summaryrefslogtreecommitdiff
path: root/tests/Buffer_Stream_Test.cpp
blob: 9be7ca0e74d43ecab1b7137991da7e5cff94c831 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
// $Id$

// ============================================================================
//
// = LIBRARY
//    tests
//
// = FILENAME
//    Buffer_Stream_Test.cpp
//
// = DESCRIPTION
//     This program illustrates an implementation of the classic
//     "bounded buffer" program using an ASX STREAM containing two
//     Modules.  Each ACE_Module contains two Tasks.  Each ACE_Task
//     contains a ACE_Message_Queue and a pointer to a
//     ACE_Thread_Manager.  Note how the use of these reusable
//     components reduces the reliance on global variables.
//
// = AUTHOR
//    Prashant Jain <pjain@cs.wustl.edu> and Doug Schmidt <schmidt@cs.wustl.edu>
//
// ============================================================================

#include "test_config.h"
#include "ace/Synch.h"
#include "ace/Stream.h"
#include "ace/Module.h"
#include "ace/Task.h"

ACE_RCSID(tests, Buffer_Stream_Test, "$Id$")

#if defined (ACE_HAS_THREADS)

static const char ACE_ALPHABET[] = "abcdefghijklmnopqrstuvwxyz";

typedef ACE_Stream<ACE_MT_SYNCH> MT_Stream;
typedef ACE_Module<ACE_MT_SYNCH> MT_Module;
typedef ACE_Task<ACE_MT_SYNCH> MT_Task;

class Common_Task : public MT_Task
  // = TITLE
  //   Methods that are common to the Supplier and consumer.
{
public:
  Common_Task (void) {}

  // = ACE_Task hooks.
  virtual int open (void * = 0);
  virtual int close (u_long = 0);
};

class Supplier : public Common_Task
// = TITLE
// Define the Supplier interface.
{
public:
  Supplier (void) {}

  virtual int svc (void);
  // Read data from stdin and pass to consumer.
};

class Consumer : public Common_Task
  // = TITLE
  //    Define the Consumer interface.
{
public:
  Consumer (void) {}

  virtual int put (ACE_Message_Block *mb, ACE_Time_Value *tv = 0);
  // Enqueue the message on the ACE_Message_Queue for subsequent
  // handling in the svc() method.

  virtual int svc (void);
  // Receive message from Supplier and print to stdout.
private:

  ACE_Time_Value timeout_;
  // Amount of time to wait for a timeout.
};

// Spawn off a new thread.

int
Common_Task::open (void *)
{
  if (this->activate (THR_NEW_LWP | THR_DETACHED) == -1)
    ACE_ERROR_RETURN ((LM_ERROR, ACE_TEXT ("%p\n"), ACE_TEXT ("spawn")), -1);
  return 0;
}

int
Common_Task::close (u_long exit_status)
{
  ACE_DEBUG ((LM_DEBUG,
              ACE_TEXT ("(%t) thread is exiting with status %d in module %s\n"),
             exit_status,
              this->name ()));

  // Can do anything here that is required when a thread exits, e.g.,
  // storing thread-specific information in some other storage
  // location, etc.
  return 0;
}

// The Supplier reads data from the stdin stream, creates a message,
// and then queues the message in the message list, where it is
// removed by the consumer thread.  A 0-sized message is enqueued when
// there is no more data to read.  The consumer uses this as a flag to
// know when to exit.

int
Supplier::svc (void)
{
  ACE_Message_Block *mb;

  // Send one message for each letter of the alphabet, then send an empty
  // message to mark the end.
  for (const char *c = ACE_ALPHABET; *c != '\0'; c++)
    {
      // Allocate a new message.
      char d[2];
      d[0] = *c;
      d[1] = '\0';

      ACE_NEW_RETURN (mb,
                      ACE_Message_Block (2),
                      -1);
      ACE_OS::strcpy (mb->wr_ptr (), d);

      mb->wr_ptr (2);

      if (this->put_next (mb) == -1)
        ACE_ERROR ((LM_ERROR, ACE_TEXT ("(%t) %p\n"),
                    ACE_TEXT ("put_next")));
    }

  ACE_NEW_RETURN(mb, ACE_Message_Block, -1);
  if (this->put_next (mb) == -1)
    ACE_ERROR ((LM_ERROR, ACE_TEXT ("(%t) %p\n"), ACE_TEXT ("put_next")));

  return 0;
}

int
Consumer::put (ACE_Message_Block *mb, ACE_Time_Value *tv)
{
  // Simply enqueue the Message_Block into the end of the queue.
  return this->putq (mb, tv);
}

// The consumer dequeues a message from the ACE_Message_Queue, writes
// the message to the stderr stream, and deletes the message.  The
// Consumer sends a 0-sized message to inform the consumer to stop
// reading and exit.

int
Consumer::svc (void)
{
  ACE_Message_Block *mb = 0;
  int result;
  const char *c = ACE_ALPHABET;
  char *output;

  // Keep looping, reading a message out of the queue, until we
  // timeout or get a message with a length == 0, which signals us to
  // quit.

  for (;;)
    {
      this->timeout_.sec (ACE_OS::time (0) + 4); // Wait for upto 4 seconds

      result = this->getq (mb, &this->timeout_);

      if (result == -1)
        break;

      int length = mb->length ();

      if (length > 0)
        {
          output = mb->rd_ptr ();
          ACE_ASSERT (*c == output[0]);
          c++;
        }
      mb->release ();

      if (length == 0)
        break;
    }

#if !defined (ACE_HAS_WINCE)
  ACE_ASSERT (result == 0 || errno == EWOULDBLOCK);
#endif /* ! ACE_HAS_WINCE */
  return 0;
}

#endif /* ACE_HAS_THREADS */

// Main driver function.

int
main (int, ACE_TCHAR *[])
{
  ACE_START_TEST (ACE_TEXT ("Buffer_Stream_Test"));

#if defined (ACE_HAS_THREADS)
  // Control hierachically-related active objects.
  MT_Stream stream;
  MT_Module *cm;
  MT_Module *sm;

  // Allocate the Consumer and Supplier modules.
  ACE_NEW_RETURN (cm, MT_Module (ACE_TEXT ("Consumer"), new Consumer), -1);
  ACE_NEW_RETURN (sm, MT_Module (ACE_TEXT ("Supplier"), new Supplier), -1);

  // Create Supplier and Consumer Modules and push them onto the
  // Stream.  All processing is performed in the Stream.

  if (stream.push (cm) == -1)
    ACE_ERROR_RETURN ((LM_ERROR, ACE_TEXT ("%p\n"), ACE_TEXT ("push")), 1);
  else if (stream.push (sm) == -1)
    ACE_ERROR_RETURN ((LM_ERROR, ACE_TEXT ("%p\n"), ACE_TEXT ("push")), 1);

  // Barrier synchronization: wait for the threads to exit, then exit
  // ourselves.
  ACE_Thread_Manager::instance ()->wait ();
#else
  ACE_ERROR ((LM_INFO,
              ACE_TEXT ("threads not supported on this platform\n")));
#endif /* ACE_HAS_THREADS */
  ACE_END_TEST;
  return 0;
}