summaryrefslogtreecommitdiff
path: root/ace/Timer_Queue_Adapters.cpp
blob: 01f7de4dcb81efd14124bcc099a2f0c09e9b4602 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
// $Id$

#define ACE_BUILD_DLL
#include "ace/Timer_Queue_Adapters.h"

#if !defined (ACE_TIMER_QUEUE_ADAPTERS_C)
# define ACE_TIMER_QUEUE_ADAPTERS_C

ACE_RCSID(ace, Timer_Queue_Adapters, "$Id$")

# if !defined (__ACE_INLINE__)
#  include "ace/Timer_Queue_Adapters.i"
# endif /* __ACE_INLINE__ */

template <class TQ> TQ &
ACE_Async_Timer_Queue_Adapter<TQ>::timer_queue (void)
{
  return this->timer_queue_;
}

template <class TQ> int
ACE_Async_Timer_Queue_Adapter<TQ>::cancel (long timer_id,
                                           const void **act)
{
  // Block designated signals.
  ACE_Sig_Guard sg (&this->mask_);
  ACE_UNUSED_ARG (sg);

  return this->timer_queue_.cancel (timer_id, act);
}

template <class TQ> int
ACE_Async_Timer_Queue_Adapter<TQ>::expire (void)
{
  // Block designated signals.
  ACE_Sig_Guard sg (&this->mask_);
  ACE_UNUSED_ARG (sg);

  return this->timer_queue_.expire ();
}

template <class TQ> int
ACE_Async_Timer_Queue_Adapter<TQ>::schedule_ualarm (void)
{
  ACE_Time_Value tv = this->timer_queue_.earliest_time ()
    - ACE_OS::gettimeofday ();

  // Beware of negative times and zero times (which cause problems for
  // <ualarm>).
  if (tv < ACE_Time_Value::zero)
    tv = ACE_Time_Value (0, 1);

  // @@ This code should be clever enough to avoid updating the
  // <ualarm> if we haven't actually changed the earliest time.
  // Schedule a new timer.
  ACE_OS::ualarm (tv);
  return 0;
}

template <class TQ> long
ACE_Async_Timer_Queue_Adapter<TQ>::schedule (ACE_Event_Handler *eh,
                                             const void *act,
                                             const ACE_Time_Value &delay,
                                             const ACE_Time_Value &interval)
{
  ACE_UNUSED_ARG (act);
  ACE_UNUSED_ARG (interval);

  // Block designated signals.
  ACE_Sig_Guard sg (&this->mask_);
  ACE_UNUSED_ARG (sg);

  // @@ We still need to implement interval timers...
  long tid = this->timer_queue_.schedule (eh, 0, delay);

  if (tid == -1)
    ACE_ERROR_RETURN ((LM_ERROR,
                       ASYS_TEXT ("%p\n"),
                       ASYS_TEXT ("schedule_timer")),
                      -1);

  if (this->schedule_ualarm () == -1)
    return 0;
  else
    return tid;
}

template <class TQ>
ACE_Async_Timer_Queue_Adapter<TQ>::ACE_Async_Timer_Queue_Adapter (ACE_Sig_Set *mask)
  // If <mask> == 0, block *all* signals when the SIGARLM handler is
  // running, else just block those in the mask.
  : mask_ (mask)
{
  // The following code is necessary to selectively "block" certain
  // signals when SIGALRM is running.  Also, we always restart system
  // calls that are interrupted by the signals.

  ACE_Sig_Action sa ((ACE_SignalHandler) 0,
                     this->mask_,
                     SA_RESTART);

  if (this->sig_handler_.register_handler (SIGALRM, this, &sa) == -1)
    ACE_ERROR ((LM_ERROR,
                ASYS_TEXT ("%p\n"),
                ASYS_TEXT ("register_handler")));
}

// This is the signal handler function for the asynchronous timer
// list.  It gets invoked asynchronously when the SIGALRM signal
// occurs.

template <class TQ> int
ACE_Async_Timer_Queue_Adapter<TQ>::handle_signal (int signum,
                                                  siginfo_t *,
                                                  ucontext_t *)
{
  ACE_DEBUG ((LM_DEBUG,
              ASYS_TEXT ("handling signal %S\n"),
              signum));
  switch (signum)
    {
    case SIGALRM:
      {
        int expired_timers;

        // Expire the pending timers.
        // @@ We need to figure out how to implement interval timers...
        expired_timers = this->timer_queue_.expire ();

        if (expired_timers > 0)
          ACE_DEBUG ((LM_DEBUG,
                      ASYS_TEXT ("time = %d, timers expired = %d\n"),
                      ACE_OS::time (),
                      expired_timers));

