summaryrefslogtreecommitdiff
path: root/examples/Reactor/WFMO_Reactor/Talker.cpp
blob: 32438088614723e1ce02c20c6cc3608df3680853 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
// $Id$

// ============================================================================
//
// = LIBRARY
//    examples
//
// = FILENAME
//    Talker.cpp
//
// = DESCRIPTION
//
//    This test application tests a wide range of events that can be
//    demultiplexed using various ACE utilities.  Events used include
//    ^C events, reading from STDIN, vanilla Win32 events, thread
//    exits, Reactor notifications, proactive reads, and proactive
//    writes.
//
//    The proactive I/O events are demultiplexed by the ACE_Proactor.
//    The thread exits, notications, and vanilla Win32 events are
//    demultiplexed by the ACE_Reactor.  To enable a single thread
//    to run all these events, the Proactor is integrated with the
//    Reactor.
//
//    The test application prototypes a simple talk program.  Two
//    instances of the application connect.  Input from either console
//    is displayed on the others console also.  Because of the evils
//    of Win32 STDIN, a separate thread is used to read from STDIN.
//    To test the Proactor and Reactor, I/O between the remote
//    processes is performed proactively and interactions between the
//    STDIN thread and the main thread are performed reactively.
//
//    The following description of the test application is in two
//    parts.  The participants section explains the main components
//    involved in the application.  The collaboration section
//    describes how the partipants interact in response to the
//    multiple event types which occur.
//
//    The Reactor test application has the following participants:
//
//    . Reactor -- The Reactor demultiplexes Win32 "waitable"
//    events using WaitForMultipleObjects.
//
//    . Proactor -- The proactor initiates and demultiplexes
//    overlapped I/O operations.  The Proactor registers with the
//    Reactor so that a single-thread can demultiplex all
//    application events.
//
//    . STDIN_Handler -- STDIN_Handler is an Active Object which reads
//    from STDIN and forwards the input to the Peer_Handler.  This
//    runs in a separate thread to make the test more interesting.
//    However, STDIN is "waitable", so in general it can be waited on
//    by the ACE Reactor, thanks MicroSlush!
//
//    . Peer_Handler -- The Peer_Handler connects to another instance
//    of test_reactor.  It Proactively reads and writes data to the
//    peer.  When the STDIN_Handler gives it messages, it fowards them
//    to the remote peer.  When it receives messages from the remote
//    peer, it prints the output to the console.
//
//    The collaborations of the participants are as follows:
//
//    . Initialization
//
//      Peer_Handler -- connects to the remote peer.  It then begins
//      proactively reading from the remote connection.  Note that it
//      will be notified by the Proactor when a read completes.  It
//      also registers a notification strategy with message queue so
//      that it is notified when the STDIN_Handler posts a message
//      onto the queue.
//
//      STDIN_Handler -- STDIN_Handler registers a signal handler for
//      SIGINT.  This just captures the exception so that the kernel
//      doesn't kill our process; We want to exit gracefully.  It also
//      creates an Exit_Hook object which registers the
//      STDIN_Handler's thread handle with the Reactor.  The
//      Exit_Hook will get called back when the STDIN_Handler thread
//      exits.  After registering these, it blocks reading from STDIN.
//
//      Proactor -- is registered with the Reactor.
//
//      The main thread of control waits in the Reactor.
//
//    . STDIN events -- When the STDIN_Handler thread reads from
//    STDIN, it puts the message on Peer_Handler's message queue.  It
//    then returns to reading from STDIN.
//
//    . Message enqueue -- The Reactor thread wakes up and calls
//    Peer_Handler::handle_output.  The Peer_Handler then tries to
//    dequeue a message from its message queue.  If it can, the
//    message is Proactively sent to the remote peer.  Note that the
//    Peer_Handler will be notified with this operation is complete.
//    The Peer_Handler then falls back into the Reactor event loop.
//
//    . Send complete event -- When a proactive send is complete, the
//    Proactor is notified by the Reactor.  The Proactor, in turn,
//    notifies the Peer_Handler.  The Peer_Handler then checks for
//    more messages from the message queue.  If there are any, it
//    tries to send them.  If there are not, it returns to the
//    Reactor event loop.
//
//    . Read complete event -- When a proactive read is complete (the
//    Peer_Handler initiated a proactive read when it connected to the
//    remote peer), the Proactor is notified by the Reactor.  The
//    Proactor, in turn notifies the Peer_Handler.  If the read was
//    successful the Peer_Handler just displays the received msg to
//    the console and reinvokes a proactive read from the network
//    connection.  If the read failed (i.e. the remote peer exited),
//    the Peer_Handler sets a flag to end the event loop and returns.
//    This will cause the application to exit.
//
//    . ^C events -- When the user types ^C at the console, the
//    STDIN_Handler's signal handler will be called.  It does nothing,
//    but as a result of the signal, the STDIN_Handler thread will
//    exit.
//
//    . STDIN_Handler thread exits -- The Exit_Hook will get called
//    back from the Reactor.  Exit_Hook::handle_signal sets a flag
//    to end the event loop and returns.  This will cause the
//    application to exit.
//
//
//    To run example, start an instance of the test with an optional
//    local port argument (as the acceptor). Start the other instance
//    with -h <hostname> and -p <server port>. Type in either the
//    client or server windows and your message should show up in the
//    other window.  Control C to exit.
//
// = AUTHOR
//    Tim Harrison
//    Irfan Pyarali
//
// ============================================================================

