1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
|
// $Id$
// ============================================================================
//
// = LIBRARY
// tests
//
// = FILENAME
// Conn_Test.cpp
//
// = DESCRIPTION
// This is a test of the <ACE_Acceptor> and <ACE_Connector>
// classes. The test forks processes or spawns threads (depending
// upon the platform) and then executes client and server allowing
// them to connect and exchange data. The test also illustrates
// how the <ACE_Strategy_Connector> works by showing how you can
// cache connections on the client.
//
// = AUTHOR
// Douglas C. Schmidt <schmidt@cs.wustl.edu>,
// Chris Cleeland <cleeland@cs.wustl.edu>,
// and Irfan Pyarali <irfan@cs.wustl.edu>
//
// ============================================================================
#include "test_config.h"
#include "ace/SOCK_Connector.h"
#include "ace/LOCK_SOCK_Acceptor.h"
#include "ace/Acceptor.h"
#include "ace/Handle_Set.h"
#include "ace/Connector.h"
#include "ace/Strategies.h"
#include "ace/Auto_Ptr.h"
#include "ace/Get_Opt.h"
#include "ace/Process_Mutex.h"
#include "Conn_Test.h"
ACE_RCSID(tests, Conn_Test, "$Id$")
// The following works around bugs with some operating systems, which
// don't allow multiple threads/process to call accept() on the same
// listen-mode port/socket. Also, note that since timed accept is
// implemented using select(), and we use timed accepts with threads,
// we need a real lock when using timed accepts even if the OS has
// thread-safe accept.
//
#if defined (ACE_LACKS_FORK)
# if defined (ACE_HAS_THREADS)
typedef ACE_Thread_Mutex ACCEPTOR_LOCKING;
# else
typedef ACE_Null_Mutex ACCEPTOR_LOCKING;
# endif /* ACE_HAS_THREADS */
#else
# if defined (ACE_HAS_THREAD_SAFE_ACCEPT)
typedef ACE_Null_Mutex ACCEPTOR_LOCKING;
# else
typedef ACE_Process_Mutex ACCEPTOR_LOCKING;
# endif /* ACE_HAS_THREAD_SAFE_ACCEPT */
#endif /* ACE_LACKS_FORK */
#if defined (ACE_HAS_TEMPLATE_TYPEDEFS)
#define LOCK_SOCK_ACCEPTOR ACE_LOCK_SOCK_Acceptor<ACCEPTOR_LOCKING>
#else
#define LOCK_SOCK_ACCEPTOR ACE_LOCK_SOCK_Acceptor<ACCEPTOR_LOCKING>, ACE_INET_Addr
#endif /* ACE_HAS_TEMPLATE_TYPEDEFS */
typedef ACE_Oneshot_Acceptor<Svc_Handler,
LOCK_SOCK_ACCEPTOR>
ACCEPTOR;
typedef ACE_Connector<Svc_Handler,
ACE_SOCK_CONNECTOR>
CONNECTOR;
typedef ACE_Strategy_Connector<Svc_Handler,
ACE_SOCK_CONNECTOR>
STRAT_CONNECTOR;
typedef ACE_NOOP_Creation_Strategy<Svc_Handler>
NULL_CREATION_STRATEGY;
typedef ACE_NOOP_Concurrency_Strategy<Svc_Handler>
NULL_ACTIVATION_STRATEGY;
typedef ACE_Cached_Connect_Strategy<Svc_Handler,
ACE_SOCK_CONNECTOR,
ACE_SYNCH_MUTEX>
CACHED_CONNECT_STRATEGY;
#define CACHED_CONNECT_STRATEGY ACE_Cached_Connect_Strategy<Svc_Handler, ACE_SOCK_CONNECTOR, ACE_SYNCH_MUTEX>
#define REFCOUNTED_HASH_RECYCLABLE_ADDR ACE_Refcounted_Hash_Recyclable<ACE_INET_Addr>
#if defined (ACE_HAS_EXPLICIT_TEMPLATE_INSTANTIATION)
template class CACHED_CONNECT_STRATEGY;
template class REFCOUNTED_HASH_RECYCLABLE_ADDR;
template class ACE_NOOP_Creation_Strategy<Svc_Handler>;
