summaryrefslogtreecommitdiff
path: root/tests/Dynamic_Priority_Test.cpp
blob: baeeeab9beb2a624c24047a1495b5a8349d31753 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
// $Id$
//
// ============================================================================
//
// = LIBRARY
//    tests
//
// = FILENAME
//    Dynamic_Priority_Test.cpp (based on Priority_Buffer_Test.cpp)
//
// = DESCRIPTION
//    This is a test to verify and illustrate the static and dynamic
//    priority mechanisms of the ACE_Message_Queue class and the
//    ACE_Dynamic_Message_Queue class. As in the Priority_Buffer_Test,
//    a producer generates messages and enqueues them, and a consumer
//    dequeues them and checks their ordering.
//
//    In these tests, every effort is made to ensure that there is plenty
//    of time for the messages to be enqueued and dequeued, with messages
//    that *should* meet their deadlines actually meeting them,
//    while messages that should miss their deadlines are delayed
//    so that they actually miss them.  It is, however, remotely
//    possible that this test could yield a false negative:
//    the dynamic queues could work correctly but due to timing
//    variations the test could indicate failure.
//
//    Three message queues are obtained from the message queue factory,
//    one static, two dynamic (one deadline based, and one laxity based)
//    and the same supplier behavior is used each time: the messages
//    are preallocated and their static information valued, the current
//    time is obtained and deadlines are set, with half of the messages
//    given late deadlines, and the other half of the messages given
//    reachable deadlines.  The producer then immediately enqueues all
//    messages.
//
//    Two separate tests are run, one which verifies messages are correctly
//    ordered my the given queues, and one which generates performance
//    numbers for the various queues under increasing numbers of messages.
//    In the first test, the consumer is passed the filled queue and a string
//    with the expected order in which the messages should dequeue.  In the
//    second test, measurements are made as non-intrusive as possible, with 
//    no ordering checks.
//
// = AUTHOR
//    Chris Gill
//
// ============================================================================

#include "ace/Message_Queue.h"
#include "ace/Thread_Manager.h"
#include "ace/High_Res_Timer.h"
#include "ace/Sched_Params.h"
#include "test_config.h"

ACE_RCSID(tests, Dynamic_Priority_Test, "$Id$")

#if defined(__BORLANDC__) && __BORLANDC__ >= 0x0530
USELIB("..\ace\aced.lib");
//---------------------------------------------------------------------------
#endif /* defined(__BORLANDC__) && __BORLANDC__ >= 0x0530 */


enum Test_Type {BEST, WORST, RANDOM};

// structure used to pass arguments to test functions
struct ArgStruct
{
  ACE_Message_Queue<ACE_MT_SYNCH> *queue_;
  const char *order_string_;
  ACE_Message_Block **array_;
  u_int expected_count_;
};

// order in which messages are sent
static const char send_order [] = "abcdefghijklmnop";

// order in which messages are received with "FIFO prioritization" (i.e., none)
static const char FIFO_receipt_order [] = "abcdefghijklmnop";

// order in which messages are received with static prioritization
static const char static_receipt_order [] = "ponmlkjihgfedcba";

// order in which messages are received with deadline prioritization
static const char deadline_receipt_order [] = "hgfedcbaponmlkji";

// order in which messages are received with laxity prioritization
static const char laxity_receipt_order [] = "hfgedbcapnomljki";

// fast and slow execution time values (sec, usec),
// kept very small to allow comparison of deadline,
// laxity, and static strategies across a very wide 
// range of message counts.
static const ACE_Time_Value fast_execution (0, 1);
static const ACE_Time_Value slow_execution (0, 2);

// Make the queue be capable of being *very* large.
static const long max_queue = LONG_MAX;

#if defined (VXWORKS)
// VxWorks Message Queue parameters
vx_max_queue = INT_MAX
vx_msg_size = 32
#endif /* defined (VXWORKS) */

// loading parameters (number of messages to push through queues)
// for performance tests
static int MIN_LOAD = 20;
static int MAX_LOAD = 1000;
static int LOAD_STEP = 20;

