summaryrefslogtreecommitdiff
path: root/examples/ASX/Message_Queue/buffer_stream.cpp
blob: cef4a62ae51e42ac9625000d02710db0981a5e16 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
// $Id$

// This short program copies stdin to stdout via the use of an ASX
// Stream.  It illustrates an implementation of the classic "bounded
// buffer" program using an ASX Stream containing two Modules.  Each
// ACE_Module contains two Tasks.  Each ACE_Task contains a
// ACE_Message_Queue and a pointer to a ACE_Thread_Manager.  Note how
// the use of these reusable components reduces the reliance on global
// variables, as compared with the bounded_buffer.C example.

#include "ace/OS_main.h"
#include "ace/OS_NS_stdio.h"
#include "ace/OS_NS_string.h"
#include "ace/OS_NS_time.h"
#include "ace/OS_NS_unistd.h"
#include "ace/Service_Config.h"
#include "ace/Stream.h"
#include "ace/Module.h"
#include "ace/Task.h"

ACE_RCSID(Message_Queue, buffer_stream, "$Id$")

#if defined (ACE_HAS_THREADS)

typedef ACE_Stream<ACE_MT_SYNCH> MT_Stream;
typedef ACE_Module<ACE_MT_SYNCH> MT_Module;
typedef ACE_Task<ACE_MT_SYNCH> MT_Task;

class Common_Task : public MT_Task
  // = TITLE
  //   Methods that are common to the producer and consumer.
{
public:
  Common_Task (void) {}
  // ACE_Task hooks
  virtual int open (void * = 0);
  virtual int close (u_long = 0);
};

// Define the Producer interface.

class Producer : public Common_Task
{
public:
  Producer (void) {}

  // Read data from stdin and pass to consumer.
  virtual int svc (void);
};

class Consumer : public Common_Task
  // = TITLE
  //    Define the Consumer interface.
{
public:
  Consumer (void) {}

  virtual int put (ACE_Message_Block *mb,
                   ACE_Time_Value *tv = 0);
  // Enqueue the message on the ACE_Message_Queue for subsequent
  // handling in the svc() method.

  virtual int svc (void);
  // Receive message from producer and print to stdout.

private:

  ACE_Time_Value timeout_;
};

class Filter : public MT_Task
  // = TITLE
  //    Defines a Filter that prepends a line number in front of each
  //    line.
{
public:
  Filter (void): count_ (1) {}

  virtual int put (ACE_Message_Block *mb,
                   ACE_Time_Value *tv = 0);
  // Change the size of the message before passing it downstream.

private:
  size_t count_;
  // Count the number of lines passing through the filter.
};

// Spawn off a new thread.

int
Common_Task::open (void *)
{
  if (this->activate (THR_NEW_LWP | THR_DETACHED) == -1)
    ACE_ERROR_RETURN ((LM_ERROR,
                       ACE_TEXT ("%p\n"),
                       ACE_TEXT ("spawn")),
                      -1);
  return 0;
}

int
Common_Task::close (u_long exit_status)
{
  ACE_DEBUG ((LM_DEBUG,
              ACE_TEXT ("(%t) thread is exiting with status %d in module %s\n"),
              exit_status,
              this->name ()));

  // Can do anything here that is required when a thread exits, e.g.,
  // storing thread-specific information in some other storage
  // location, etc.
  return 0;
}

// The Consumer reads data from the stdin stream, creates a message,
// and then queues the message in the message list, where it is
// removed by the consumer thread.  A 0-sized message is enqueued when
// there is no more data to read.  The consumer uses this as a flag to
// know when to exit.

int
Producer::svc (void)
{
  // Keep reading stdin, until we reach EOF.

  for (int n; ; )
    {
      // Allocate a new message (add one to avoid nasty boundary
      // conditions).

      ACE_Message_Block *mb = 0;

      ACE_NEW_RETURN (mb,
                      ACE_Message_Block (BUFSIZ + 1),
                      -1);

      n = ACE_OS::read (ACE_STDIN, mb->wr_ptr (), BUFSIZ);

      if (n <= 0)
        {
          // Send a shutdown message to the other thread and exit.
          mb->length (0);

          if (this->put_next (mb) == -1)
            ACE_ERROR ((LM_ERROR,
                        ACE_TEXT ("(%t) %p\n"),
                        ACE_TEXT ("put_next")));
	  break;
        }

