summaryrefslogtreecommitdiff
path: root/apps/gperf/src/Gen_Perf.cpp
blob: 57418ccc047053b99715d0c7315bcf9953c5e2a6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
/* Provides high-level routines to manipulate the keywork list 
// $Id$

   structures the code generation output.
   Copyright (C) 1989 Free Software Foundation, Inc.
   written by Douglas C. Schmidt (schmidt@ics.uci.edu)

This file is part of GNU GPERF.

GNU GPERF is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 1, or (at your option)
any later version.

GNU GPERF is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with GNU GPERF; see the file COPYING.  If not, write to the Free
Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111, USA.  */

#include "Vectors.h"
#include "Gen_Perf.h"

/* Current release version. */
extern char *version_string;

/* Reads input keys, possibly applies the reordering heuristic, sets
   the maximum associated value size (rounded up to the nearest power
   of 2), may initialize the associated values array, and determines
   the maximum hash table size.  Note: using the random numbers is
   often helpful, though not as deterministic, of course! */

Gen_Perf::Gen_Perf (void)
{
  int asso_value_max;
  int non_linked_length;

  this->key_list.read_keys ();
  if (option[ORDER])
    this->key_list.reorder ();
  asso_value_max    = option.get_asso_max ();
  non_linked_length = this->key_list.keyword_list_length ();
  num_done          = 1;
  fewest_collisions = 0;
  if (asso_value_max == 0)
    asso_value_max = non_linked_length;
  else if (asso_value_max > 0)
    asso_value_max *= non_linked_length;
  else /* if (asso_value_max < 0) */
    asso_value_max = non_linked_length / -asso_value_max;
  option.set_asso_max (ACE_POW (asso_value_max));
  
  if (option[RANDOM])
    {
      srand (time (0));
      
      for (int i = 0; i < ALPHA_SIZE; i++)
        Vectors::asso_values[i] = (rand () & asso_value_max - 1);
    }
  else
    {
      int asso_value = option.initial_value ();
      
      if (asso_value)           /* Initialize array if user requests non-zero default. */
        for (int i = ALPHA_SIZE - 1; i >= 0; i--)
          Vectors::asso_values[i] = asso_value & option.get_asso_max () - 1;
    }
  max_hash_value = this->key_list.max_key_length () + option.get_asso_max () * 
    option.get_max_keysig_size ();
  
  printf ("/* ");
  if (option[C])
    printf ("C");
  else if (option[CPLUSPLUS])
    printf ("C++");
  printf (" code produced by gperf version %s */\n", version_string);
  Options::print_options ();

  if (option[DEBUG])
    fprintf (stderr, "total non-linked keys = %d\nmaximum associated value is %d"
             "\nmaximum size of generated hash table is %d\n",
             non_linked_length, asso_value_max, max_hash_value);
}

/* Merge two disjoint hash key multisets to form the ordered disjoint union of the sets.
   (In a multiset, an element can occur multiple times).
   Precondition: both set_1 and set_2 must be ordered. Returns the length
   of the combined set. */

inline int 
Gen_Perf::compute_disjoint_union (char *set_1, char *set_2, char *set_3)
{
  char *base = set_3;
  
  while (*set_1 && *set_2)
    if (*set_1 == *set_2)
      set_1++, set_2++; 
    else
      {
        *set_3 = *set_1 < *set_2 ? *set_1++ : *set_2++;
        if (set_3 == base || *set_3 != *(set_3-1)) set_3++;
      }
   
  while (*set_1)
    {
      *set_3 = *set_1++; 
      if (set_3 == base || *set_3 != *(set_3-1)) set_3++;
    }
   
  while (*set_2)
    {
      *set_3 = *set_2++; 
      if (set_3 == base || *set_3 != *(set_3-1)) set_3++;
    }
  *set_3 = '\0';
  return set_3 - base;
}

/* Sort the UNION_SET in increasing frequency of occurrence.
   This speeds up later processing since we may assume the resulting
   set (Set_3, in this case), is ordered. Uses insertion sort, since
   the UNION_SET is typically short. */
  
inline void 
Gen_Perf::sort_set (char *union_set, int len)
{
  int i, j;
  
  for (i = 0, j = len - 1; i < j; i++)
    {
      char curr, tmp;

      for (curr = i + 1, tmp = union_set[curr]; 
           curr > 0 && Vectors::occurrences[tmp] < Vectors::occurrences[union_set[curr-1]]; 
           curr--)
        union_set[curr] = union_set[curr - 1];
      
      union_set[curr] = tmp;
    }
}

/* Generate a key set's hash value. */

inline int 
Gen_Perf::hash (List_Node *key_node) 
{                             
  int   sum = option[NOLENGTH] ? 0 : key_node->length;

  for (char *ptr = key_node->char_set; *ptr; ptr++)
      sum += Vectors::asso_values[*ptr];
  
  return key_node->hash_value = sum;
}

/* Find out how character value change affects successfully hashed
   items.  Returns FALSE if no other hash values are affected, else
   returns TRUE.  Note that because Option.Get_Asso_Max is a power of
   two we can guarantee that all legal Vectors::Asso_Values are visited without
   repetition since Option.Get_Jump was forced to be an odd value! */

inline int  
Gen_Perf::affects_prev (char c, List_Node *curr)
{
  int original_char = Vectors::asso_values[c];
  int total_iterations = !option[FAST]
    ? option.get_asso_max () : option.get_iterations () ? option.get_iterations () : this->key_list.keyword_list_length ();
  
  /* Try all legal associated values. */

  for (int i = total_iterations - 1; i >= 0; i--)
    { 
      int collisions = 0;