// time offsets for a minute in the past (for the best case test) and
// two seconds in the future (for the worst case and randomized tests)
const static ACE_Time_Value far_past_offset (-60, 0);
const static ACE_Time_Value near_future_offset (2, 0);
const static ACE_Time_Value offset_step (0, 5);

// The order consumer dequeues a message from the passed Message_Queue,
// and checks its data character against the passed string of characters
// which has the expected ordering.   Suppliers and consumers do not
// allocate or deallocate messages, to avoid timing delays and timing
// jitter in the test: the main function is responsible for all
// initialization allocation and cleanup before, between, and after
// (but not during) the transfer of messages from a supplier to the
// corresponding consumer.

static void *
order_consumer (void * args)
{
  ACE_ASSERT (args != 0);

  ACE_Message_Queue<ACE_MT_SYNCH> *msg_queue = ((ArgStruct *) args)->queue_;
  const char *receipt_order = ((ArgStruct *) args)->order_string_;
  u_int expected_count = ((ArgStruct *) args)->expected_count_;

  ACE_ASSERT (receipt_order != 0);
  ACE_ASSERT (msg_queue != 0);

  u_int local_count = 0;

  // Keep looping, reading a message out of the queue, until we
  // reach the end of the receipt order string, which signals us to quit.
  for (const char *expected = receipt_order; *expected != '\0'; ++expected)
  {
    ACE_Message_Block *mb = 0;

    int result = msg_queue->dequeue_head (mb);

    if (result == -1)
    {
      break;
	}

    local_count++;

    ACE_ASSERT (*expected == *mb->rd_ptr ());
  }

  ACE_ASSERT (local_count == ACE_OS::strlen (receipt_order));

  ACE_ASSERT (local_count == expected_count);

  return 0;
}

// The order producer runs through the passed send string,  setting the read
// pointer of the current message to the current character position in
// the string, and then queueing the message in the message list, where
// it is removed by the order consumer.

static void *
order_producer (void *args)
{
  ACE_ASSERT (args != 0);

  ACE_Message_Queue<ACE_MT_SYNCH> *msg_queue = ((ArgStruct *) args)->queue_;
  const char *send_order = ((ArgStruct *) args)->order_string_;
  ACE_Message_Block **block_array = ((ArgStruct *) args)->array_;
  int expected_count = ((ArgStruct *) args)->expected_count_;

  ACE_ASSERT (send_order != 0);
  ACE_ASSERT (block_array != 0);

  // iterate through the send order string and the message block array,
  // setting the current message block's read pointer to the current
  // position in the send order string.
  int local_count = 0;
  const char *c;
  for (local_count = 0, c = send_order; *c != '\0'; ++local_count, ++c)
    {
      // point to the current message block
      ACE_Message_Block *mb = block_array [local_count];
      ACE_ASSERT (mb != 0);

      // Set the current send character in the current message block
      // at its read pointer position, and adjust the write pointer
      *mb->rd_ptr () = *c;
      mb->wr_ptr (1);


      // Enqueue the message block in priority order.
      if (msg_queue->enqueue_prio (mb) == -1)
      {
        break;
      }
    }

  ACE_ASSERT (local_count == expected_count);

  return 0;
}


int  run_order_test (ACE_Message_Queue<ACE_MT_SYNCH>* msg_queue, const char *send_order, const char *receipt_order)
{
  u_int i;
  u_int array_size = ACE_OS::strlen (send_order);

  ACE_ASSERT (msg_queue != 0);
  ACE_ASSERT (send_order != 0);
  ACE_ASSERT (receipt_order != 0);
  ACE_ASSERT (ACE_OS::strlen (send_order) == ACE_OS::strlen (receipt_order));

  ArgStruct supplier_args, consumer_args;

  supplier_args.queue_ = msg_queue;
  supplier_args.order_string_ = send_order;
  supplier_args.expected_count_ = ACE_OS::strlen (send_order);

  // allocate message blocks, fill in pointer array, set static information
  ACE_NEW_RETURN (supplier_args.array_, ACE_Message_Block * [array_size], -1);
  for (i = 0; i < array_size; ++i)
  {
    // construct a message new block off the heap, to hold a single character
    ACE_NEW_RETURN (supplier_args.array_[i], ACE_Message_Block (1), -1);

    // assign static (minimal) message priority in ascending order
    supplier_args.array_[i]->msg_priority (i);

    // assign every other message short or long execution time
    supplier_args.array_[i]->msg_execution_time (((i % 2) ? slow_execution : fast_execution));
  }

  consumer_args.queue_ = msg_queue;
  consumer_args.order_string_ = receipt_order;
  consumer_args.expected_count_ = ACE_OS::strlen (receipt_order);
  consumer_args.array_ = 0;

  // Construct pending and late absolute deadline times.