template class ACE_Concurrency_Strategy<Svc_Handler>;
template class ACE_Connect_Strategy<Svc_Handler, ACE_SOCK_CONNECTOR>;
template class ACE_Connector<Svc_Handler, ACE_SOCK_CONNECTOR>;
template class ACE_Creation_Strategy<Svc_Handler>;
template class ACE_Hash_Map_Entry<REFCOUNTED_HASH_RECYCLABLE_ADDR, Svc_Handler *>;
template class ACE_Hash<REFCOUNTED_HASH_RECYCLABLE_ADDR>;
template class ACE_Equal_To<REFCOUNTED_HASH_RECYCLABLE_ADDR>;
template class ACE_Reverse_Lock<ACE_SYNCH_MUTEX>;
template class ACE_Guard<ACE_Reverse_Lock<ACE_SYNCH_MUTEX> >;
#if defined (ACE_HAS_THREADS)
template class ACE_Hash_Map_Manager<REFCOUNTED_HASH_RECYCLABLE_ADDR, Svc_Handler *, ACE_Null_Mutex>;
template class ACE_Hash_Map_Manager_Ex<REFCOUNTED_HASH_RECYCLABLE_ADDR, Svc_Handler *, ACE_Hash<REFCOUNTED_HASH_RECYCLABLE_ADDR>, ACE_Equal_To<REFCOUNTED_HASH_RECYCLABLE_ADDR>, ACE_Null_Mutex>;
template class ACE_Hash_Map_Iterator_Base_Ex<REFCOUNTED_HASH_RECYCLABLE_ADDR, Svc_Handler *, ACE_Hash<REFCOUNTED_HASH_RECYCLABLE_ADDR>, ACE_Equal_To<REFCOUNTED_HASH_RECYCLABLE_ADDR>, ACE_Null_Mutex>;
template class ACE_Hash_Map_Iterator<REFCOUNTED_HASH_RECYCLABLE_ADDR, Svc_Handler *, ACE_Null_Mutex>;
template class ACE_Hash_Map_Iterator_Ex<REFCOUNTED_HASH_RECYCLABLE_ADDR, Svc_Handler *, ACE_Hash<REFCOUNTED_HASH_RECYCLABLE_ADDR>, ACE_Equal_To<REFCOUNTED_HASH_RECYCLABLE_ADDR>, ACE_Null_Mutex>;
template class ACE_Hash_Map_Bucket_Iterator<REFCOUNTED_HASH_RECYCLABLE_ADDR, Svc_Handler *, ACE_Hash<REFCOUNTED_HASH_RECYCLABLE_ADDR>, ACE_Equal_To<REFCOUNTED_HASH_RECYCLABLE_ADDR>, ACE_Null_Mutex>;
template class ACE_Hash_Map_Reverse_Iterator<REFCOUNTED_HASH_RECYCLABLE_ADDR, Svc_Handler *, ACE_Null_Mutex>;
template class ACE_Hash_Map_Reverse_Iterator_Ex<REFCOUNTED_HASH_RECYCLABLE_ADDR, Svc_Handler *, ACE_Hash<REFCOUNTED_HASH_RECYCLABLE_ADDR>, ACE_Equal_To<REFCOUNTED_HASH_RECYCLABLE_ADDR>, ACE_Null_Mutex>;
#endif /* ACE_HAS_THREADS */
template class ACE_Hash_Map_Manager<REFCOUNTED_HASH_RECYCLABLE_ADDR, Svc_Handler *, ACE_SYNCH_RW_MUTEX>;
template class ACE_Hash_Map_Manager_Ex<REFCOUNTED_HASH_RECYCLABLE_ADDR, Svc_Handler *, ACE_Hash<REFCOUNTED_HASH_RECYCLABLE_ADDR>, ACE_Equal_To<REFCOUNTED_HASH_RECYCLABLE_ADDR>, ACE_SYNCH_RW_MUTEX>;
template class ACE_Hash_Map_Iterator_Base_Ex<REFCOUNTED_HASH_RECYCLABLE_ADDR, Svc_Handler *, ACE_Hash<REFCOUNTED_HASH_RECYCLABLE_ADDR>, ACE_Equal_To<REFCOUNTED_HASH_RECYCLABLE_ADDR>, ACE_SYNCH_RW_MUTEX>;
template class ACE_Hash_Map_Iterator<REFCOUNTED_HASH_RECYCLABLE_ADDR, Svc_Handler *, ACE_SYNCH_RW_MUTEX>;
template class ACE_Hash_Map_Iterator_Ex<REFCOUNTED_HASH_RECYCLABLE_ADDR, Svc_Handler *, ACE_Hash<REFCOUNTED_HASH_RECYCLABLE_ADDR>, ACE_Equal_To<REFCOUNTED_HASH_RECYCLABLE_ADDR>, ACE_SYNCH_RW_MUTEX>;
template class ACE_Hash_Map_Bucket_Iterator<REFCOUNTED_HASH_RECYCLABLE_ADDR, Svc_Handler *, ACE_Hash<REFCOUNTED_HASH_RECYCLABLE_ADDR>, ACE_Equal_To<REFCOUNTED_HASH_RECYCLABLE_ADDR>, ACE_SYNCH_RW_MUTEX>;
template class ACE_Hash_Map_Reverse_Iterator<REFCOUNTED_HASH_RECYCLABLE_ADDR, Svc_Handler *, ACE_SYNCH_RW_MUTEX>;
