summaryrefslogtreecommitdiff
path: root/ace/Timer_Wheel_T.cpp
blob: 2272210f92fc29eda0e17fbb1e42e36645575cfa (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
// $Id$

#ifndef ACE_TIMER_WHEEL_T_C
#define ACE_TIMER_WHEEL_T_C

#if !defined (ACE_LACKS_PRAGMA_ONCE)
# pragma once
#endif /* ACE_LACKS_PRAGMA_ONCE */

#include "ace/Timer_Wheel_T.h"
#include "ace/Log_Msg.h"

ACE_RCSID(ace, Timer_Wheel_T, "$Id$")


// Design/implementation notes for ACE_Timer_Wheel_T.
//
// Each timer queue entry is represented by a ACE_Timer_Node.
// The timing wheel is divided into a number of "spokes"; there are
// spoke_count_ spokes in the wheel. Each timer is hashed into one of the
// spokes. Entries within each spoke are linked in a double-linked list
// in order of increasing expiration. The first ACE_Timer_Node in each
// spoke is a "dummy node" that marks the end of the list of ACE_Timer_Nodes
// in that spoke.
//
// The timer ID for a scheduled timer is formed by its spoke position in
// the wheel, and the number of timers that have been inserted in that spoke
// since the queue was initialized. N bits of the long timer_id are used
// to determine the spoke, and M bits are used as a counter.
// Each time a Node is inserted into a spoke, it's counter
// is incremented. The count is kept in the timer ID field
// of the dummy root Node. In the event of overflow of the counter, the spoke
// must be searched for each new id to make sure it's not already in use. To
// prevent having to do an exhaustive search each time, we keep extra data
// in the dummy root Node.
/**
* Default Constructor that sets defaults for spoke_count_ and resolution_
* and doesn't do any preallocation.
*
* @param upcall_functor A pointer to a functor to use instead of the default
* @param freelist       A pointer to a freelist to use instead of the default
*/
template <class TYPE, class FUNCTOR, class ACE_LOCK>
ACE_Timer_Wheel_T<TYPE, FUNCTOR, ACE_LOCK>::ACE_Timer_Wheel_T
(FUNCTOR* upcall_functor
 , FreeList* freelist
 )
: Base (upcall_functor, freelist)
, spokes_(0)
, spoke_count_(0) // calculated in open_i
, spoke_bits_(0)
, res_bits_ (0)
, earliest_spoke_ (0)
, iterator_(0)
, timer_count_(0)
{
  ACE_TRACE ("ACE_Timer_Wheel_T::ACE_Timer_Wheel_T");
  this->open_i (0,
                ACE_DEFAULT_TIMER_WHEEL_SIZE,
                ACE_DEFAULT_TIMER_WHEEL_RESOLUTION);
}

/**
* Constructor that sets up the timing wheel and also may preallocate
* some nodes on the free list
*
* @param spoke_count    The number of lists in the timer wheel
* @param resolution     The time resolution in milliseconds used by the hashing function
* @param prealloc       The number of entries to prealloc in the free_list
* @param upcall_functor A pointer to a functor to use instead of the default
* @param freelist       A pointer to a freelist to use instead of the default
*/
template <class TYPE, class FUNCTOR, class ACE_LOCK>
ACE_Timer_Wheel_T<TYPE, FUNCTOR, ACE_LOCK>::ACE_Timer_Wheel_T
  (u_int spoke_count,
   u_int resolution,
   size_t prealloc,
   FUNCTOR* upcall_functor,
   FreeList* freelist)
: Base (upcall_functor, freelist)
, spokes_ (0)
, spoke_count_ (0) // calculated in open_i
, spoke_bits_ (0)
, res_bits_ (0)
, earliest_spoke_ (0)
, iterator_ (0)
, timer_count_ (0)
{
  ACE_TRACE ("ACE_Timer_Wheel_T::ACE_Timer_Wheel_T");
  this->open_i (prealloc, spoke_count, resolution);
}

template <class TYPE, class FUNCTOR, class ACE_LOCK> int
ACE_Timer_Wheel_T<TYPE, FUNCTOR, ACE_LOCK>::power2bits (int n,
                                                        int min_bits, 
                                                        int max_bits)
{
  int max = (1 << max_bits) - 1;
  if (n > max) 
    return max_bits;