  ACE_Time_Value current_time (0, 0);
  ACE_Time_Value future_deadline (1, 0);
  ACE_Time_Value near_deadline (0, 500000);
  ACE_Time_Value recent_deadline (0, -1);
  ACE_Time_Value past_deadline (0, -500000);

  current_time = ACE_OS::gettimeofday ();

  future_deadline += current_time;
  near_deadline += current_time;
  recent_deadline += current_time;
  past_deadline += current_time;

  // Set absolute time of deadline associated with the message.
  for (i = 0; i < array_size; ++i)
  {
    switch ((4*i)/array_size)
    {
      case 0:
        supplier_args.array_[i]->msg_deadline_time (future_deadline);
        break;

      case 1:
        supplier_args.array_[i]->msg_deadline_time (near_deadline);
        break;

      case 2:
        supplier_args.array_[i]->msg_deadline_time (recent_deadline);
        break;

      case 3:
        supplier_args.array_[i]->msg_deadline_time (past_deadline);
        break;

      // should never reach here, but its better to make sure
          default:
        ACE_ASSERT ((4*i)/array_size < 4);
        break;
        }
  }

  // run the order test producer
  order_producer (&supplier_args);

  // run the order test consumer
  order_consumer (&consumer_args);

  // free all the allocated message blocks
  for (i = 0; i < array_size; ++i)
  {
    delete supplier_args.array_[i];
  }

  // free the allocated pointer array
  delete [] supplier_args.array_;

  return 0;
}


// The performance consumer starts a timer, dequeues all messages from the 
// passed Message_Queue, stops the timer, and reports the number of 
// dequeued messages, the elapsed time, and the average time per message.

static void *
performance_consumer (void * args)
{
  ACE_High_Res_Timer timer;

  ACE_ASSERT (args != 0);

  ACE_Message_Queue<ACE_MT_SYNCH> *msg_queue = ((ArgStruct *) args)->queue_;
  u_int expected_count = ((ArgStruct *) args)->expected_count_;

  ACE_ASSERT (msg_queue != 0);

  u_int local_count = 0;
  ACE_Message_Block *mb = 0;

  // reset, then start timer
  timer.reset ();
  timer.start ();

  // Keep looping, reading a message out of the queue, until
  // the expected number of messages have been dequeued.
  for (local_count = 0; local_count < expected_count; ++local_count)
  {
    if (msg_queue->dequeue_head (mb) == -1)
    {
      break;
    }
    
    //	ACE_ASSERT ('a' == *mb->rd_ptr ());
  }

  // stop timer, obtain and report its elapsed time
  timer.stop ();
  ACE_Time_Value tv;
  timer.elapsed_time (tv);
  ACE_DEBUG ((LM_INFO, "%6u, %6u, %f",
              local_count,
              tv.msec (),
              (double) tv.msec () / local_count));

  ACE_ASSERT (local_count == expected_count);

  return 0;
}

// The performance producer starts a timer, enqueues the passed messages setting the
// read pointer of each message to the first character position in the passed string,
// stops the timer, and reports the number of enqueued messages, the elapsed time, 
// and the average time per message.

static void *
performance_producer (void *args)
{
  ACE_High_Res_Timer timer;

  ACE_ASSERT (args != 0);

  ACE_Message_Queue<ACE_MT_SYNCH> *msg_queue = ((ArgStruct *) args)->queue_;
  ACE_Message_Block **block_array = ((ArgStruct *) args)->array_;
  int expected_count = ((ArgStruct *) args)->expected_count_;