template class ACE_Hash_Map_Reverse_Iterator_Ex<REFCOUNTED_HASH_RECYCLABLE_ADDR, Svc_Handler *, ACE_Hash<REFCOUNTED_HASH_RECYCLABLE_ADDR>, ACE_Equal_To<REFCOUNTED_HASH_RECYCLABLE_ADDR>, ACE_SYNCH_RW_MUTEX>;
template class ACE_LOCK_SOCK_Acceptor<ACCEPTOR_LOCKING>;
template class ACE_Oneshot_Acceptor<Svc_Handler, LOCK_SOCK_ACCEPTOR>;
template class ACE_Map_Entry<ACE_HANDLE, ACE_Svc_Tuple<Svc_Handler> *>;
template class ACE_Map_Manager<ACE_HANDLE, ACE_Svc_Tuple<Svc_Handler> *, ACE_SYNCH_RW_MUTEX>;
template class ACE_Map_Iterator_Base<ACE_HANDLE, ACE_Svc_Tuple<Svc_Handler> *, ACE_SYNCH_RW_MUTEX>;
template class ACE_Map_Iterator<ACE_HANDLE, ACE_Svc_Tuple<Svc_Handler> *, ACE_SYNCH_RW_MUTEX>;
template class ACE_Map_Reverse_Iterator<ACE_HANDLE, ACE_Svc_Tuple<Svc_Handler> *, ACE_SYNCH_RW_MUTEX>;
template class ACE_NOOP_Concurrency_Strategy<Svc_Handler>;
template class ACE_Recycling_Strategy<Svc_Handler>;
template class ACE_Strategy_Connector<Svc_Handler, ACE_SOCK_CONNECTOR>;
template class ACE_Svc_Handler<ACE_SOCK_STREAM, ACE_NULL_SYNCH>;
template class ACE_Svc_Tuple<Svc_Handler>;
template class ACE_Auto_Basic_Array_Ptr<pid_t>;
#if defined (__BORLANDC__)
// Borland C++ doesn't link with these instantiations in the ACE library.
template class ACE_Double_Linked_List<ACE_Thread_Descriptor>;
template class ACE_Unbounded_Queue<ACE_Thread_Descriptor_Base>;
template class ACE_Unbounded_Queue<ACE_Thread_Descriptor*>;
#endif /* defined (__BORLANDC__) */
#elif defined (ACE_HAS_TEMPLATE_INSTANTIATION_PRAGMA)
#pragma instantiate CACHED_CONNECT_STRATEGY
#pragma instantiate REFCOUNTED_HASH_RECYCLABLE_ADDR
#pragma instantiate ACE_NOOP_Creation_Strategy<Svc_Handler>
#pragma instantiate ACE_Concurrency_Strategy<Svc_Handler>
#pragma instantiate ACE_Connect_Strategy<Svc_Handler, ACE_SOCK_CONNECTOR>
#pragma instantiate ACE_Connector<Svc_Handler, ACE_SOCK_CONNECTOR>
#pragma instantiate ACE_Creation_Strategy<Svc_Handler>
#pragma instantiate ACE_Hash_Map_Entry<REFCOUNTED_HASH_RECYCLABLE_ADDR, Svc_Handler *>
#pragma instantiate ACE_Hash<REFCOUNTED_HASH_RECYCLABLE_ADDR>
#pragma instantiate ACE_Equal_To<REFCOUNTED_HASH_RECYCLABLE_ADDR>
#pragma instantiate ACE_Reverse_Lock<ACE_SYNCH_MUTEX>
#pragma instantiate ACE_Guard<ACE_Reverse_Lock<ACE_SYNCH_MUTEX> >
#if defined (ACE_HAS_THREADS)
#pragma instantiate ACE_Hash_Map_Manager<REFCOUNTED_HASH_RECYCLABLE_ADDR, Svc_Handler *, ACE_Null_Mutex>
#pragma instantiate ACE_Hash_Map_Manager_Ex<REFCOUNTED_HASH_RECYCLABLE_ADDR, Svc_Handler *, ACE_Hash<REFCOUNTED_HASH_RECYCLABLE_ADDR>, ACE_Equal_To<REFCOUNTED_HASH_RECYCLABLE_ADDR>, ACE_Null_Mutex>
#pragma instantiate ACE_Hash_Map_Iterator_Base_Ex<REFCOUNTED_HASH_RECYCLABLE_ADDR, Svc_Handler *, ACE_Hash<REFCOUNTED_HASH_RECYCLABLE_ADDR>, ACE_Equal_To<REFCOUNTED_HASH_RECYCLABLE_ADDR>, ACE_Null_Mutex>
#pragma instantiate ACE_Hash_Map_Iterator<REFCOUNTED_HASH_RECYCLABLE_ADDR, Svc_Handler *, ACE_Null_Mutex>
#pragma instantiate ACE_Hash_Map_Iterator_Ex<REFCOUNTED_HASH_RECYCLABLE_ADDR, Svc_Handler *, ACE_Hash<REFCOUNTED_HASH_RECYCLABLE_ADDR>, ACE_Equal_To<REFCOUNTED_HASH_RECYCLABLE_ADDR>, ACE_Null_Mutex>