  // count the bits in n.
  int i = 0;
  int tmp = n;
  do 
    {
      tmp >>= 1;
      ++i;
    } 
  while (tmp != 0);

  if (i <= min_bits) 
    return min_bits;

  // Which is nearest?
  int a = (1 << i) - n;
  int b = (1 << (i - 1)) - n;
  if (b < 0)
    b = -b;
  if (b < a)
    return i - 1;
  return i;
}

/**
* Initialize the queue. Uses the established members for all needed
* information.
*/
template <class TYPE, class FUNCTOR, class ACE_LOCK> void
ACE_Timer_Wheel_T<TYPE, FUNCTOR, ACE_LOCK>::open_i
  (size_t prealloc, u_int spokes, u_int res)
{
  ACE_TRACE ("ACE_Timer_Wheel_T::open_i");

  this->gettimeofday (ACE_OS::gettimeofday);

  // Rather than waste bits in our timer id, we might as well round up
  // the spoke count to the next power of two - 1 . (i.e 1,3,7,15,...127,etc.)
  const int MIN_SPOKE_BITS = 3;  // Allow between 8 and 4096 spokes
  const int MAX_SPOKE_BITS = 12;
  const int MAX_RES_BITS = 20;   // 20 is plenty, even on 64 bit platforms.

  this->spoke_bits_ = power2bits (spokes, MIN_SPOKE_BITS, MAX_SPOKE_BITS);
  this->res_bits_ = power2bits (res, 1, MAX_RES_BITS);

  this->spoke_count_ = 1 << this->spoke_bits_;

  this->free_list_->resize (prealloc + this->spoke_count_);

  this->wheel_time_.msec (1 << (this->res_bits_ + this->spoke_bits_));

  ACE_NEW (this->spokes_, ACE_Timer_Node_T<TYPE>* [this->spoke_count_]);

  // Create the root nodes. These will be treated specially
  for (u_int i = 0; i < this->spoke_count_; ++i)
  {
    ACE_Timer_Node_T<TYPE>* root = this->alloc_node ();
    root->set (0, 0, ACE_Time_Value::zero, ACE_Time_Value::zero, root, root, 0);
    this->spokes_[i] = root;
  }

  ACE_NEW (iterator_, Iterator (*this));
}

/// Destructor just cleans up its memory
template <class TYPE, class FUNCTOR, class ACE_LOCK>
ACE_Timer_Wheel_T<TYPE, FUNCTOR, ACE_LOCK>::~ACE_Timer_Wheel_T (void)
{
  ACE_TRACE ("ACE_Timer_Wheel_T::~ACE_Timer_Wheel_T");

  delete iterator_;

  for (u_int i = 0; i < this->spoke_count_; ++i)
  {
    // Free all the nodes starting at the root
    ACE_Timer_Node_T<TYPE>* root = this->spokes_[i];
    for (ACE_Timer_Node_T<TYPE>* n = root->get_next (); n != root;)
    {
      ACE_Timer_Node_T<TYPE>* next = n->get_next ();
      this->upcall_functor ().deletion (*this, n->get_type (), n->get_act ());
      this->free_node (n);
      n = next;
    }
    delete root;
  }
  delete[] this->spokes_;
}

/// Searches for a node by timer_id within one spoke.
template <class TYPE, class FUNCTOR, class ACE_LOCK>
ACE_Timer_Node_T<TYPE>*
ACE_Timer_Wheel_T<TYPE, FUNCTOR, ACE_LOCK>::find_spoke_node
  (u_int spoke, long timer_id) const
{
  ACE_Timer_Node_T<TYPE>* root = this->spokes_[spoke];
  for (ACE_Timer_Node_T<TYPE>* n = root->get_next ();
       n != root;
       n = n->get_next ())
    {
      if (n->get_timer_id () == timer_id)
        return n;
    }
  return 0;
}

/// Searches all spokes for a node matching the specified timer_id
/// Uses the spoke encoded in the timer_id as a starting place.
template <class TYPE, class FUNCTOR, class ACE_LOCK>
ACE_Timer_Node_T<TYPE>*
ACE_Timer_Wheel_T<TYPE, FUNCTOR, ACE_LOCK>::find_node (long timer_id) const
{
  if (timer_id == -1)
    return 0;