  ACE_ASSERT (send_order != 0);
  ACE_ASSERT (block_array != 0);

  // reset, then start timer
  timer.reset ();
  timer.start ();

  // iterate through the message block array, setting the character under 
  // the current message block's read pointer to null before enqueueing
  // the message block.
  int local_count = 0;
  for (local_count = 0; local_count < expected_count; ++local_count)
  {
    // point to the current message block
    ACE_Message_Block *mb = block_array [local_count];
    ACE_ASSERT (mb != 0);

    // Set a character in the current message block at its
    // read pointer position, and adjust the write pointer
    *mb->rd_ptr () = 'a';
    mb->wr_ptr (1);

    // Enqueue the message block in priority order.
    if (msg_queue->enqueue_prio (mb) == -1)
    {
      break;
    }
  }

  // stop timer, obtain and report its elapsed time
  timer.stop ();
  ACE_Time_Value tv;
  timer.elapsed_time (tv);
  ACE_DEBUG ((LM_INFO, "%6u, %6u, %f, ",
              local_count,
              tv.msec (),
              (double) tv.msec () / local_count));

  ACE_ASSERT (local_count == expected_count);

  return 0;
}

int  run_performance_test (u_int min_load, u_int max_load, u_int load_step,
			   Test_Type test_type)
{
  ArgStruct supplier_args, consumer_args;   // supplier and consumer argument strings
  u_int load = 0;                           // message load
  ACE_Time_Value *time_offsets;             // pointer to array of time offsets
  ACE_Time_Value current_time;              // current time value
  u_int shuffle_index;                      // used to shuffle arrays
  int random_int;                           // also used to shuffle arrays
  ACE_Message_Block *temp_block;            // temporary message block pointer
  ACE_Time_Value temp_time;                 // temporary time value

  // build a static queue, a deadline based dynamic 
  // queue, and a laxity based dynamic queue

  ACE_Message_Queue<ACE_MT_SYNCH> *static_queue = 0;
  static_queue = ACE_Message_Queue_Factory<ACE_MT_SYNCH>::create_static_message_queue (max_queue);
  ACE_ASSERT (static_queue != 0);

  ACE_Message_Queue<ACE_MT_SYNCH> *deadline_queue = 0;
  deadline_queue =  ACE_Message_Queue_Factory<ACE_MT_SYNCH>::create_deadline_message_queue (max_queue);
  ACE_ASSERT (deadline_queue != 0);

  ACE_Message_Queue<ACE_MT_SYNCH> *laxity_queue = 0;
  laxity_queue =  ACE_Message_Queue_Factory<ACE_MT_SYNCH>::create_laxity_message_queue (max_queue);
  ACE_ASSERT (laxity_queue != 0);

  // zero out unused struct members
  supplier_args.order_string_ = 0;
  consumer_args.order_string_ = 0;
  consumer_args.array_ = 0;

  // print column headings for the specific test type
  switch (test_type)
  {
    case BEST:

      ACE_DEBUG ((LM_INFO,
	          "\n\nenqueued, best static time, best static avg, "
                  "dequeued, best static time, best static avg, "
	          "enqueued, best deadline time, best deadline avg, "
                  "dequeued, best deadline time, best deadline avg, "
	          "enqueued, best laxity time, best laxity avg, "
                  "dequeued, best laxity time, best laxity avg\n"));
      break;

    case WORST:

      ACE_DEBUG ((LM_INFO,
	          "\n\nenqueued, worst static time, worst static avg, "
                  "dequeued, worst static time, worst static avg, "
	          "enqueued, worst deadline time, worst deadline avg, "
                  "dequeued, worst deadline time, worst deadline avg, "
	          "enqueued, worst laxity time, worst laxity avg, "
                  "dequeued, worst laxity time, worst laxity avg\n"));

      break;

    case RANDOM:

      ACE_DEBUG ((LM_INFO,
	          "\n\nenqueued, random static time, random static avg, "
                  "dequeued, random static time, random static avg, "
	          "enqueued, random deadline time, random deadline avg, "
                  "dequeued, random deadline time, random deadline avg, "
	          "enqueued, random laxity time, random laxity avg, "
                  "dequeued, random laxity time, random laxity avg\n"));
      break;

    default:

