timers that are < the current time of
// day).
//
// More clever implementations could use a delta-list, a heap,
// or timing wheels, etc. For instance, <ACE_Timer_Heap>
// is a subclass of <ACE_Timer_Queue> that implements a
// heap-based callout queue.
{
public:
// = Initialization and termination methods.
ACE_Timer_Queue (void);
// Default constructor.
virtual ~ACE_Timer_Queue (void);
// Destructor - make virtual for proper destruction of inherited
// classes.
virtual int is_empty (void) const = 0;
// True if queue is empty, else false.
virtual const ACE_Time_Value &earliest_time (void) const = 0;
// Returns the time of the earlier node in the Timer_Queue.
virtual int schedule (ACE_Event_Handler *event_handler,
const void *arg,
const ACE_Time_Value &delay,
const ACE_Time_Value &interval = ACE_Time_Value::zero) = 0;
// Schedule an <event_handler> that will expire after <delay> amount
// of time. If it expires then <arg> is passed in as the value to
// the <event_handler>'s <handle_timeout> callback method. If
// <interval> is != to <ACE_Time_Value::zero> then it is used to
// reschedule the <event_handler> automatically. This method
// returns a <timer_id> that uniquely identifies the <event_handler>
// in an internal list. This <timer_id> can be used to cancel an
// <event_handler> before it expires. The cancellation ensures that
// <timer_ids> are unique up to values of greater than 2 billion
// timers. As long as timers don't stay around longer than this
// there should be no problems with accidentally deleting the wrong
// timer. Returns -1 on failure (which is guaranteed never to be a
// valid <timer_id>.
virtual int cancel (ACE_Event_Handler *event_handler) = 0;
// Cancel all <event_handlers> that match the address of
// <event_handler>. Returns number of handler's cancelled.
virtual int cancel (int timer_id, const void **arg = 0) = 0;
// Cancel the single <ACE_Event_Handler> that matches the <timer_id>
// value (which was returned from the <schedule> method). If arg is
// non-NULL then it will be set to point to the ``magic cookie''
// argument passed in when the <Event_Handler> was registered. This
// makes it possible to free up the memory and avoid memory leaks.
// Returns 1 if cancellation succeeded and 0 if the <timer_id>
// wasn't found.
virtual int expire (const ACE_Time_Value ¤t_time);
// Run the <handle_timeout> method for all Timers whose values are
// <= <cur_time>. This does not account for <timer_skew>. Returns
// the number of <Event_Handler>s for which <handle_timeout> was
// called.
virtual int expire (void);
// Run the <handle_timeout> method for all Timers whose values are
// <= <ACE_OS::gettimeofday>. Also accounts for <timer_skew>.
// Returns the number of <Event_Handler>s for which <handle_timeout>
// was called.
virtual ACE_Time_Value *calculate_timeout (ACE_Time_Value *max);
// Determine the next event to timeout. Returns <max> if there are
// no pending timers or if all pending timers are longer than max.
// = Set/get the timer skew for the Timer_Queue.
void timer_skew (const ACE_Time_Value &skew);
const ACE_Time_Value &timer_skew (void) const;
virtual void dump (void) const;
// Dump the state of an object.
ACE_ALLOC_HOOK_DECLARE;
// Declare the dynamic allocation hooks.
protected:
virtual void reschedule (ACE_Timer_Node *) = 0;
// Reschedule an "interval" <ACE_Timer_Node>.
virtual ACE_Timer_Queue_Iterator &iter (void) = 0;
// Returns a pointer to this <ACE_Timer_Queue>'s iterator.
virtual ACE_Timer_Node *alloc_node (void) = 0;
// Factory method that allocates a new node.
virtual void free_node (ACE_Timer_Node *) = 0;
// Factory method that frees a previously allocated node.
#if defined (ACE_MT_SAFE)
ACE_Recursive_Thread_Mutex lock_;
// Synchronization variable for the MT_SAFE ACE_Reactor
#endif /* ACE_MT_SAFE */
private:
ACE_Time_Value timeout_;
// Returned by <calculate_timeout>.
ACE_Time_Value timer_skew_;
// Adjusts for timer skew in various clocks.
};
#if defined (__ACE_INLINE__)
#include "ace/Timer_Queue.i"
#endif /* __ACE_INLINE__ */
#endif /* ACE_TIMER_QUEUE_H */
|