  // Search the spoke where timer_id was originally scheduled
  u_int spoke_mask = this->spoke_count_ - 1;
  u_int start = timer_id & spoke_mask;
  ACE_Timer_Node_T<TYPE>* n = this->find_spoke_node (start, timer_id);
  if (n != 0)
    return n;

  //ACE_ERROR((LM_ERROR, "Node not found in original spoke.\n"));

  // Search the rest of the spokes
  for (u_int i = 0; i < this->spoke_count_; ++i)
    {
      if (i != start)
        { // already searched this one
          n = this->find_spoke_node (i, timer_id);
          if (n != 0)
            return n;
        }
    }

  //ACE_ERROR((LM_ERROR, "Node not found.\n"));
  return 0;
}

/**
* Check to see if the wheel is empty
*
* @return True if empty
*/
template <class TYPE, class FUNCTOR, class ACE_LOCK> int
ACE_Timer_Wheel_T<TYPE, FUNCTOR, ACE_LOCK>::is_empty (void) const
{
  ACE_TRACE ("ACE_Timer_Wheel_T::is_empty");
  return timer_count_ == 0;
}


/**
* @return First (earliest) node in the wheel_'s earliest_spoke_ list
*/
template <class TYPE, class FUNCTOR, class ACE_LOCK> const ACE_Time_Value &
ACE_Timer_Wheel_T<TYPE, FUNCTOR, ACE_LOCK>::earliest_time (void) const
{
  ACE_TRACE ("ACE_Timer_Wheel_T::earliest_time");
  ACE_Timer_Node_T<TYPE>* n = this->get_first_i ();
  if (n != 0)
    return n->get_timer_value ();
  return ACE_Time_Value::zero;
}

/// Uses a simple hash to find which spoke to use based on when the
/// timer is due to expire. Hopefully the 64bit int operations avoid
/// any overflow problems.
template <class TYPE, class FUNCTOR, class ACE_LOCK> u_int
ACE_Timer_Wheel_T<TYPE, FUNCTOR, ACE_LOCK>::calculate_spoke
  (const ACE_Time_Value& t) const
{
  return ACE_static_cast(u_int, (t.msec () >> this->res_bits_) & (this->spoke_count_ - 1));
}

/// Generates a unique timer_id for the given spoke. It should be pretty
/// fast until the point where the counter overflows.  At that time you
/// have to do exhaustive searches within the spoke to ensure that a particular
/// timer id is not already in use. Some optimizations are in place so
/// that this hopefully doesn't have to happen often.
template <class TYPE, class FUNCTOR, class ACE_LOCK> long
ACE_Timer_Wheel_T<TYPE, FUNCTOR, ACE_LOCK>::generate_timer_id (u_int spoke)
{

  int cnt_bits = sizeof (long) * 8 - this->spoke_bits_;
  long max_cnt = ((long)1 << cnt_bits) - 1;
  if (spoke == this->spoke_count_)
    --max_cnt; // Because -1 is used as a special invalid timer_id.

  ACE_Timer_Node_T<TYPE>* root = this->spokes_[spoke];

  if (root == root->get_next ())
    root->set_act(0);

  // We use this field to keep track of the next counter value that
  // may be in use. Of course it may have expired, so we just use
  // this field so that we know when we don't have to check for duplicates
#if defined (ACE_WIN64)
  // The cast below is legit... we know that long is shorter than a
  // pointer, but are only using it as a 'long' storage area.
#  pragma warning(push)
#  pragma warning(disable : 4311)
#endif /* ACE_WIN64 */
  long next_cnt = ACE_reinterpret_cast (long, root->get_act ());
#if defined (ACE_WIN64)
#  pragma warning(pop)
#endif /* ACE_WIN64 */

  // This field is used as a counter instead of a timer_id.
  long cnt = root->get_timer_id ();

  if (cnt >= max_cnt && root == root->get_next ())
    {
      // Special case when we overflow on an empty spoke. We can just
      // wrap the count around without searching for duplicates. We only
      // want to do this when the counter overflows, so that we return
      // unique timer_id values as often as possible.
      root->set_timer_id (1);
      return spoke;
    }
  else if (cnt >= max_cnt)
    { // overflow
      cnt = 0; // try again starting at zero
    }
  else if (next_cnt == 0 || cnt < next_cnt)
    {
      root->set_timer_id (cnt + 1);
      return (cnt << this->spoke_bits_) | spoke;
    }