#pragma instantiate ACE_Hash_Map_Bucket_Iterator<REFCOUNTED_HASH_RECYCLABLE_ADDR, Svc_Handler *, ACE_Hash<REFCOUNTED_HASH_RECYCLABLE_ADDR>, ACE_Equal_To<REFCOUNTED_HASH_RECYCLABLE_ADDR>, ACE_Null_Mutex>
#pragma instantiate ACE_Hash_Map_Reverse_Iterator<REFCOUNTED_HASH_RECYCLABLE_ADDR, Svc_Handler *, ACE_Null_Mutex>
#pragma instantiate ACE_Hash_Map_Reverse_Iterator_Ex<REFCOUNTED_HASH_RECYCLABLE_ADDR, Svc_Handler *, ACE_Hash<REFCOUNTED_HASH_RECYCLABLE_ADDR>, ACE_Equal_To<REFCOUNTED_HASH_RECYCLABLE_ADDR>, ACE_Null_Mutex>
#endif /* ACE_HAS_THREADS */
#pragma instantiate ACE_Hash_Map_Manager<REFCOUNTED_HASH_RECYCLABLE_ADDR, Svc_Handler *, ACE_SYNCH_RW_MUTEX>
#pragma instantiate ACE_Hash_Map_Manager_Ex<REFCOUNTED_HASH_RECYCLABLE_ADDR, Svc_Handler *, ACE_Hash<REFCOUNTED_HASH_RECYCLABLE_ADDR>, ACE_Equal_To<REFCOUNTED_HASH_RECYCLABLE_ADDR>, ACE_SYNCH_RW_MUTEX>
#pragma instantiate ACE_Hash_Map_Iterator_Base_Ex<REFCOUNTED_HASH_RECYCLABLE_ADDR, Svc_Handler *, ACE_Hash<REFCOUNTED_HASH_RECYCLABLE_ADDR>, ACE_Equal_To<REFCOUNTED_HASH_RECYCLABLE_ADDR>, ACE_SYNCH_RW_MUTEX>
#pragma instantiate ACE_Hash_Map_Iterator<REFCOUNTED_HASH_RECYCLABLE_ADDR, Svc_Handler *, ACE_SYNCH_RW_MUTEX>
#pragma instantiate ACE_Hash_Map_Iterator_Ex<REFCOUNTED_HASH_RECYCLABLE_ADDR, Svc_Handler *, ACE_Hash<REFCOUNTED_HASH_RECYCLABLE_ADDR>, ACE_Equal_To<REFCOUNTED_HASH_RECYCLABLE_ADDR>, ACE_SYNCH_RW_MUTEX>
#pragma instantiate ACE_Hash_Map_Bucket_Iterator<REFCOUNTED_HASH_RECYCLABLE_ADDR, Svc_Handler *, ACE_Hash<REFCOUNTED_HASH_RECYCLABLE_ADDR>, ACE_Equal_To<REFCOUNTED_HASH_RECYCLABLE_ADDR>, ACE_SYNCH_RW_MUTEX>
#pragma instantiate ACE_Hash_Map_Reverse_Iterator<REFCOUNTED_HASH_RECYCLABLE_ADDR, Svc_Handler *, ACE_SYNCH_RW_MUTEX>
#pragma instantiate ACE_Hash_Map_Reverse_Iterator_Ex<REFCOUNTED_HASH_RECYCLABLE_ADDR, Svc_Handler *, ACE_Hash<REFCOUNTED_HASH_RECYCLABLE_ADDR>, ACE_Equal_To<REFCOUNTED_HASH_RECYCLABLE_ADDR>, ACE_SYNCH_RW_MUTEX>
#pragma instantiate ACE_LOCK_SOCK_Acceptor<ACCEPTOR_LOCKING>
#pragma instantiate ACE_Oneshot_Acceptor<Svc_Handler, LOCK_SOCK_ACCEPTOR>
#pragma instantiate ACE_Map_Entry<ACE_HANDLE, ACE_Svc_Tuple<Svc_Handler> *>
#pragma instantiate ACE_Map_Manager<ACE_HANDLE, ACE_Svc_Tuple<Svc_Handler> *, ACE_SYNCH_RW_MUTEX>
#pragma instantiate ACE_Map_Iterator_Base<ACE_HANDLE, ACE_Svc_Tuple<Svc_Handler> *, ACE_SYNCH_RW_MUTEX>
#pragma instantiate ACE_Map_Iterator<ACE_HANDLE, ACE_Svc_Tuple<Svc_Handler> *, ACE_SYNCH_RW_MUTEX>
#pragma instantiate ACE_Map_Reverse_Iterator<ACE_HANDLE, ACE_Svc_Tuple<Svc_Handler> *, ACE_SYNCH_RW_MUTEX>
#pragma instantiate ACE_NOOP_Concurrency_Strategy<Svc_Handler>
#pragma instantiate ACE_Recycling_Strategy<Svc_Handler>
#pragma instantiate ACE_Strategy_Connector<Svc_Handler, ACE_SOCK_CONNECTOR>
#pragma instantiate ACE_Svc_Handler<ACE_SOCK_STREAM, ACE_NULL_SYNCH>
#pragma instantiate ACE_Svc_Tuple<Svc_Handler>
#pragma instantiate ACE_Auto_Basic_Array_Ptr<pid_t>
#if defined (__BORLANDC__)
// Borland C++ doesn't link with these instantiations in the ACE library.