        // Only schedule a new timer if there is one in the list.
        // @@ This code should also become smarter to avoid
        // unnecessary calls to ualarm().
        if (this->timer_queue_.is_empty () == 0)
          return this->schedule_ualarm ();
        else
          return 0;
        /* NOTREACHED */
      }
    default:
      ACE_ERROR_RETURN ((LM_ERROR, "unexpected signal %S\n", signum), -1);
      /* NOTREACHED */
    }
}

template<class TQ>
ACE_Thread_Timer_Queue_Adapter<TQ>::ACE_Thread_Timer_Queue_Adapter (ACE_Thread_Manager *tm)
  : ACE_Task_Base (tm),
    condition_ (mutex_),
    active_ (1), // Assume that we start in active mode.
    thr_id_ (ACE_OS::NULL_thread)
{
}

template<class TQ> ACE_SYNCH_MUTEX &
ACE_Thread_Timer_Queue_Adapter<TQ>::mutex (void)
{
  return this->mutex_;
}

template<class TQ> long
ACE_Thread_Timer_Queue_Adapter<TQ>::schedule
    (ACE_Event_Handler* handler,
     const void *act,
     const ACE_Time_Value &delay,
     const ACE_Time_Value &interval)
{
  ACE_GUARD_RETURN (ACE_SYNCH_MUTEX, ace_mon, this->mutex_, -1);

  long result = this->timer_queue_.schedule (handler, act, delay, interval);
  this->condition_.signal ();
  return result;
}

template<class TQ> int
ACE_Thread_Timer_Queue_Adapter<TQ>::cancel (long timer_id,
                                            const void **act)
{
  ACE_GUARD_RETURN (ACE_SYNCH_MUTEX, ace_mon, this->mutex_, -1);

  int result = this->timer_queue_.cancel (timer_id, act);
  condition_.signal ();
  return result;
}

template<class TQ> void
ACE_Thread_Timer_Queue_Adapter<TQ>::deactivate (void)
{
  ACE_GUARD (ACE_SYNCH_MUTEX, ace_mon, this->mutex_);

  this->active_ = 0;
  this->condition_.signal ();
}

template<class TQ> int
ACE_Thread_Timer_Queue_Adapter<TQ>::svc (void)
{
  ACE_GUARD_RETURN (ACE_SYNCH_MUTEX, ace_mon, this->mutex_, -1);

  this->thr_id_ = ACE_Thread::self ();

  // Thread cancellation point, if ACE supports it.
# if !defined (ACE_LACKS_PTHREAD_CANCEL)
  ACE_PTHREAD_CLEANUP_PUSH (&this->condition_.mutex ());
# endif /* ACE_LACKS_PTHREAD_CANCEL */

  while (this->active_)
    {
# if defined (ACE_HAS_DEFERRED_TIMER_COMMANDS)

      // Temporarily suspend ownership of the timer queue mutex in
      // order to dispatch deferred execution commands.  These commands
      // are to be treated as executing in a context "external" to the
      // timer queue adapter, and thus must compete separately for this lock.
      mutex_.release ();
      this->dispatch_commands ();

      // Re-acquire ownership of the timer queue mutex in order
      // to restore the "internal" timer queue adapter context
      mutex_.acquire ();


# endif /* ACE_HAS_DEFERRED_TIMER_COMMANDS */

      // If the queue is empty, sleep until there is a change on it.
      if (this->timer_queue_.is_empty ())
        {
          this->condition_.wait ();
        }
      else
        {
          // Compute the remaining time, being careful not to sleep
          // for "negative" amounts of time.
          ACE_Time_Value tv = this->timer_queue_.earliest_time ();

          // ACE_DEBUG ((LM_DEBUG,  ASYS_TEXT ("waiting until %u.%3.3u secs\n"),
          // tv.sec(), tv.msec()));
          this->condition_.wait (&tv);
        }

      // Expire timers anyway, at worst this is a no-op.
      this->timer_queue_.expire ();
    }

   // Thread cancellation point, if ACE supports it.
# if !defined (ACE_LACKS_PTHREAD_CANCEL)
  ACE_PTHREAD_CLEANUP_POP (0);
# endif /* ACE_LACKS_PTHREAD_CANCEL */

  ACE_DEBUG ((LM_DEBUG, ASYS_TEXT ("terminating dispatching thread\n")));
  return 0;
}


# if defined (ACE_HAS_DEFERRED_TIMER_COMMANDS)

// Enqueues a command object for execution just before waiting on the next
// timer event. This allows deferred execution of commands that cannot
// be performed in the timer event handler context, such as registering 
// or cancelling timers on platforms where the timer queue mutex is not
// recursive.

template<class TQ> int
ACE_Thread_Timer_Queue_Adapter<TQ>::enqueue_command (ACE_Command_Base *cmd, 
                                                     COMMAND_ENQUEUE_POSITION pos)
{  
  // Serialize access to the command queue.
  ACE_GUARD_RETURN (ACE_SYNCH_MUTEX, ace_mon, 
                    this->command_mutex_, -1);

  if (pos == ACE_Thread_Timer_Queue_Adapter<TQ>::TAIL)
    {
      return command_queue_.enqueue_tail (cmd);
    }
  else
    {
      return command_queue_.enqueue_head (cmd);
    }
}


// Dispatches all command objects enqueued in the most 
// recent event handler context.

template<class TQ> int
ACE_Thread_Timer_Queue_Adapter<TQ>::dispatch_commands (void)
{
  // Serialize access to the command queue.
  ACE_GUARD_RETURN (ACE_SYNCH_MUTEX, ace_mon, 
                    this->command_mutex_, -1);

  // loop through the enqueued commands
  ACE_Command_Base *cmd = 0;
  while (command_queue_.dequeue_head (cmd) == 0)
    if (cmd)
      {
        cmd->execute ();
        delete cmd;
      }

  return 0;
}

# endif /* ACE_HAS_DEFERRED_TIMER_COMMANDS */

#endif /* ACE_TIMER_QUEUE_ADAPTERS_C*/