#include "ace/OS_main.h"

#if defined (ACE_WIN32)

#include "ace/Reactor.h"
#include "ace/Reactor_Notification_Strategy.h"
#include "ace/WIN32_Proactor.h"
#include "ace/Proactor.h"
#include "ace/SOCK_Connector.h"
#include "ace/SOCK_Acceptor.h"
#include "ace/Get_Opt.h"
#include "ace/Service_Config.h"
#include "ace/Task.h"
#include "ace/OS_NS_unistd.h"

ACE_RCSID(WFMO_Reactor, Talker, "$Id$")

typedef ACE_Task<ACE_MT_SYNCH> MT_TASK;

class Peer_Handler : public MT_TASK, public ACE_Handler
// = TITLE
//     Connect to a server.  Receive messages from STDIN_Handler
//     and forward them to the server using proactive I/O.
{
public:
  // = Initialization methods.
  Peer_Handler (int argc, ACE_TCHAR *argv[]);
  ~Peer_Handler (void);

  int open (void * =0);
  // This method creates the network connection to the remote peer.
  // It does blocking connects and accepts depending on whether a
  // hostname was specified from the command line.

  virtual void handle_read_stream (const ACE_Asynch_Read_Stream::Result &result);
  // This method will be called when an asynchronous read completes on a stream.
  // The remote peer has sent us something.  If it succeeded, print
  // out the message and reinitiate a read.  Otherwise, fail.  In both
  // cases, delete the message sent.

  virtual void handle_write_stream (const ACE_Asynch_Write_Stream::Result &result);
  // This method will be called when an asynchronous write completes on a strea_m.
  // One of our asynchronous writes to the remote peer has completed.
  // Make sure it succeeded and then delete the message.

  virtual ACE_HANDLE handle (void) const;
  // Get the I/O handle used by this <handler>. This method will be
  // called by the ACE_Asynch_* classes when an ACE_INVALID_HANDLE is
  // passed to <open>.

  void handle (ACE_HANDLE);
  // Set the ACE_HANDLE value for this Handler.

  virtual int handle_close (ACE_HANDLE, ACE_Reactor_Mask);
  // We've been removed from the Reactor.

  virtual int handle_output (ACE_HANDLE fd);
  // Called when output events should start.  Note that this is
  // automatically invoked by the
  // <ACE_Reactor_Notificiation_Strategy>.

private:
  ACE_SOCK_Stream stream_;
  // Socket that we have connected to the server.