#pragma instantiate ACE_Double_Linked_List<ACE_Thread_Descriptor>
#pragma instantiate ACE_Unbounded_Queue<ACE_Thread_Descriptor_Base>
#pragma instantiate ACE_Unbounded_Queue<ACE_Thread_Descriptor*>
#endif /* defined (__BORLANDC__) */
#endif /* ACE_HAS_EXPLICIT_TEMPLATE_INSTANTIATION */
// Default number of clients/servers.
#if defined (ACE_HAS_PHARLAP)
// PharLap is, by default, resource contrained. Test for something that works
// on the default configuration.
static int n_servers = 2;
static int n_clients = 4;
#else
static int n_servers = 5;
static int n_clients = 5;
#endif /* ACE_HAS_PHARLAP */
static int n_client_iterations = 3;
Svc_Handler::Svc_Handler (ACE_Thread_Manager *)
{
}
int
Svc_Handler::open (void *)
{
ACE_DEBUG ((LM_DEBUG,
ACE_TEXT ("(%P|%t) opening Svc_Handler %d with handle %d\n"),
this,
this->peer ().get_handle ()));
// Enable non-blocking I/O.
if (this->peer ().enable (ACE_NONBLOCK) == -1)
ACE_ERROR_RETURN ((LM_ERROR,
ACE_TEXT ("(%P|%t) %p\n"),
ACE_TEXT ("enable")),
-1);
return 0;
}
int
Svc_Handler::recycle (void *)
{
ACE_DEBUG ((LM_DEBUG,
ACE_TEXT ("(%P|%t) recycling Svc_Handler %d with handle %d\n"),
this,
this->peer ().get_handle ()));
return 0;
}
void
Svc_Handler::send_data (void)
{
// Send data to server.
for (char *c = ACE_ALPHABET; *c != '\0'; c++)
if (this->peer ().send_n (c, 1) == -1)
ACE_ERROR ((LM_ERROR,
ACE_TEXT ("(%P|%t) %p\n"),
ACE_TEXT ("send_n")));
}
void
Svc_Handler::recv_data (void)
{
ACE_SOCK_Stream &new_stream = this->peer ();
ACE_Handle_Set handle_set;
handle_set.set_bit (new_stream.get_handle ());
char *t = ACE_ALPHABET;
// Read data from client (terminate on error).
for (ssize_t r_bytes; ;)
{
// Since we're in non-blocking mode we need to use <select> to
// avoid busy waiting.
if (ACE_OS::select (int (new_stream.get_handle ()) + 1,
handle_set,
0, 0, 0) == -1)
ACE_ERROR ((LM_ERROR,
ACE_TEXT ("(%P|%t) %p\n"),
ACE_TEXT ("select")));
else
{
char c;
while ((r_bytes = new_stream.recv (&c, 1)) > 0)
{
ACE_ASSERT (*t == c);
// We need to guard against cached connections, which
// will send multiple sequences of letters from 'a' ->
// 'z' through the same connection.
if (*t == 'z')
t = ACE_ALPHABET;
else
t++;
}
if (r_bytes == 0)
{
ACE_DEBUG ((LM_DEBUG,
ACE_TEXT ("(%P|%t) reached end of input, connection closed by client\n")));
// Close endpoint handle (but don't close <this> yet
// since we're going to recycle it for the next
// iteration).
if (new_stream.close () == -1)
ACE_ERROR ((LM_ERROR,
ACE_TEXT ("(%P|%t) %p\n"),
ACE_TEXT ("close")));
break;
}
else if (r_bytes == -1)
{
if (errno == EWOULDBLOCK)
ACE_DEBUG ((LM_DEBUG,
ACE_TEXT ("(%P|%t) no input available, going back to reading\n")));
else
ACE_ERROR ((LM_ERROR,
ACE_TEXT ("(%P|%t) %p\n"),
ACE_TEXT ("recv_n")));
}
}
}
}
int
Svc_Handler::close (u_long side)
{
// Only run this protocol if we're the write-side (i.e., "1").
if (side == 1 && this->peer ().close () == -1)
ACE_ERROR ((LM_ERROR,
ACE_TEXT ("(%P|%t) %p\n"),
ACE_TEXT ("close_writer")));
// Trigger the shutdown.
return this->handle_close ();
}
int
Svc_Handler::idle (u_long flags)
{
ACE_DEBUG ((LM_DEBUG,
ACE_TEXT ("(%P|%t) idling Svc_Handler %d with handle %d\n"),
this,
this->peer ().get_handle ()));
return ACE_Svc_Handler<ACE_SOCK_STREAM, ACE_NULL_SYNCH>::idle (flags);
}
static void
timed_blocking_connect (CONNECTOR &con,
const ACE_INET_Addr &server_addr)
{
ACE_Time_Value tv (ACE_DEFAULT_TIMEOUT);
ACE_Synch_Options options (ACE_Synch_Options::USE_TIMEOUT, tv);
Svc_Handler *svc_handler;
ACE_NEW (svc_handler,
Svc_Handler);
// Perform a timed-blocking connect to the server (this should
// connect quickly since we're in the same address space or same
// host).
