1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
|
// -*- C++ -*-
//=============================================================================
/**
* @file Timer_Queue_Adapters.h
*
* $Id$
*
* @author Douglas C. Schmidt <schmidt@cs.wustl.edu> and
* Carlos O'Ryan <coryan@uci.edu>
*/
//=============================================================================
#ifndef ACE_TIMER_QUEUE_ADAPTERS_H
#define ACE_TIMER_QUEUE_ADAPTERS_H
#include "ace/pre.h"
#include "ace/Task.h"
#if !defined (ACE_LACKS_PRAGMA_ONCE)
# pragma once
#endif /* ACE_LACKS_PRAGMA_ONCE */
#include "ace/Signal.h"
/**
* @class ACE_Async_Timer_Queue_Adapter
*
* @brief Adapts a <TQ> to be run asynchronously.
*
* This implementation uses the <ualarm> call, which generates
* the SIGARLM signal that is caught by this class.
*/
template <class TQ>
class ACE_Async_Timer_Queue_Adapter : public ACE_Event_Handler
{
public:
typedef TQ TIMER_QUEUE;
/// Constructor
/**
* Register the SIGALRM handler. If <mask> == 0 then block all
* signals when <SIGALRM> is run. Otherwise, just block the signals
* indicated in <mask>.
*/
ACE_Async_Timer_Queue_Adapter (ACE_Sig_Set *mask = 0);
/// Schedule the timer according to the semantics of the
/// <ACE_Timer_List>.
/**
* This timer gets dispatched via a signal, rather than by a user
* calling <expire>. Note that interval timers are not implemented
* yet.
*/
long schedule (ACE_Event_Handler *type,
const void *act,
const ACE_Time_Value &future_time,
const ACE_Time_Value &interval = ACE_Time_Value::zero);
/// Cancel the <timer_id> and pass back the <act> if an address is
/// passed in.
int cancel (long timer_id, const void **act = 0);
/// Dispatch all timers whose values are <= <cur_time>. Returns the
/// number of timers canceled.
int expire (void);
/// Access the underlying <TIMER_QUEUE>.
TQ &timer_queue (void);
private:
/// Perform the logic to compute the new ualarm(2) setting.
virtual int schedule_ualarm (void);
/// Called back by <SIGALRM> handler.
virtual int handle_signal (int signum, siginfo_t *, ucontext_t *);
/// Handler for the <SIGALRM> signal, so that we can access our state
/// without requiring any global variables.
ACE_Sig_Handler sig_handler_;
/// Implementation of the timer queue (e.g., <ACE_Timer_List>,
/// <ACE_Timer_Heap>, etc.).
TQ timer_queue_;
/// Mask of signals to be blocked when we're servicing <SIGALRM>.
ACE_Sig_Set mask_;
};
/**
* @class ACE_Thread_Timer_Queue_Adapter
*
* @brief Adapts a Timer_Queue using a separate thread for dispatching.
*
* This implementation of a Timer_Queue uses a separate thread to
* dispatch the timers. The base queue need not be thread safe,
* this class takes all the necessary locks.
*
* @note This is a case where template parameters will be useful, but
* (IMHO) the effort and portability problems discourage their
* use.
*
*/
template <class TQ>
class ACE_Thread_Timer_Queue_Adapter : public ACE_Task_Base
{
public:
/// Trait for the underlying queue type.
typedef TQ TIMER_QUEUE;
# if defined (ACE_HAS_DEFERRED_TIMER_COMMANDS)
/// Typedef for the position at which to enqueue a deferred
/// execution command.
enum COMMAND_ENQUEUE_POSITION {HEAD, TAIL};
# endif /* ACE_HAS_DEFERRED_TIMER_COMMANDS */
/// Creates the timer queue. Activation of the task is the user's
/// responsibility. Optionally a pointer to a timer queue can be passed,
/// when no pointer is passed, a TQ is dynamically created
ACE_Thread_Timer_Queue_Adapter (ACE_Thread_Manager * = ACE_Thread_Manager::instance (),
TQ* timer_queue = 0);
/// Destructor.
