1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
|
// $Id$
#ifndef ACE_TIMER_QUEUE_T_C
#define ACE_TIMER_QUEUE_T_C
#define ACE_BUILD_DLL
#include "ace/Synch.h"
#if !defined (ACE_LACKS_PRAGMA_ONCE)
# pragma once
#endif /* ACE_LACKS_PRAGMA_ONCE */
#include "ace/Signal.h"
#include "ace/Timer_Queue_T.h"
#if !defined (__ACE_INLINE__)
#include "ace/Timer_Queue_T.i"
#endif /* __ACE_INLINE__ */
ACE_RCSID(ace, Timer_Queue_T, "$Id$")
template <class TYPE> void
ACE_Timer_Node_T<TYPE>::dump (void) const
{
ACE_TRACE ("ACE_Timer_Node_T::dump");
ACE_DEBUG ((LM_DEBUG, ACE_BEGIN_DUMP, this));
ACE_DEBUG ((LM_DEBUG, ASYS_TEXT ("\nact_ = %x"), this->act_));
this->timer_value_.dump ();
this->interval_.dump ();
ACE_DEBUG ((LM_DEBUG, ASYS_TEXT ("\nprev_ = %x"), this->prev_));
ACE_DEBUG ((LM_DEBUG, ASYS_TEXT ("\nnext_ = %x"), this->next_));
ACE_DEBUG ((LM_DEBUG, ASYS_TEXT ("\ntimer_id_ = %d\n"), this->timer_id_));
ACE_DEBUG ((LM_DEBUG, ACE_END_DUMP));
}
template <class TYPE>
ACE_Timer_Node_T<TYPE>::ACE_Timer_Node_T (void)
{
ACE_TRACE ("ACE_Timer_Node_T::ACE_Timer_Node_T");
}
template <class TYPE>
ACE_Timer_Node_T<TYPE>::~ACE_Timer_Node_T (void)
{
ACE_TRACE ("ACE_Timer_Node_T::~ACE_Timer_Node_T");
}
template <class TYPE, class FUNCTOR, class ACE_LOCK>
ACE_Timer_Queue_Iterator_T<TYPE, FUNCTOR, ACE_LOCK>::ACE_Timer_Queue_Iterator_T (void)
{
}
template <class TYPE, class FUNCTOR, class ACE_LOCK>
ACE_Timer_Queue_Iterator_T<TYPE, FUNCTOR, ACE_LOCK>::~ACE_Timer_Queue_Iterator_T (void)
{
}
// Determines the minimum amount of time that the Reactor must wait
// before timing out. This is computed as the smaller of (1) the
// amount the caller requested when calling handle_events() and (2)
// the earliest time registered in the Timer Queue (if any). Must be
// called with an external lock held since it returns a pointer to a
// Time_Value type stored in the Timer_Queue type itself. If some
// external lock isn't held we'll have reentrancy problems!
template <class TYPE, class FUNCTOR, class ACE_LOCK> ACE_Time_Value *
ACE_Timer_Queue_T<TYPE, FUNCTOR, ACE_LOCK>::calculate_timeout (ACE_Time_Value *max_wait_time)
{
ACE_TRACE ("ACE_Timer_Queue_T::calculate_timeout");
ACE_MT (ACE_GUARD_RETURN (ACE_LOCK, ace_mon, this->mutex_, max_wait_time));
if (this->is_empty ())
// Nothing on the Timer_Queue, so use whatever the caller gave us.
return max_wait_time;
else
{
ACE_Time_Value cur_time = this->gettimeofday ();
if (this->earliest_time () > cur_time)
{
// The earliest item on the Timer_Queue is still in the
// future. Therefore, use the smaller of (1) caller's wait
// time or (2) the delta time between now and the earliest
// time on the Timer_Queue.
this->timeout_ = this->earliest_time () - cur_time;
if (max_wait_time == 0 || *max_wait_time > timeout_)
return &this->timeout_;
else
return max_wait_time;
}
else
{
// The earliest item on the Timer_Queue is now in the past.