  //ACE_ERROR((LM_ERROR, "Timer id overflow. We have to search now.\n"));

  // We've run out of consecutive id numbers so now we have to search
  // for a unique id.
  // We'll try increasing numbers until we find one that is not in use,
  // and we'll record the next highest number so that we can avoid this
  // search as often as possible.
  for (; cnt < max_cnt - 1; ++cnt)
    {
      long id = (cnt << this->spoke_bits_) | spoke;
      ACE_Timer_Node_T<TYPE>* n = this->find_spoke_node (spoke, id);
      if (n == 0)
        {
          root->set_timer_id (cnt + 1);
          // Now we need to find the next highest cnt in use
          next_cnt = 0;
          for (; n != root; n = n->get_next ())
            {
              long tmp = n->get_timer_id () >> this->spoke_bits_;
              if (tmp > cnt && (tmp < next_cnt || next_cnt == 0))
                next_cnt = tmp;
            }
#if defined (ACE_WIN64)
          // The cast below is legit... we know we're storing a long in
          // a pointer, but are only using it as a 'long' storage area.
#  pragma warning(push)
#  pragma warning(disable : 4312)
#endif /* ACE_WIN64 */
          root->set_act (ACE_reinterpret_cast (void*, next_cnt));
#if defined (ACE_WIN64)
#  pragma warning(pop)
#endif /* ACE_WIN64 */
          return id;
        }
    }

  return -1; // We did our best, but the spoke is full.
}

/**
* Creates a ACE_Timer_Node_T based on the input parameters.  Then inserts
* the node into the wheel using reschedule ().  Then returns a timer_id.
*
*  @param type            The data of the timer node
*  @param act             Asynchronous Completion Token (AKA magic cookie)
*  @param future_time     The time the timer is scheduled for (absolute time)
*  @param interval        If not ACE_Time_Value::zero, then this is a periodic
*                         timer and interval is the time period
*
*  @return Unique identifier (can be used to cancel the timer).
*          -1 on failure.
*/
template <class TYPE, class FUNCTOR, class ACE_LOCK> long
ACE_Timer_Wheel_T<TYPE, FUNCTOR, ACE_LOCK>::schedule (
                                                      const TYPE& type,
                                                      const void* act,
                                                      const ACE_Time_Value& future_time,
                                                      const ACE_Time_Value& interval
                                                      )
{
  ACE_TRACE ("ACE_Timer_Wheel_T::schedule");
  ACE_MT (ACE_GUARD_RETURN (ACE_LOCK, ace_mon, this->mutex_, -1));

  ACE_Timer_Node_T<TYPE>* n = this->alloc_node ();

  if (n != 0)
    {
      u_int spoke = calculate_spoke (future_time);
      long id = generate_timer_id (spoke);

      //ACE_ERROR((LM_ERROR, "Scheduling %x spoke:%d id:%d\n", (long) n, spoke, id));

      if (id != -1)
        {
          n->set (type, act, future_time, interval, 0, 0, id);
          this->schedule_i (n, spoke, future_time);
        }
      return id;
    }

  // Failure return
  errno = ENOMEM;
  return -1;
}

/**
* Takes an ACE_Timer_Node and inserts it into the correct position in
* the correct list.  Also makes sure to update the earliest time.
*
* @param n The timer node to reschedule
*/
template <class TYPE, class FUNCTOR, class ACE_LOCK> void
ACE_Timer_Wheel_T<TYPE, FUNCTOR, ACE_LOCK>::reschedule (ACE_Timer_Node_T<TYPE>* n)
{
  ACE_TRACE ("ACE_Timer_Wheel_T::reschedule");
  const ACE_Time_Value& expire = n->get_timer_value ();
  u_int spoke = calculate_spoke (expire);
  this->schedule_i (n, spoke, expire);
}

/// The shared scheduling functionality between schedule() and reschedule()
template <class TYPE, class FUNCTOR, class ACE_LOCK> void
ACE_Timer_Wheel_T<TYPE, FUNCTOR, ACE_LOCK>::schedule_i
  (ACE_Timer_Node_T<TYPE>* n,
   u_int spoke,
   const ACE_Time_Value& expire)
{
  // See if we need to update the earliest time
  if (this->is_empty() || expire < this->earliest_time ())
    this->earliest_spoke_ = spoke;