virtual ~ACE_Thread_Timer_Queue_Adapter (void);
/// Schedule the timer according to the semantics of the <TQ>; wakes
/// up the dispatching thread.
long schedule (ACE_Event_Handler *handler,
const void *act,
const ACE_Time_Value &future_time,
const ACE_Time_Value &interval = ACE_Time_Value::zero);
/// Cancel the <timer_id> and return the <act> parameter if an
/// address is passed in. Also wakes up the dispatching thread.
int cancel (long timer_id, const void **act = 0);
/// Runs the dispatching thread.
virtual int svc (void);
/// Inform the dispatching thread that it should terminate.
virtual void deactivate (void);
/// Access the locking mechanism, useful for iteration.
ACE_SYNCH_RECURSIVE_MUTEX &mutex (void);
/// @deprecated Access the implementation queue, useful for iteration.
/// Use the method that returns a pointer instead
TQ &timer_queue (void);
/// Set a user-specified timer queue.
int timer_queue (TQ *tq);
/// Return the current <TQ>.
TQ *timer_queue (void) const;
/// Return the thread id of our active object.
ACE_thread_t thr_id (void) const;
/**
* We override the default <activate> method so that we can ensure
* that only a single thread is ever spawned. Otherwise, too many
* weird things can happen...
*/
virtual int activate (long flags = THR_NEW_LWP | THR_JOINABLE,
int n_threads = 1,
int force_active = 0,
long priority = ACE_DEFAULT_THREAD_PRIORITY,
int grp_id = -1,
ACE_Task_Base *task = 0,
ACE_hthread_t thread_handles[] = 0,
void *stack[] = 0,
size_t stack_size[] = 0,
ACE_thread_t thread_names[] = 0);
# if defined (ACE_HAS_DEFERRED_TIMER_COMMANDS)
/**
* Enqueues a command object for execution just before waiting on the next
* timer event. This allows deferred execution of commands that cannot
* be performed in the timer event handler context, such as registering
* or cancelling timers on platforms where the timer queue mutex is not
* recursive.
*/
int enqueue_command (ACE_Command_Base *command_,
COMMAND_ENQUEUE_POSITION pos = TAIL);
# endif /* ACE_HAS_DEFERRED_TIMER_COMMANDS */
private:
# if defined (ACE_HAS_DEFERRED_TIMER_COMMANDS)
/// Dispatches all command objects enqueued in the most
/// recent event handler context.
int dispatch_commands (void);
/// Queue of commands for deferred execution.
ACE_Unbounded_Queue<ACE_Command_Base *> command_queue_;
/// The mutual exclusion mechanism for the command queue.
ACE_SYNCH_MUTEX command_mutex_;
# endif /* ACE_HAS_DEFERRED_TIMER_COMMANDS */
/// The underlying Timer_Queue.
TQ* timer_queue_;
/// Keeps track of whether we should delete the timer queue (if we
/// didn't create it, then we don't delete it).
int delete_timer_queue_;
/// The mutual exclusion mechanism that is required to use the
/// <condition_>.
ACE_SYNCH_RECURSIVE_MUTEX mutex_;
/**
* The dispatching thread sleeps on this condition while waiting to
* dispatch the next timer; it is used to wake it up if there is a
* change on the timer queue.
*/
ACE_SYNCH_RECURSIVE_CONDITION condition_;
/// When deactivate is called this variable turns to false and the
/// dispatching thread is signalled, to terminate its main loop.
int active_;
/// Thread id of our active object task.
ACE_thread_t thr_id_;
};
#if defined (__ACE_INLINE__)
# include "ace/Timer_Queue_Adapters.i"
#endif /* __ACE_INLINE__ */
#if defined (ACE_TEMPLATES_REQUIRE_SOURCE)
# include "ace/Timer_Queue_Adapters.cpp"
#endif /* ACE_TEMPLATES_REQUIRE_SOURCE */
#if defined (ACE_TEMPLATES_REQUIRE_PRAGMA)
# pragma implementation ("Timer_Queue_Adapters.cpp")
#endif /* ACE_TEMPLATES_REQUIRE_PRAGMA */
#include "ace/post.h"
#endif /* ACE_TIMER_QUEUE_ADAPTERS_H */
|