      ACE_ERROR_RETURN ((LM_ERROR, "unknown test type %d", test_type), -1);
  }

  // iterate through the message loads, and at
  // each load do an identical test on all queues
  for (load = min_load; load <= max_load; load += load_step)
  {
    u_int i;

    supplier_args.expected_count_ = load;
    consumer_args.expected_count_ = load;

    // allocate message blocks, fill in pointer array, set static information
    ACE_NEW_RETURN (supplier_args.array_, ACE_Message_Block * [load], -1);
   
    // allocate array of timing offsets
    ACE_NEW_RETURN (time_offsets, ACE_Time_Value [load], -1);

    // fill in information for all types of tests
    for (i = 0; i < load; ++i)
    {
      // construct a message new block off the heap, to hold a single character
      ACE_NEW_RETURN (supplier_args.array_[i], ACE_Message_Block (1), -1);

      // assign every other message short or long execution time
      supplier_args.array_[i]->msg_execution_time (((i % 2) ? slow_execution : fast_execution));
    }

    // fill in information for the specific type of test
    switch (test_type)
    {
      case BEST:

        // fill in best case information
        time_offsets [0] = far_past_offset;
        supplier_args.array_[0]->msg_priority (load);
        for (i = 1; i < load; ++i)
        {
          // assign static (minimal) message priority in descending order
          supplier_args.array_[i]->msg_priority (load - i);

          // assign time to deadline in descending order
          time_offsets [i] = time_offsets [i - 1] + offset_step;
        }

        break;

      case WORST:

        // fill in worst case information
        time_offsets [0] = near_future_offset;
        supplier_args.array_[0]->msg_priority (0);
        for (i = 1; i < load; ++i)
        {
          // assign static (minimal) message priority in ascending order
          supplier_args.array_[i]->msg_priority (i);

          // assign time to deadline in descending order 
          // (puts dynamic priority in ascending order)
          time_offsets [i] = time_offsets [i - 1] - offset_step;
        }

        break;

      case RANDOM:

        // fill in worst case information
        time_offsets [0] = near_future_offset;
        supplier_args.array_[0]->msg_priority (0);
        for (i = 1; i < load; ++i)
        {
          // assign static (minimal) message priority in ascending order
          supplier_args.array_[i]->msg_priority (i);

          // assign time to deadline in descending order 
          // (puts dynamic priority in ascending order)
          time_offsets [i] = time_offsets [i - 1] - offset_step;
        }

        // then shuffle the arrays in tandem
        for (i = 0; i < load; ++i)
        {
          // choose a (pseudo) random integer (evenly distributed over [0, load-1])
          if (RAND_MAX >= load)
          {
            // discard integers in the tail of the random range that
            // do not distribute evenly modulo the number of messages
            do
            {
              random_int = ACE_OS::rand ();
            } while (random_int >= (int)(RAND_MAX - (RAND_MAX % load)));
          }
          else if (RAND_MAX < load - 1)
          {
            // this should only happen for a *very* large messages
            // relative to the system's representation size
            ACE_ERROR_RETURN ((LM_ERROR, "Insufficient range of random numbers"), -1);
          }

          shuffle_index = random_int % load;

          // swap the message at the current index with the one at the shuffle index
          temp_block = supplier_args.array_[i];
          supplier_args.array_[i] = supplier_args.array_[shuffle_index];
          supplier_args.array_[shuffle_index] = temp_block;

          // swap the time at the current index with the one at the shuffle index
          temp_time = time_offsets [i];
          time_offsets [i] = time_offsets [shuffle_index];
          time_offsets [shuffle_index] = temp_time;
        }

        break;

      default:

		ACE_ERROR_RETURN ((LM_ERROR, "unknown test type %d", test_type), -1);
    }

    // Set absolute time of deadline associated with each message.
    current_time = ACE_OS::gettimeofday ();
    for (i = 0; i < load; ++i)
    {
      supplier_args.array_[i]->msg_deadline_time (time_offsets [i] + current_time);
    }