  ACE_Timer_Node_T<TYPE>* root = this->spokes_[spoke];
  ACE_Timer_Node_T<TYPE>* last = root->get_prev ();

  ++timer_count_;

  // If the spoke is empty
  if (last == root) {
    n->set_prev (root);
    n->set_next (root);
    root->set_prev (n);
    root->set_next (n);
    return;
  }

  // We always want to search backwards from the tail of the list, because
  // this minimizes the search in the extreme case when lots of timers are
  // scheduled for exactly the same time
  ACE_Timer_Node_T<TYPE>* p = root->get_prev ();
  while (p != root && p->get_timer_value () > expire)
    p = p->get_prev ();

  // insert after
  n->set_prev (p);
  n->set_next (p->get_next ());
  p->get_next ()->set_prev (n);
  p->set_next (n);
}


/**
* Find the timer node by using the id as a pointer.  Then use set_interval()
* on the node to update the interval.
*
* @param timer_id The timer identifier
* @param interval The new interval
*
* @return 0 if successful, -1 if no.
*/
template <class TYPE, class FUNCTOR, class ACE_LOCK> int
ACE_Timer_Wheel_T<TYPE, FUNCTOR, ACE_LOCK>::reset_interval (long timer_id,
                                                            const ACE_Time_Value &interval
                                                            )
{
  ACE_TRACE ("ACE_Timer_Wheel_T::reset_interval");
  ACE_MT (ACE_GUARD_RETURN (ACE_LOCK, ace_mon, this->mutex_, -1));
  ACE_Timer_Node_T<TYPE>* n = this->find_node (timer_id);
  if (n != 0)
    {
      // The interval will take effect the next time this node is expired.
      n->set_interval (interval);
      return 0;
    }
  return -1;
}


/**
* Goes through every list in the wheel and whenever we find one with the
* correct type value, we remove it and continue.  At the end make sure
* we reset the earliest time value in case the earliest timers were
* removed.
*
* @param type       The value to search for.
* @param skip_close If this non-zero, the cancellation method of the
*                   functor will not be called for each cancelled timer.
*
* @return Number of timers cancelled
*/
template <class TYPE, class FUNCTOR, class ACE_LOCK> int
ACE_Timer_Wheel_T<TYPE, FUNCTOR, ACE_LOCK>::cancel (const TYPE& type, int skip_close)
{
  ACE_TRACE ("ACE_Timer_Wheel_T::cancel");
  ACE_MT (ACE_GUARD_RETURN (ACE_LOCK, ace_mon, this->mutex_, -1));

  int num_canceled = 0; // Note : Technically this can overflow.

  if (!this->is_empty ())
    {
      ACE_Timer_Node_T<TYPE>* first = this->get_first ();
      ACE_Time_Value last = first->get_timer_value ();
      int recalc = 0;

      for (u_int i = 0; i < this->spoke_count_; ++i)
        {
          ACE_Timer_Node_T<TYPE>* root = this->spokes_[i];
          for (ACE_Timer_Node_T<TYPE>* n = root->get_next (); n != root; )
            {
              if (n->get_type () == type)
                {
                  ++num_canceled;
                  if (n == first)
                    recalc = 1;

                  ACE_Timer_Node_T<TYPE>* tmp = n;
                  n = n->get_next ();
                  int always_skip_close = 1; // todo : Is this correct?
                  this->cancel_i (tmp, always_skip_close);
                }
              else
                {
                  n = n->get_next ();
                }
            }
        }

      if (recalc)
        this->recalc_earliest (last);
    }

  if (!skip_close)  //  && num_canceled > 0)
    this->upcall_functor().cancellation (*this, type);