      // Send the message to the other thread.
      else
	{
	  mb->wr_ptr (n);
	  // NUL-terminate the string (since we use strlen() on it
	  // later).
          mb->rd_ptr ()[n] = '\0';

	  if (this->put_next (mb) == -1)
	    ACE_ERROR ((LM_ERROR,
                        ACE_TEXT ("(%t) %p\n"),
                        ACE_TEXT ("put_next")));
	}
    }

  return 0;
}

// Simply enqueue the Message_Block into the end of the queue.

int
Consumer::put (ACE_Message_Block *mb, ACE_Time_Value *tv)
{
  return this->putq (mb, tv);
}

// The consumer dequeues a message from the ACE_Message_Queue, writes
// the message to the stderr stream, and deletes the message.  The
// Consumer sends a 0-sized message to inform the consumer to stop
// reading and exit.

int
Consumer::svc (void)
{
  int result = 0;

  // Keep looping, reading a message out of the queue, until we
  // timeout or get a message with a length == 0, which signals us to
  // quit.

  for (;;)
    {
      ACE_Message_Block *mb = 0;

      // Wait for upto 4 seconds.
      this->timeout_.sec (ACE_OS::time (0) + 4);

      result = this->getq (mb, &this->timeout_);

      if (result == -1)
        break;

      int length = mb->length ();

      if (length > 0)
        ACE_OS::write (ACE_STDOUT,
                       mb->rd_ptr (),
                       ACE_OS::strlen (mb->rd_ptr ()));

      mb->release ();

      if (length == 0)
	break;
    }

  if (result == -1 && errno == EWOULDBLOCK)
    ACE_ERROR ((LM_ERROR,
		ACE_TEXT ("(%t) %p\n%a"),
		ACE_TEXT ("timed out waiting for message"),
		1));
  return 0;
}

int
Filter::put (ACE_Message_Block *mb,
             ACE_Time_Value *tv)
{
  if (mb->length () == 0)
    return this->put_next (mb, tv);
  else
    {
      char buf[BUFSIZ];

      // Stash a copy of the buffer away.
      ACE_OS::strncpy (buf, mb->rd_ptr (), sizeof buf);

      // Increase the size of the buffer large enough that it will be
      // reallocated (in order to test the reallocation mechanisms).

      mb->size (mb->length () + BUFSIZ);
      mb->length (mb->size ());

      // Prepend the line count in front of the buffer.
      ACE_OS::sprintf (mb->rd_ptr (),
                       ACE_SIZE_T_FORMAT_SPECIFIER_A
                       ": %s",
                       this->count_++,
                       buf);
      return this->put_next (mb, tv);
    }
}

// Main driver function.

int
ACE_TMAIN (int, ACE_TCHAR *argv[])
{
  ACE_Service_Config daemon (argv[0]);

  // This Stream controls hierachically-related active objects.
  MT_Stream stream;

  MT_Module *pm = 0;
  MT_Module *fm = 0;
  MT_Module *cm = 0;

  ACE_NEW_RETURN (cm,
                  MT_Module (ACE_TEXT ("Consumer"),
                             new Consumer),
                  -1);
  ACE_NEW_RETURN (fm,
                  MT_Module (ACE_TEXT ("Filter"),
                             new Filter),
                  -1);
  ACE_NEW_RETURN (pm,
                  MT_Module (ACE_TEXT ("Producer"),
                             new Producer),
                  -1);

  // Create Consumer, Filter, and Producer Modules and push them onto
  // the Stream.  All processing is performed in the Stream.

  if (stream.push (cm) == -1)
    ACE_ERROR_RETURN ((LM_ERROR,
                       ACE_TEXT ("%p\n"),
                       ACE_TEXT ("push")),
                      1);
  else if (stream.push (fm) == -1)
    ACE_ERROR_RETURN ((LM_ERROR,
                       ACE_TEXT ("%p\n"),
                       ACE_TEXT ("push")),
                      1);
  else if (stream.push (pm) == -1)
    ACE_ERROR_RETURN ((LM_ERROR,
                       ACE_TEXT ("%p\n"),
                       ACE_TEXT ("push")),
                      1);
  // Barrier synchronization: wait for the threads to exit, then exit
  // ourselves.
  ACE_Thread_Manager::instance ()->wait ();
  return 0;
}
#else
int
ACE_TMAIN (int, ACE_TCHAR *[])
{
  ACE_ERROR ((LM_ERROR,
              ACE_TEXT ("threads not supported on this platform\n")));
  return 0;
}
#endif /* ACE_HAS_THREADS */