  ACE_Reactor_Notification_Strategy strategy_;
  // The strategy object that the reactor uses to notify us when
  // something is added to the queue.

  // = Remote peer info.
  ACE_TCHAR *host_;
  // Name of remote host.

  u_short port_;
  // Port number for remote host.

  ACE_Asynch_Read_Stream rd_stream_;
  // Read stream

  ACE_Asynch_Write_Stream wr_stream_;
  // Write stream

  ACE_Message_Block mb_;
  // Message Block for reading from the network
};

class STDIN_Handler : public ACE_Task<ACE_NULL_SYNCH>
// = TITLE
//    Active Object.  Reads from STDIN and passes message blocks to
//    the peer handler.
{
public:
  STDIN_Handler (MT_TASK &ph);
  // Initialization.

  virtual int open (void * = 0);
  // Activate object.

  virtual int close (u_long = 0);
  // Shut down.

  int svc (void);
  // Thread runs here as an active object.

  int handle_close (ACE_HANDLE,
                    ACE_Reactor_Mask);

private:
  static void handler (int signum);
  // Handle a ^C.  (Do nothing, this just illustrates how we can catch
  // signals along with the other things).

  void register_thread_exit_hook (void);
  // Helper function to register with the Reactor for thread exit.

  virtual int handle_signal (int index, siginfo_t *, ucontext_t *);
  // The STDIN thread has exited.  This means the user hit ^C.  We can
  // end the event loop.

  MT_TASK &ph_;
  // Send all input to ph_.

  ACE_HANDLE thr_handle_;
  // Handle of our thread.
};

Peer_Handler::Peer_Handler (int argc, ACE_TCHAR *argv[])
  : strategy_ (ACE_Reactor::instance (),
               this,
               ACE_Event_Handler::WRITE_MASK),
    host_ (0),
    port_ (ACE_DEFAULT_SERVER_PORT),
    mb_ (BUFSIZ)
{
  // This code sets up the message to notify us when a new message is
  // added to the queue.  Actually, the queue notifies Reactor which
  // then notifies us.
  this->msg_queue ()->notification_strategy (&this->strategy_);

  ACE_Get_Opt get_opt (argc, argv, ACE_TEXT("h:p:"));
  int c;

  while ((c = get_opt ()) != EOF)
    {
      switch (c)
        {
        case 'h':
          host_ = get_opt.opt_arg ();
          break;
        case 'p':
          port_ = ACE_OS::atoi (get_opt.opt_arg ());
          break;
        }
    }
}

Peer_Handler::~Peer_Handler (void)
{
}

// This method creates the network connection to the remote peer.  It
// does blocking connects and accepts depending on whether a hostname
// was specified from the command line.

int
Peer_Handler::open (void *)
{
  if (host_ != 0) // Connector
    {
      ACE_INET_Addr addr (port_, host_);
      ACE_SOCK_Connector connector;

      // Establish connection with server.
      if (connector.connect (stream_, addr) == -1)
        ACE_ERROR_RETURN ((LM_ERROR, "%p\n", "connect"), -1);

      ACE_DEBUG ((LM_DEBUG, "(%t) connected.\n"));
    }
  else // Acceptor
    {
      ACE_SOCK_Acceptor acceptor;
      ACE_INET_Addr local_addr (port_);

      if ((acceptor.open (local_addr) == -1) ||
          (acceptor.accept (this->stream_) == -1))
        ACE_ERROR_RETURN ((LM_ERROR, "%p\n", "accept failed"), -1);

      ACE_DEBUG ((LM_DEBUG, "(%t) accepted.\n"));
    }

  int result = this->rd_stream_.open (*this);
  if (result != 0)
    return result;

  result = this->wr_stream_.open (*this);
  if (result != 0)
    return result;

  result = this->rd_stream_.read (this->mb_,
                                  this->mb_.size ());
  return result;
}