  return num_canceled;
}


/**
* Cancels the single timer that is specified by the timer_id.  In this
* case the timer_id is actually a pointer to the node, so we cast it
* to the node.  This can be dangerous if the timer_id is made up
* (or deleted twice) so we do a little sanity check.  Finally we update
* the earliest time in case the earliest timer was removed.
*
* @param timer_id   Timer Identifier
* @param act        Asychronous Completion Token (AKA magic cookie):
*                   If this is non-zero, stores the magic cookie of
*                   the cancelled timer here.
* @param skip_close If this non-zero, the cancellation method of the
*                   functor will not be called.
*
* @return 1 for sucess and 0 if the timer_id wasn't found (or was
*         found to be invalid)
*/
template <class TYPE, class FUNCTOR, class ACE_LOCK> int
ACE_Timer_Wheel_T<TYPE, FUNCTOR, ACE_LOCK>::cancel (long timer_id,
                                                    const void **act,
                                                    int skip_close)
{
  ACE_TRACE ("ACE_Timer_Wheel_T::cancel");
  ACE_MT (ACE_GUARD_RETURN (ACE_LOCK, ace_mon, this->mutex_, -1));
  ACE_Timer_Node_T<TYPE>* n = this->find_node (timer_id);
  if (n != 0)
    {
      ACE_Time_Value last = n->get_timer_value ();
      int recalc = (this->get_first_i () == n);
      if (act != 0)
        *act = n->get_act ();
      this->cancel_i (n, skip_close);
      if (recalc)
        this->recalc_earliest (last);
      return 1;
    }
  return 0;
}

/// Shared subset of the two cancel() methods.
template <class TYPE, class FUNCTOR, class ACE_LOCK> void
ACE_Timer_Wheel_T<TYPE, FUNCTOR, ACE_LOCK>::cancel_i (ACE_Timer_Node_T<TYPE>* n, int skip_close)
{
  //ACE_ERROR((LM_ERROR, "Canceling %x\n", (long) n));
  this->unlink (n);
  this->free_node (n);
  if (!skip_close)
    this->upcall_functor ().cancellation (*this, n->get_type ());
}

/// There are a few places where we have to figure out which timer
/// will expire next. This method makes the assumption that spokes
/// are always sorted, and that timers are always in the correct spoke
/// determined from their expiration time. 
/// The last time is always passed in, even though you can often calculate
/// it as get_first()->get_timer_value().
template <class TYPE, class FUNCTOR, class ACE_LOCK> void
ACE_Timer_Wheel_T<TYPE, FUNCTOR, ACE_LOCK>::recalc_earliest
  (const ACE_Time_Value& last)
{
  // This is possible because we use a count for is_empty()
  if (this->is_empty ())
    return;

  ACE_Time_Value et = ACE_Time_Value::zero;
  
  u_int spoke = this->earliest_spoke_;

  // We will have to go around the wheel at most one time.
  for (u_int i = 0; i < this->spoke_count_; ++i)
    {
      ACE_Timer_Node_T<TYPE>* root = this->spokes_[spoke];
      ACE_Timer_Node_T<TYPE>* n = root->get_next ();
      if (n != root)
        {
          ACE_Time_Value t = n->get_timer_value ();
          if (t < last + this->wheel_time_)
            {
              this->earliest_spoke_ = spoke;
              return;
            }
          else if (et == ACE_Time_Value::zero || t < et)
            {
              et = t;
            }
        }
      if (++spoke >= this->spoke_count_)
        spoke = 0;
    }
  //ACE_ERROR((LM_ERROR, "We had to search the whole wheel.\n"));
}

/**
* Dumps out the size of the wheel, the resolution, and the contents
* of the wheel.
*/
template <class TYPE, class FUNCTOR, class ACE_LOCK> void
ACE_Timer_Wheel_T<TYPE, FUNCTOR, ACE_LOCK>::dump (void) const
{
  ACE_TRACE ("ACE_Timer_Wheel_T::dump");
  ACE_DEBUG ((LM_DEBUG, ACE_BEGIN_DUMP, this));
  
  ACE_DEBUG ((LM_DEBUG,
    ACE_LIB_TEXT ("\nspoke_count_ = %d"), this->spoke_count_));
  ACE_DEBUG ((LM_DEBUG,
    ACE_LIB_TEXT ("\nresolution_ = %d"), 1 << this->res_bits_));
  ACE_DEBUG ((LM_DEBUG,
    ACE_LIB_TEXT ("\nwheel_ = \n")));
  
  for (u_int i = 0; i < this->spoke_count_; ++i)
    {
      ACE_DEBUG ((LM_DEBUG, ACE_LIB_TEXT ("%d\n"), i));
      ACE_Timer_Node_T<TYPE>* root = this->spokes_[i];
      for (ACE_Timer_Node_T<TYPE>* n = root->get_next ();
           n != root;
           n = n->get_next ())
        {
          n->dump ();
        }
    }
  