// Therefore, we've got to "poll" the Reactor, i.e., it must
// just check the descriptors and then dispatch timers, etc.
this->timeout_ = ACE_Time_Value::zero;
return &this->timeout_;
}
}
}
template <class TYPE, class FUNCTOR, class ACE_LOCK> ACE_Time_Value *
ACE_Timer_Queue_T<TYPE, FUNCTOR, ACE_LOCK>::calculate_timeout (ACE_Time_Value *max_wait_time,
ACE_Time_Value *the_timeout)
{
ACE_TRACE ("ACE_Timer_Queue_T::calculate_timeout");
if (the_timeout == 0)
return 0;
if (this->is_empty ())
{
// Nothing on the Timer_Queue, so use whatever the caller gave us.
if (max_wait_time)
*the_timeout = *max_wait_time;
else
return 0;
}
else
{
ACE_Time_Value cur_time = this->gettimeofday ();
if (this->earliest_time () > cur_time)
{
// The earliest item on the Timer_Queue is still in the
// future. Therefore, use the smaller of (1) caller's wait
// time or (2) the delta time between now and the earliest
// time on the Timer_Queue.
*the_timeout = this->earliest_time () - cur_time;
if (!(max_wait_time == 0 || *max_wait_time > *the_timeout))
*the_timeout = *max_wait_time;
}
else
{
// The earliest item on the Timer_Queue is now in the past.
// Therefore, we've got to "poll" the Reactor, i.e., it must
// just check the descriptors and then dispatch timers, etc.
*the_timeout = ACE_Time_Value::zero;
}
}
return the_timeout;
}
template <class TYPE, class FUNCTOR, class ACE_LOCK> void
ACE_Timer_Queue_T<TYPE, FUNCTOR, ACE_LOCK>::dump (void) const
{
ACE_TRACE ("ACE_Timer_Queue_T::dump");
ACE_DEBUG ((LM_DEBUG, ACE_BEGIN_DUMP, this));
this->timeout_.dump ();
this->timer_skew_.dump ();
ACE_DEBUG ((LM_DEBUG, ACE_END_DUMP));
}
template <class TYPE, class FUNCTOR, class ACE_LOCK>
ACE_Timer_Queue_T<TYPE, FUNCTOR, ACE_LOCK>::ACE_Timer_Queue_T (FUNCTOR *upcall_functor,
ACE_Free_List<ACE_Timer_Node_T <TYPE> > *freelist)
: free_list_ (freelist == 0 ? new ACE_Locked_Free_List<ACE_Timer_Node_T <TYPE>, ACE_Null_Mutex> : freelist),
gettimeofday_ (ACE_OS::gettimeofday),
upcall_functor_ (upcall_functor == 0 ? new FUNCTOR : upcall_functor),
delete_upcall_functor_ (upcall_functor == 0),
delete_free_list_ (freelist == 0),
timer_skew_ (0, ACE_TIMER_SKEW)
{
ACE_TRACE ("ACE_Timer_Queue_T::ACE_Timer_Queue_T");
}
template <class TYPE, class FUNCTOR, class ACE_LOCK>
ACE_Timer_Queue_T<TYPE, FUNCTOR, ACE_LOCK>::~ACE_Timer_Queue_T (void)
{
ACE_TRACE ("ACE_Timer_Queue_T::~ACE_Timer_Queue_T");
// Cleanup the functor and free_list on the way out
if (this->delete_upcall_functor_)
delete this->upcall_functor_;
if (this->delete_free_list_)
delete this->free_list_;
}
template <class TYPE, class FUNCTOR, class ACE_LOCK> ACE_Timer_Node_T<TYPE> *
ACE_Timer_Queue_T<TYPE, FUNCTOR, ACE_LOCK>::alloc_node (void)
{
return this->free_list_->remove ();
}
template <class TYPE, class FUNCTOR, class ACE_LOCK> void
ACE_Timer_Queue_T<TYPE, FUNCTOR, ACE_LOCK>::free_node (ACE_Timer_Node_T<TYPE> *node)
{
this->free_list_->add (node);
}
template <class TYPE, class FUNCTOR, class ACE_LOCK> ACE_LOCK &
ACE_Timer_Queue_T<TYPE, FUNCTOR, ACE_LOCK>::mutex (void)
{
return this->mutex_;
}
// Run the <handle_timeout> method for all Timers whose values are <=
// <cur_time>.