    // run the performance test producer and consumer on the static queue
    supplier_args.queue_ = static_queue;
    performance_producer (&supplier_args);
    consumer_args.queue_ = static_queue;
    performance_consumer (&consumer_args);

    // add a comma delimiter for most recent outputs
    ACE_DEBUG ((LM_INFO, ", "));

    // run the performance test producer and consumer on the deadline queue
    supplier_args.queue_ = deadline_queue;
    performance_producer (&supplier_args);
    consumer_args.queue_ = deadline_queue;
    performance_consumer (&consumer_args);

    // add a comma delimiter for most recent outputs
    ACE_DEBUG ((LM_INFO, ", "));

    // run the performance test producer and consumer on the laxity queue
    supplier_args.queue_ = laxity_queue;
    performance_producer (&supplier_args);
    consumer_args.queue_ = laxity_queue;
    performance_consumer (&consumer_args);

    // move to the next line of output
    ACE_DEBUG ((LM_INFO, "\n"));

    // free all the allocated message blocks
    for (i = 0; i < load; ++i)
    {
      delete supplier_args.array_[i];
    }

    // free the allocated pointer array
    delete [] supplier_args.array_;

  }

  // free resources and leave
  delete static_queue;
  delete deadline_queue;
  delete laxity_queue;
  return 0;
}

int
main (int, ASYS_TCHAR *[])
{
  ACE_START_TEST (ASYS_TEXT ("Dynamic_Priority_Test"));

  // Enable FIFO scheduling, e.g., RT scheduling class on Solaris.
  if (ACE_OS::sched_params (
        ACE_Sched_Params (
          ACE_SCHED_FIFO,
          ACE_Sched_Params::priority_min (ACE_SCHED_FIFO),
          ACE_SCOPE_PROCESS)) != 0)
  {
    if (ACE_OS::last_error () == EPERM)
      ACE_DEBUG ((LM_MAX, "preempt: user is not superuser, "
                  "so remain in time-sharing class\n"));
    else
      ACE_ERROR_RETURN ((LM_ERROR, "%n: ACE_OS::sched_params failed\n%a"),
                        -1);
  }


  ACE_Message_Queue<ACE_MT_SYNCH> *test_queue = 0;

  // test factory, static message queue
  test_queue = ACE_Message_Queue_Factory<ACE_MT_SYNCH>::create_static_message_queue (max_queue);
  ACE_ASSERT (test_queue != 0);
  run_order_test (test_queue, send_order, static_receipt_order);
  delete test_queue;

  // test factory, dynamic message queue (deadline strategy)
  test_queue =  ACE_Message_Queue_Factory<ACE_MT_SYNCH>::create_deadline_message_queue (max_queue);
  ACE_ASSERT (test_queue != 0);
  run_order_test (test_queue, send_order, deadline_receipt_order);
  delete test_queue;

  // test factory, dynamic message queue (laxity strategy)
  test_queue =  ACE_Message_Queue_Factory<ACE_MT_SYNCH>::create_laxity_message_queue (max_queue);
  ACE_ASSERT (test_queue != 0);
  run_order_test (test_queue, send_order, laxity_receipt_order);
  delete test_queue;

#if defined (VXWORKS)
  // test factory for VxWorks message queue
  test_queue = ACE_Message_Queue_Factory<ACE_MT_SYNCH>::create_Vx_message_queue (vx_max_queue, vx_msg_size);
  ACE_ASSERT (test_queue != 0);
  // (TBD - does message receipt order test make any sense for Vx Queue ?
  //  If so, uncomment order test, or if not remove order test, below)
  // run_order_test (test_queue, send_order, static_receipt_order);
  delete test_queue;
#endif /* VXWORKS */

  // For each of an increasing number of message loads, run the same performance 
  // test (best case, worst case, and randomized, over each kind of queue 
  run_performance_test (MIN_LOAD, MAX_LOAD, LOAD_STEP, BEST);
  run_performance_test (MIN_LOAD, MAX_LOAD, LOAD_STEP, WORST);
  run_performance_test (MIN_LOAD, MAX_LOAD, LOAD_STEP, RANDOM);

  ACE_END_TEST;
  return 0;
}