if (con.connect (svc_handler,
server_addr,
options) == -1)
ACE_ERROR ((LM_ERROR,
ACE_TEXT ("(%P|%t) %p\n"),
ACE_TEXT ("connection failed")));
else
{
// Send the data to the server.
svc_handler->send_data ();
// Close the connection completely.
if (svc_handler->close (1) == -1)
ACE_ERROR ((LM_ERROR,
ACE_TEXT ("(%P|%t) %p\n"),
ACE_TEXT ("close")));
}
}
static void
blocking_connect (CONNECTOR &con,
const ACE_INET_Addr &server_addr)
{
Svc_Handler *svc_handler;
ACE_NEW (svc_handler,
Svc_Handler);
// Perform a blocking connect to the server.
if (con.connect (svc_handler,
server_addr) == -1)
ACE_ERROR ((LM_ERROR,
ACE_TEXT ("(%P|%t) %p\n"),
ACE_TEXT ("connection failed")));
else
{
// Send the data to the server.
svc_handler->send_data ();
// Close the connection completely.
if (svc_handler->close (1) == -1)
ACE_ERROR ((LM_ERROR,
ACE_TEXT ("(%P|%t) %p\n"),
ACE_TEXT ("close")));
}
}
// This function runs the more sophisticated tests involving the
// Caching_Connect_Strategy.
static void
cached_connect (STRAT_CONNECTOR &con,
const ACE_INET_Addr &server_addr)
{
Svc_Handler *svc_handler = 0;
for (int i = 0; i < n_client_iterations; i++)
{
// Perform a blocking connect to the server using the Strategy
// Connector with a connection caching strategy. Since we are
// connecting to the same <server_addr> these calls will return
// the same dynamically allocated <Svc_Handler> for each
// <connect>.
if (con.connect (svc_handler,
server_addr) == -1)
{
ACE_ERROR ((LM_ERROR,
ACE_TEXT ("(%P|%t) %p\n"),
ACE_TEXT ("connection failed")));
return;
}
// Send the data to the server.
svc_handler->send_data ();
// Svc_Handler is now idle, so mark it as such and let the cache
// recycle it in another thread.
svc_handler->idle (1);
// Rest for a second to give another thread a chance to reuse the
// connection.
ACE_OS::sleep (1);
}
}
struct Client_Info
// = TITLE
// Information passed to the client so it can communicate with the
// server.
{
ACE_INET_Addr *server_addr_;
// Address of the server to connect with.
CONNECTOR *connector_;
// Connection factory.
STRAT_CONNECTOR *strat_connector_;
// Strategy for connecting.
#if defined (ACE_HAS_THREADS)
ACE_Barrier *barrier_;
// Performs barrier synchronization.
#endif /* ACE_HAS_THREADS */
};
static void *
client_connections (void *arg)
{
Client_Info *info = (Client_Info *) arg;
// Run the timed-blocking test.
ACE_DEBUG ((LM_DEBUG,
ACE_TEXT ("(%P|%t) **** starting timed-blocking connect\n")));
timed_blocking_connect (*info->connector_,
*info->server_addr_);
#if defined (ACE_HAS_THREADS)
// Wait for other threads to join us.
info->barrier_->wait ();
#endif /* ACE_HAS_THREADS */
// Run the blocking test.
ACE_DEBUG ((LM_DEBUG,
ACE_TEXT ("(%P|%t) **** starting blocking connect\n")));
blocking_connect (*info->connector_,
*info->server_addr_);
#if defined (ACE_HAS_THREADS)
// Wait for other threads to join us.
info->barrier_->wait ();
#endif /* ACE_HAS_THREADS */
// Run the cached blocking test.
ACE_DEBUG ((LM_DEBUG,
ACE_TEXT ("(%P|%t) **** starting cached blocking connect\n")));
cached_connect (*info->strat_connector_,
*info->server_addr_);
return 0;
}
// Execute the client tests.
static void *
client (void *arg)
{
ACE_INET_Addr *remote_addr = ACE_reinterpret_cast (ACE_INET_Addr *,
arg);
ACE_INET_Addr server_addr (remote_addr->get_port_number (),
ACE_DEFAULT_SERVER_HOST);
CONNECTOR connector;
NULL_CREATION_STRATEGY creation_strategy;
NULL_ACTIVATION_STRATEGY activation_strategy;
// Configure the Strategy Connector with a strategy that caches
// connection.