      Vectors::asso_values[c] = Vectors::asso_values[c] + (option.get_jump () ? option.get_jump () : rand ())
                                         & option.get_asso_max () - 1;

      /* Iteration Number array is a win, O(1) intialization time! */
      this->char_search.reset ();     
                                         
      /* See how this asso_value change affects previous keywords.  If
         it does better than before we'll take it! */

      for (List_Node *ptr = this->key_list.head;
           !this->char_search.find (hash (ptr)) || ++collisions < fewest_collisions;
           ptr = ptr->next)
        if (ptr == curr)
          {
            fewest_collisions = collisions;
            if (option[DEBUG])
              fprintf (stderr, "- resolved after %d iterations", total_iterations - i);
            return 0;
          }    
    }
  
  /* Restore original values, no more tries. */
  Vectors::asso_values[c] = original_char; 
  /* If we're this far it's time to try the next character.... */
  return 1; 
}

/* Change a character value, try least-used characters first. */

void 
Gen_Perf::change (List_Node *prior, List_Node *curr)
{
  static char *union_set;

  if (!union_set)
    union_set = new char [2 * option.get_max_keysig_size () + 1];

  if (option[DEBUG])
    {
      fprintf (stderr, "collision on keyword #%d, prior = \"%s\", curr = \"%s\" hash = %d\n",
               num_done, prior->key, curr->key, curr->hash_value);
      fflush (stderr);
    }
  sort_set (union_set, compute_disjoint_union (prior->char_set, curr->char_set, union_set));

  /* Try changing some values, if change doesn't alter other values continue normal action. */
  fewest_collisions++;
  
  for (char *temp = union_set; *temp; temp++)
    if (!affects_prev (*temp, curr))
      {
        if (option[DEBUG])
          {
            fprintf (stderr, " by changing asso_value['%c'] (char #%d) to %d\n", 
                     *temp, temp - union_set + 1, Vectors::asso_values[*temp]);
            fflush (stderr);
          }
        return; /* Good, doesn't affect previous hash values, we'll take it. */
      }

  for (List_Node *ptr = this->key_list.head; ptr != curr; ptr = ptr->next)
    hash (ptr);
  
  hash (curr);

  if (option[DEBUG])
    {
      fprintf (stderr, "** collision not resolved after %d iterations, %d duplicates remain, continuing...\n", 
               !option[FAST] ? option.get_asso_max () : option.get_iterations () ? option.get_iterations () : this->key_list.keyword_list_length (),
               fewest_collisions + this->key_list.total_duplicates);
      fflush (stderr);
    }
}

/* Does the hard stuff....
   Initializes the Iteration Number array, and attempts to find a perfect
   function that will hash all the key words without getting any
   duplications.  This is made much easier since we aren't attempting
   to generate *minimum* functions, only perfect ones.
   If we can't generate a perfect function in one pass *and* the user
   hasn't enabled the DUP option, we'll inform the user to try the
   randomization option, use -D, or choose alternative key positions.  
   The alternatives (e.g., back-tracking) are too time-consuming, i.e,
   exponential in the number of keys. */

int
Gen_Perf::generate (void)
{
#if LARGE_STACK_ARRAYS
  STORAGE_TYPE buffer[max_hash_value + 1];
#else
  // Note: we don't use new, because that invokes a custom operator new.
  STORAGE_TYPE *buffer
    = (STORAGE_TYPE*) malloc (sizeof(STORAGE_TYPE) * (max_hash_value + 1));
  if (buffer == NULL)
    abort ();
#endif

  this->char_search.init (buffer, max_hash_value + 1);
  
  List_Node *curr;

  for (curr = this->key_list.head; 
       curr; 
       curr = curr->next)
    {
      hash (curr);
      
      for (List_Node *ptr = this->key_list.head; 
	   ptr != curr; 
	   ptr = ptr->next)
        if (ptr->hash_value == curr->hash_value)
          {
            change (ptr, curr);
            break;
          }
      num_done++;
    } 
  
  /* Make one final check, just to make sure nothing weird happened.... */
  
  this->char_search.reset ();

  for (curr = this->key_list.head; 
       curr; 
       curr = curr->next)
    if (this->char_search.find (hash (curr)))
      if (option[DUP]) /* Keep track of this number... */
        this->key_list.total_duplicates++;
      else /* Yow, big problems.  we're outta here! */
        { 
          ACE_ERROR ((LM_ERROR, "\nInternal error, duplicate value %d:\n"
                        "try options -D or -r, or use new key positions.\n\n", hash (curr)));
#if !LARGE_STACK_ARRAYS
	  free (buffer);
#endif
          return 1;
        }

  /* Sorts the key word list by hash value, and then outputs the list.
     The generated hash table code is only output if the early stage of
     processing turned out O.K. */

  this->key_list.sort ();
  this->key_list.output ();
#if !LARGE_STACK_ARRAYS
  free (buffer);
#endif
  return 0;
}

/* Prints out some diagnostics upon completion. */

Gen_Perf::~Gen_Perf (void)
{                             
  if (option[DEBUG])
    {
      fprintf (stderr, "\ndumping occurrence and associated values tables\n");
      
      for (int i = 0; i < ALPHA_SIZE; i++)
        if (Vectors::occurrences[i])
          fprintf (stderr, "Vectors::asso_values[%c] = %6d, Vectors::occurrences[%c] = %6d\n",
                   i, Vectors::asso_values[i], i, Vectors::occurrences[i]);
      
      fprintf (stderr, "end table dumping\n");
      
    }
}