  ACE_DEBUG ((LM_DEBUG, ACE_END_DUMP));
}


/**
* Removes the earliest node and then find the new <earliest_spoke_>
*
* @return The earliest timer node.
*/
template <class TYPE, class FUNCTOR, class ACE_LOCK> ACE_Timer_Node_T<TYPE> *
ACE_Timer_Wheel_T<TYPE, FUNCTOR, ACE_LOCK>::remove_first (void)
{
  ACE_TRACE ("ACE_Timer_Wheel_T::remove_first");
  return remove_first_expired (ACE_Time_Value::max_time);
}

template <class TYPE, class FUNCTOR, class ACE_LOCK> void
ACE_Timer_Wheel_T<TYPE, FUNCTOR, ACE_LOCK>::unlink (ACE_Timer_Node_T<TYPE>* n)
{
  ACE_TRACE ("ACE_Timer_Wheel_T::unlink");
  --timer_count_;
  n->get_prev ()->set_next (n->get_next ());
  n->get_next ()->set_prev (n->get_prev ());
  n->set_prev (0);
  n->set_next (0);
}

template <class TYPE, class FUNCTOR, class ACE_LOCK> ACE_Timer_Node_T<TYPE> *
ACE_Timer_Wheel_T<TYPE, FUNCTOR, ACE_LOCK>::remove_first_expired (const ACE_Time_Value& now)
{
  ACE_Timer_Node_T<TYPE>* n = this->get_first ();
  if (n != 0 && n->get_timer_value() <= now)
    {
      this->unlink (n);
      this->recalc_earliest (n->get_timer_value ());
      return n;
    }
  return 0;
}

/**
* Returns the earliest node without removing it
*
* @return The earliest timer node.
*/
template <class TYPE, class FUNCTOR, class ACE_LOCK> 
ACE_Timer_Node_T<TYPE>*
ACE_Timer_Wheel_T<TYPE, FUNCTOR, ACE_LOCK>::get_first (void)
{
  ACE_TRACE ("ACE_Timer_Wheel_T::get_first");
  return this->get_first_i ();
}

template <class TYPE, class FUNCTOR, class ACE_LOCK> 
ACE_Timer_Node_T<TYPE>*
ACE_Timer_Wheel_T<TYPE, FUNCTOR, ACE_LOCK>::get_first_i (void) const
{
  ACE_Timer_Node_T<TYPE>* root = this->spokes_[this->earliest_spoke_];
  ACE_Timer_Node_T<TYPE>* first = root->get_next ();
  if (first != root)
    return first;
  return 0;
}


/**
* @return The iterator
*/
template <class TYPE, class FUNCTOR, class ACE_LOCK> 
ACE_Timer_Queue_Iterator_T<TYPE, FUNCTOR, ACE_LOCK>&
ACE_Timer_Wheel_T<TYPE, FUNCTOR, ACE_LOCK>::iter (void)
{
  this->iterator_->first ();
  return *this->iterator_;
}

/**
* Dummy version of expire to get rid of warnings in Sun CC 4.2
* Just call the expire of the base class.
*/
template <class TYPE, class FUNCTOR, class ACE_LOCK> int
ACE_Timer_Wheel_T<TYPE, FUNCTOR, ACE_LOCK>::expire ()
{
  return ACE_Timer_Queue_T<TYPE,FUNCTOR,ACE_LOCK>::expire ();
}

/**
* This is a specialized version of expire that is more suited for the
* internal data representation. 
*
* @param cur_time The time to expire timers up to.
*
* @return Number of timers expired
*/
template <class TYPE, class FUNCTOR, class ACE_LOCK> int
ACE_Timer_Wheel_T<TYPE, FUNCTOR, ACE_LOCK>::expire (const ACE_Time_Value& cur_time)
{
  ACE_TRACE ("ACE_Timer_Wheel_T::expire");
  ACE_MT (ACE_GUARD_RETURN (ACE_LOCK, ace_mon, this->mutex_, -1));

  int expcount = 0;
  ACE_Timer_Node_T<TYPE>* n = this->remove_first_expired (cur_time);

  while (n != 0)
    {
      ++ expcount;