CACHED_CONNECT_STRATEGY caching_connect_strategy;
STRAT_CONNECTOR strat_connector (0,
&creation_strategy,
&caching_connect_strategy,
&activation_strategy);
Client_Info info;
info.server_addr_ = &server_addr;
info.connector_ = &connector;
info.strat_connector_ = &strat_connector;
#if defined (ACE_HAS_THREADS)
int n_threads = n_clients;
ACE_Barrier barrier (n_threads);
info.barrier_ = &barrier;
ACE_Thread_Manager client_manager;
if (client_manager.spawn_n
(n_threads,
(ACE_THR_FUNC) client_connections,
(void *) &info,
THR_NEW_LWP) == -1)
ACE_ERROR ((LM_ERROR,
ACE_TEXT ("(%P|%t) %p\n%a"),
ACE_TEXT ("client thread spawn failed")));
// Wait for the threads to exit.
client_manager.wait ();
#else /* ACE_HAS_THREADS */
client_connections (&info);
#endif /* ACE_HAS_THREADS */
return 0;
}
// Performs the iterative server activities.
static void *
server (void *arg)
{
#if defined (VXWORKS)
ACE_DEBUG ((LM_DEBUG,
ACE_TEXT ("(%P|%t) server stack size is %u\n"),
ACE_OS::thr_min_stack ()));
#endif /* VXWORKS */
ACCEPTOR *acceptor = (ACCEPTOR *) arg;
ACE_INET_Addr cli_addr;
const ACE_Time_Value tv (ACE_DEFAULT_TIMEOUT);
ACE_Synch_Options options (ACE_Synch_Options::USE_TIMEOUT, tv);
Svc_Handler *svc_handler;
ACE_NEW_RETURN (svc_handler,
Svc_Handler,
0);
// Keep looping until we timeout on <accept> or fail.
for (;;)
{
// Create a new <Svc_Handler> to consume the data.
#if defined (ACE_LACKS_FORK)
int result = acceptor->accept (svc_handler,
&cli_addr,
options);
#else /* ! ACE_LACKS_FORK */
int result = acceptor->accept (svc_handler,
&cli_addr);
ACE_UNUSED_ARG (options);
#endif /* ! ACE_LACKS_FORK */
// Timing out is the only way for threads to stop accepting
// since we don't have signals.
if (result == -1)
{
// svc_handler->close (); The ACE_Onsehot_Acceptor closed it.
if (errno == ETIMEDOUT)
{
ACE_DEBUG ((LM_DEBUG,
ACE_TEXT ("accept timed out\n")));
return 0;
}
else
ACE_ERROR_RETURN ((LM_ERROR,
ACE_TEXT ("(%P|%t) %p\n"),
ACE_TEXT ("accept failed, shutting down")),
0);
}
ACE_DEBUG ((LM_DEBUG,
ACE_TEXT ("(%P|%t) client %s connected from %d\n"),
cli_addr.get_host_name (),
cli_addr.get_port_number ()));
svc_handler->recv_data ();
}
ACE_NOTREACHED (return 0);
}
#if !defined (ACE_LACKS_FORK)
static void
handler (int /* signum */)
{
// No printout here, to be safe. Signal handlers must not acquire
// locks, etc. It's not even safe to call ACE_OS::exit ()!
ACE_OS::exit (0);
}
// Spawn threads.
static int
spawn_processes (ACCEPTOR *acceptor,
ACE_INET_Addr *server_addr)
{
pid_t *children_ptr = 0;
ACE_NEW_RETURN (children_ptr,
pid_t[n_servers],
-1);
ACE_Auto_Basic_Array_Ptr<pid_t> children (children_ptr);
int i;
// Spawn off a number of server processes all of which will listen
// on the same port number for clients to connect.
for (i = 0; i < n_servers; i++)
{
pid_t pid = ACE_OS::fork (ACE_TEXT ("child"));
switch (pid)
{
case -1:
ACE_ERROR ((LM_ERROR,
ACE_TEXT ("(%P|%t) %p\n%a"),
ACE_TEXT ("fork failed")));
ACE_OS::exit (-1);
/* NOTREACHED */
case 0: // In the child.
{
// Register a signal handler to close down the child.
ACE_Sig_Action sa ((ACE_SignalHandler) handler, SIGTERM);
ACE_UNUSED_ARG (sa);
server ((void *) acceptor);
return 0;
/* NOTREACHED */
}
default: // In the parent.
children[i] = pid;
break;
}
}
client ((void *) server_addr);
for (i = 0; i < n_servers; i++)
// Shutdown the servers.
if (ACE_OS::kill (children[i], SIGTERM) == -1)
ACE_ERROR ((LM_ERROR,
ACE_TEXT ("(%P|%t) %p for %d\n"),
children[i]));
pid_t child;
do
{
child = ACE_OS::wait ();
if (child != -1)
ACE_DEBUG ((LM_DEBUG,
ACE_TEXT ("(%P|%t) reaping %d\n"),
child));
}
while (child != -1);
// Remove the lock so we don't have process semaphores lying around.
return acceptor->acceptor ().lock ().remove ();
}
#endif /* ! ACE_LACKS_FORK */
#if defined (ACE_LACKS_FORK) && defined (ACE_HAS_THREADS)
// Spawn threads and run the client and server.
static
int
spawn_threads (ACCEPTOR *acceptor,
ACE_INET_Addr *server_addr)
{
int status = 0;
#if defined (VXWORKS)
// Assign thread (VxWorks task) names to test that feature.