template <class TYPE, class FUNCTOR, class ACE_LOCK> int
ACE_Timer_Queue_T<TYPE, FUNCTOR, ACE_LOCK>::expire (const ACE_Time_Value &cur_time)
{
ACE_TRACE ("ACE_Timer_Queue_T::expire");
ACE_MT (ACE_GUARD_RETURN (ACE_LOCK, ace_mon, this->mutex_, -1));
int number_of_timers_expired = 0;
ACE_Timer_Node_T<TYPE> *expired;
// Keep looping while there are timers remaining and the earliest
// timer is <= the <cur_time> passed in to the method.
if (this->is_empty ())
return 0;
while (this->earliest_time () <= cur_time)
{
expired = this->remove_first ();
TYPE &type = expired->get_type ();
const void *act = expired->get_act ();
int reclaim = 1;
// Check if this is an interval timer.
if (expired->get_interval () > ACE_Time_Value::zero)
{
// Make sure that we skip past values that have already
// "expired".
do
expired->set_timer_value (expired->get_timer_value () + expired->get_interval ());
while (expired->get_timer_value () <= cur_time);
// Since this is an interval timer, we need to reschedule
// it.
this->reschedule (expired);
reclaim = 0;
}
// call the functor
this->upcall (type, act, cur_time);
if (reclaim)
// Call the factory method to free up the node.
this->free_node (expired);
number_of_timers_expired++;
if (this->is_empty ())
break;
}
return number_of_timers_expired;
}
template <class TYPE, class FUNCTOR, class ACE_LOCK> void
ACE_Timer_Queue_T<TYPE, FUNCTOR, ACE_LOCK>::return_node (ACE_Timer_Node_T<TYPE> *node)
{
ACE_MT (ACE_GUARD (ACE_LOCK, ace_mon, this->mutex_));
this->free_node (node);
}
template <class ACE_LOCK>
ACE_Event_Handler_Handle_Timeout_Upcall<ACE_LOCK>::ACE_Event_Handler_Handle_Timeout_Upcall (void)
{
}
template <class ACE_LOCK>
ACE_Event_Handler_Handle_Timeout_Upcall<ACE_LOCK>::~ACE_Event_Handler_Handle_Timeout_Upcall (void)
{
}
template <class ACE_LOCK> int
ACE_Event_Handler_Handle_Timeout_Upcall<ACE_LOCK>::timeout (ACE_Timer_Queue_T<ACE_Event_Handler *,
ACE_Event_Handler_Handle_Timeout_Upcall<ACE_LOCK>,
ACE_LOCK> &timer_queue,
ACE_Event_Handler *handler,
const void *act,
const ACE_Time_Value &cur_time)
{
// Upcall to the <handler>s handle_timeout method
if (handler->handle_timeout (cur_time, act) == -1)
timer_queue.cancel (handler, 0); // 0 means "call handle_close()".
return 0;
}
template <class ACE_LOCK> int
ACE_Event_Handler_Handle_Timeout_Upcall<ACE_LOCK>::cancellation (ACE_Timer_Queue_T<ACE_Event_Handler *,
ACE_Event_Handler_Handle_Timeout_Upcall<ACE_LOCK>,
ACE_LOCK> &timer_queue,
ACE_Event_Handler *handler)
{
ACE_UNUSED_ARG (timer_queue);
// Upcall to the <handler>s handle_close method
handler->handle_close (ACE_INVALID_HANDLE,
ACE_Event_Handler::TIMER_MASK);
return 0;
}
template <class ACE_LOCK> int
ACE_Event_Handler_Handle_Timeout_Upcall<ACE_LOCK>::deletion (ACE_Timer_Queue_T<ACE_Event_Handler *,
ACE_Event_Handler_Handle_Timeout_Upcall<ACE_LOCK>,
ACE_LOCK> &timer_queue,
ACE_Event_Handler *handler,
const void *arg)
{
ACE_UNUSED_ARG (timer_queue);
ACE_UNUSED_ARG (handler);
ACE_UNUSED_ARG (arg);
// Does nothing
return 0;
}
#endif /* ACE_TIMER_QUEUE_T_C*/
|