      //ACE_ERROR((LM_ERROR, "Expiring %x\n", (long) n));

      this->upcall (n->get_type (), n->get_act (), cur_time);

      if (n->get_interval () > ACE_Time_Value::zero)
        {
          n->set_timer_value (cur_time + n->get_interval ());
          this->reschedule (n);
        }
      else
        {
          this->free_node (n);
        }

      n = this->remove_first_expired (cur_time);
    }

  //ACE_ERROR((LM_ERROR, "Expired %d nodes\n", expcount));

  return expcount;
}

///////////////////////////////////////////////////////////////////////////
// ACE_Timer_Wheel_Iterator_T
 
/**
* Just initializes the iterator with a ACE_Timer_Wheel_T and then calls
* first() to initialize the rest of itself.
*
* @param wheel A reference for a timer queue to iterate over
*/
template <class TYPE, class FUNCTOR, class ACE_LOCK>
ACE_Timer_Wheel_Iterator_T<TYPE,FUNCTOR,ACE_LOCK>::ACE_Timer_Wheel_Iterator_T 
(Wheel& wheel)
: timer_wheel_ (wheel)
{
  this->first();
}


/**
* Destructor, at this level does nothing.
*/
template <class TYPE, class FUNCTOR, class ACE_LOCK>
ACE_Timer_Wheel_Iterator_T<TYPE,
FUNCTOR,
ACE_LOCK>::~ACE_Timer_Wheel_Iterator_T (void)
{
}


/**
* Positions the iterator at the first position in the timing wheel
* that contains something. spoke_ will be set to the spoke position of
* this entry and current_node_ will point to the first entry in that spoke.
*
* If the wheel is empty, spoke_ will be equal timer_wheel_.spoke_count_ and
* current_node_ would be 0.
*/
template <class TYPE, class FUNCTOR, class ACE_LOCK> void
ACE_Timer_Wheel_Iterator_T<TYPE, FUNCTOR, ACE_LOCK>::first (void)
{
  this->goto_next(0);
}


/**
* Positions the iterator at the next node.
*/
template <class TYPE, class FUNCTOR, class ACE_LOCK> void
ACE_Timer_Wheel_Iterator_T<TYPE, FUNCTOR, ACE_LOCK>::next (void)
{
  if (this->isdone())
    return;

  ACE_Timer_Node_T<TYPE>* n = this->current_node_->get_next ();
  ACE_Timer_Node_T<TYPE>* root = this->timer_wheel_.spokes_[this->spoke_];
  if (n == root)
    this->goto_next (this->spoke_ + 1);
  else
    this->current_node_ = n;
}

/// Helper class for common functionality of next() and first()
template <class TYPE, class FUNCTOR, class ACE_LOCK> void
ACE_Timer_Wheel_Iterator_T<TYPE, FUNCTOR, ACE_LOCK>::goto_next (u_int start_spoke)
{
  // Find the first non-empty entry.
  u_int sc = this->timer_wheel_.spoke_count_;
  for (u_int i = start_spoke; i < sc; ++i)
  {
    ACE_Timer_Node_T<TYPE>* root = this->timer_wheel_.spokes_[i];
    ACE_Timer_Node_T<TYPE>* n = root->get_next ();
    if (n != root)
      {
        this->spoke_ = i;
        this->current_node_ = n;
        return;
      }
  }
  // empty
  this->spoke_ = sc;
  this->current_node_ = 0;
}


/**
* @return True when we there aren't any more items (when current_node_ == 0)
*/
template <class TYPE, class FUNCTOR, class ACE_LOCK> int
ACE_Timer_Wheel_Iterator_T<TYPE, FUNCTOR, ACE_LOCK>::isdone (void) const
{
  return this->current_node_ == 0;
}


/**
* @return The node at the current spokeition in the sequence or 0 if the wheel
*         is empty
*/
template <class TYPE, class FUNCTOR, class ACE_LOCK> ACE_Timer_Node_T<TYPE> *
ACE_Timer_Wheel_Iterator_T<TYPE, FUNCTOR, ACE_LOCK>::item (void)
{
  return this->current_node_;
}


#endif /* ACE_TIMER_WHEEL_T_C */