ACE_thread_t *server_name;
ACE_NEW_RETURN (server_name,
ACE_thread_t[n_servers],
-1);
// And test ability to provide stacks.
size_t *stack_size;
ACE_NEW_RETURN (stack_size,
size_t[n_servers],
-1);
char **stack;
ACE_NEW_RETURN (stack,
char *[n_servers],
-1);
int i;
for (i = 0; i < n_servers; ++i)
{
ACE_NEW_RETURN (server_name[i], ACE_TCHAR[32], -1);
ACE_OS::sprintf (server_name[i],
ACE_TEXT ("server%u"),
i);
stack_size[i] = 40000;
ACE_NEW_RETURN (stack[i], char[stack_size[i]], -1);
// Initialize the stack for checkStack.
ACE_OS::memset (stack[i], 0xEE, stack_size[i]);
}
ACE_TCHAR *client_name = ACE_TEXT ("Conn client");
#endif /* VXWORKS */
if (ACE_Thread_Manager::instance ()->spawn_n
(
#if defined (VXWORKS)
server_name,
#endif /* VXWORKS */
n_servers,
(ACE_THR_FUNC) server,
(void *) acceptor,
THR_NEW_LWP
#if defined (VXWORKS)
, ACE_DEFAULT_THREAD_PRIORITY
, -1
#if 0 /* Don't support setting of stack, because it doesn't seem to work. */
, (void **) stack
#else
, 0
#endif /* 0 */
, stack_size
#endif /* VXWORKS */
) == -1)
ACE_ERROR ((LM_ERROR,
ACE_TEXT ("(%P|%t) %p\n%a"),
ACE_TEXT ("server thread create failed")));
if (ACE_Thread_Manager::instance ()->spawn
((ACE_THR_FUNC) client,
(void *) server_addr,
THR_NEW_LWP
#if defined (VXWORKS)
, &client_name
#endif /* VXWORKS */
) == -1)
ACE_ERROR ((LM_ERROR,
ACE_TEXT ("(%P|%t) %p\n%a"),
ACE_TEXT ("client thread create failed")));
// Wait for the threads to exit.
// But, wait for a limited time because sometimes the test hangs on Irix.
const ACE_Time_Value max_wait (200 /* seconds */);
const ACE_Time_Value wait_time (ACE_OS::gettimeofday () + max_wait);
if (ACE_Thread_Manager::instance ()->wait (&wait_time) == -1)
{
if (errno == ETIME)
ACE_ERROR ((LM_ERROR,
ACE_TEXT ("maximum wait time of %d msec exceeded\n"),
max_wait.msec ()));
else
ACE_OS::perror (ACE_TEXT ("wait"));
status = -1;
}
#if defined (VXWORKS)
for (i = 0; i < n_servers; ++i)
{
delete [] server_name[i];
delete [] stack[i];
}
delete [] server_name;
delete [] stack;
delete [] stack_size;
#endif /* VXWORKS */
return status;
}
#endif /* ! ACE_LACKS_FORK && ACE_HAS_THREADS */
int
main (int argc, ACE_TCHAR *argv[])
{
ACE_START_TEST (ACE_TEXT ("Conn_Test"));
int status = 0;
ACE_Get_Opt getopt (argc, argv, ACE_TEXT ("c:i:s:"));
for (int c; (c = getopt ()) != -1; )
switch (c)
{
case 'c':
n_clients = ACE_OS::atoi (getopt.optarg);
break;
case 'i':
n_client_iterations = ACE_OS::atoi (getopt.optarg);
break;
case 's':
n_servers = ACE_OS::atoi (getopt.optarg);
break;
}
// Acceptor
ACCEPTOR acceptor;
ACE_INET_Addr server_addr;
// Bind acceptor to any port and then find out what the port was.
if (acceptor.open (ACE_sap_any_cast (const ACE_INET_Addr &)) == -1
|| acceptor.acceptor ().get_local_addr (server_addr) == -1)
{
ACE_ERROR ((LM_ERROR,
ACE_TEXT ("(%P|%t) %p\n"),
ACE_TEXT ("open")));
ACE_ASSERT (0);
}
else
{
ACE_DEBUG ((LM_DEBUG,
ACE_TEXT ("(%P|%t) starting server at port %d\n"),
server_addr.get_port_number ()));
#if !defined (ACE_LACKS_FORK)
if (spawn_processes (&acceptor,
&server_addr) == -1)
ACE_ERROR_RETURN ((LM_ERROR,
ACE_TEXT ("(%P|%r) %p\n"),
ACE_TEXT ("spawn_processes")),
1);
#elif defined (ACE_HAS_THREADS)
status = spawn_threads (&acceptor, &server_addr);
#else /* ACE_LACKS_FORK && ! ACE_HAS_THREADS */
ACE_ERROR ((LM_ERROR,
ACE_TEXT ("(%P|%t) only one thread may be run in a process on this platform\n%a"),
1));
#endif /* ACE_LACKS_FORK && ! ACE_HAS_THREADS */
}
ACE_END_TEST;
return status;
}
|