// One of our asynchronous writes to the remote peer has completed.
// Make sure it succeeded and then delete the message.

void
Peer_Handler::handle_write_stream (const ACE_Asynch_Write_Stream::Result &result)
{
  if (result.bytes_transferred () <= 0)
    ACE_DEBUG ((LM_DEBUG, "(%t) %p bytes = %d\n", "Message failed",
                result.bytes_transferred ()));

  // This was allocated by the STDIN_Handler, queued, dequeued, passed
  // to the proactor, and now passed back to us.
  result.message_block ().release ();
}

// The remote peer has sent us something.  If it succeeded, print
// out the message and reinitiate a read.  Otherwise, fail.  In both
// cases, delete the message sent.


void
Peer_Handler::handle_read_stream (const ACE_Asynch_Read_Stream::Result &result)
{
  if (result.bytes_transferred () > 0 &&
      this->mb_.length () > 0)
    {
      this->mb_.rd_ptr ()[result.bytes_transferred ()] = '\0';
      // Print out the message received from the server.
      ACE_DEBUG ((LM_DEBUG, "%s", this->mb_.rd_ptr ()));
    }
  else
    {
      // If a read failed, we will assume it's because the remote peer
      // went away.  We will end the event loop.  Since we're in the
      // main thread, we don't need to do a notify.
      ACE_Reactor::end_event_loop();
      return;
    }

  // Reset pointers
  this->mb_.wr_ptr (this->mb_.wr_ptr () - result.bytes_transferred ());

  // Start off another read
  if (this->rd_stream_.read (this->mb_,
                             this->mb_.size ()) == -1)
    ACE_ERROR ((LM_ERROR, "%p Read initiate.\n", "Peer_Handler"));
}

// This is so the Proactor can get our handle.
ACE_HANDLE
Peer_Handler::handle (void) const
{
  return this->stream_.get_handle ();
}

void
Peer_Handler::handle (ACE_HANDLE handle)
{
  this->stream_.set_handle (handle);
}

// We've been removed from the Reactor.
int
Peer_Handler::handle_close (ACE_HANDLE, ACE_Reactor_Mask)
{
  ACE_DEBUG ((LM_DEBUG, "(%t) Peer_Handler closing down\n"));
  return 0;
}

// New stuff added to the message queue.  Try to dequeue a message.
int
Peer_Handler::handle_output (ACE_HANDLE)
{
  ACE_Message_Block *mb;

  ACE_Time_Value tv (ACE_Time_Value::zero);

  // Forward the message to the remote peer receiver.
  if (this->getq (mb, &tv) != -1)
    {
      if (this->wr_stream_.write (*mb,
                                  mb->length ()) == -1)
        ACE_ERROR_RETURN ((LM_ERROR, "%p Write initiate.\n", "Peer_Handler"), -1);
    }
  return 0;
}

void
STDIN_Handler::handler (int signum)
{
  ACE_DEBUG ((LM_DEBUG, "(%t) signal = %S\n", signum));
}

STDIN_Handler::STDIN_Handler (MT_TASK &ph)
  : ph_ (ph)
{
  // Register for ^C from the console.  We just need to catch the
  // exception so that the kernel doesn't kill our process.
  // Registering this signal handler just tells the kernel that we
  // know what we're doing; to leave us alone.

  ACE_OS::signal (SIGINT, (ACE_SignalHandler) STDIN_Handler::handler);
};

// Activate object.

int
STDIN_Handler::open (void *)
{
  if (this->activate (THR_NEW_LWP | THR_DETACHED) == -1)
    ACE_ERROR_RETURN ((LM_ERROR, "%p\n", "spawn"), -1);

  return 0;
}

// Shut down.

int
STDIN_Handler::close (u_long)
{
  ACE_DEBUG ((LM_DEBUG, "(%t) thread is exiting.\n"));
  return 0;
}

// Thread runs here.

int
STDIN_Handler::svc (void)
{
  this->register_thread_exit_hook ();

  for (;;)
    {
      ACE_Message_Block *mb = new ACE_Message_Block (BUFSIZ);

      // Read from stdin into mb.
      int read_result = ACE_OS::read (ACE_STDIN,
                                      mb->rd_ptr (),
                                      mb->size ());

      // If read succeeds, put mb to peer handler, else end the loop.
      if (read_result > 0)
        {
          mb->wr_ptr (read_result);
          // Note that this call will first enqueue mb onto the peer
          // handler's message queue, which will then turn around and
          // notify the Reactor via the Notification_Strategy.  This
          // will subsequently signal the Peer_Handler, which will
          // react by calling back to its handle_output() method,
          // which dequeues the message and sends it to the peer
          // across the network.
          this->ph_.putq (mb);
        }
      else
        {
          mb->release ();
          break;
        }
    }

  // handle_signal will get called on the main proactor thread since
  // we just exited and the main thread is waiting on our thread exit.
  return 0;
}

// Register an exit hook with the reactor.

void
STDIN_Handler::register_thread_exit_hook (void)
{
  // Get a real handle to our thread.
  ACE_Thread_Manager::instance ()->thr_self (this->thr_handle_);

  // Register ourselves to get called back when our thread exits.

  if (ACE_Reactor::instance ()->
      register_handler (this, this->thr_handle_) == -1)
    ACE_ERROR ((LM_ERROR, "Exit_Hook Register failed.\n"));
}

// The STDIN thread has exited.  This means the user hit ^C.  We can
// end the event loop and delete ourself.

int
STDIN_Handler::handle_signal (int, siginfo_t *si, ucontext_t *)
{
  if (si != 0)
    {
      ACE_ASSERT (this->thr_handle_ == si->si_handle_);
      ACE_Reactor::end_event_loop ();
    }
  return 0;
}

int
STDIN_Handler::handle_close (ACE_HANDLE,
                             ACE_Reactor_Mask)
{
  delete this;
  return 0;
}

int
ACE_TMAIN (int argc, ACE_TCHAR *argv[])
{
  // Let the proactor know that it will be used with Reactor
  // Create specific proactor
  ACE_WIN32_Proactor win32_proactor (0, 1);
  // Get the interface proactor
  ACE_Proactor proactor (&win32_proactor);
  // Put it as the instance.
  ACE_Proactor::instance (&proactor);

  // Open handler for remote peer communications this will run from
  // the main thread.
  Peer_Handler peer_handler (argc, argv);

  if (peer_handler.open () == -1)
    ACE_ERROR_RETURN ((LM_ERROR,
                       "%p open failed, errno = %d.\n",
                       "peer_handler", errno), 0);

  // Open active object for reading from stdin.
  STDIN_Handler *stdin_handler =
    new STDIN_Handler (peer_handler);

  // Spawn thread.
  if (stdin_handler->open () == -1)
    ACE_ERROR_RETURN ((LM_ERROR,
                       "%p open failed, errno = %d.\n",
                       "stdin_handler", errno), 0);

  // Register proactor with Reactor so that we can demultiplex
  // "waitable" events and I/O operations from a single thread.
  if (ACE_Reactor::instance ()->register_handler
      (ACE_Proactor::instance ()->implementation ()) != 0)
    ACE_ERROR_RETURN ((LM_ERROR, "%p failed to register Proactor.\n",
                       argv[0]), -1);

  // Run main event demultiplexor.
  ACE_Reactor::run_event_loop ();

  // Remove proactor with Reactor.
  if (ACE_Reactor::instance ()->remove_handler
      (ACE_Proactor::instance ()->implementation (), ACE_Event_Handler::DONT_CALL) != 0)
    ACE_ERROR_RETURN ((LM_ERROR, "%p failed to register Proactor.\n",
                       argv[0]), -1);

  return 0;
}
#else /* !ACE_WIN32 */
int
ACE_TMAIN (int , ACE_TCHAR *[])
{
  return 0;
}
#endif /* ACE_WIN32 */