summaryrefslogtreecommitdiff
path: root/tests/Future_Set_Test.cpp
blob: 6491063e982748217556ec4e43318a99a4e40426 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
// $Id$

// ============================================================================
//
// = LIBRARY
//    tests
//
// = FILENAME
//    Future_Set_Test.cpp
//
// = DESCRIPTION
//    This example tests the ACE Future Set and illustrates an
//    implementation of the Active Object pattern, which is available
//    at <http://www.cs.wustl.edu/~schmidt/Act-Obj.ps.gz>.  The
//    Active Object itself is very simple -- it determines if numbers
//    are prime.
//
// = AUTHOR
//    Andres Kruse <Andres.Kruse@cern.ch>,
//    Douglas C. Schmidt <schmidt@cs.wustl.edu>,
//    and Per Andersson <pera@ipso.se>
//
// ============================================================================

#include "test_config.h"
#include "ace/ACE.h"
#include "ace/Task.h"
#include "ace/Synch.h"
#include "ace/Message_Queue.h"
#include "ace/Future.h"
#include "ace/Future_Set.h"
#include "ace/Method_Request.h"
#include "ace/Activation_Queue.h"
#include "ace/Auto_Ptr.h"

ACE_RCSID(tests, Future_Set_Test, "$Id$")

#if defined (ACE_HAS_THREADS)

typedef ACE_Atomic_Op<ACE_Thread_Mutex, int> ATOMIC_INT;

// A counter for the tasks..
static ATOMIC_INT task_count (0);

class Prime_Scheduler : public ACE_Task_Base
{
  // = TITLE
  //     Prime number scheduler for the Active Object.
  //
  // = DESCRIPTION
  //     This class also plays the role of the Proxy and the Servant
  //     in the Active Object pattern.  Naturally, these roles could
  //     be split apart from the Prime_Scheduler.

  friend class Method_Request_work;
  friend class Method_Request_name;
  friend class Method_Request_end;
public:
  // = Initialization and termination methods.
  Prime_Scheduler (const ACE_TCHAR *,
                   Prime_Scheduler * = 0);
  // Constructor.

  virtual int open (void *args = 0);
  // Initializer.

  virtual int close (u_long flags = 0);
  // Terminator.

  virtual ~Prime_Scheduler (void);
  // Destructor.

  // = These methods are part of the Active Object Proxy interface.
  ACE_Future<u_long> work (u_long param, int count = 1);
  ACE_Future<const ACE_TCHAR*> name (void);
  void end (void);

protected:
  virtual int svc (void);
  // Runs the Prime_Scheduler's event loop, which dequeues
  // <Method_Requests> and dispatches them.

  // = These are the Servant methods that do the actual work.
  u_long work_i (u_long, int);
  const ACE_TCHAR *name_i (void);

private:
  // = These are the <Prime_Scheduler> implementation details.
  ACE_TCHAR *name_;
  ACE_Activation_Queue activation_queue_;
  Prime_Scheduler *scheduler_;
};

class Method_Request_work : public ACE_Method_Request
{
  // = TITLE
  //     Reification of the <work> method.
public:
  Method_Request_work (Prime_Scheduler *,
                       u_long,
                       int,
                       ACE_Future<u_long> &);
  virtual ~Method_Request_work (void);

  virtual int call (void);
  // This is the entry point into the Active Object method.

private:
  Prime_Scheduler *scheduler_;

  u_long param_;
  // Parameter to the method that's used to determine if a number if
  // prime.

  int count_;
  // Unused.

  ACE_Future<u_long> future_result_;
  // Store the result of the Future.
};

Method_Request_work::Method_Request_work (Prime_Scheduler *new_Prime_Scheduler,
                                          u_long new_param,
                                          int new_count,
                                          ACE_Future<u_long> &new_result)
  : scheduler_ (new_Prime_Scheduler),
    param_ (new_param),
    count_ (new_count),
    future_result_ (new_result)
{
  ACE_DEBUG ((LM_DEBUG,
              ACE_TEXT ("(%t) Method_Request_work created\n")));
}

Method_Request_work::~Method_Request_work (void)
{
  ACE_DEBUG ((LM_DEBUG,
              ACE_TEXT ("(%t) Method_Request_work will be deleted.\n")));
}

int
Method_Request_work::call (void)
{
  // Dispatch the Servant's operation and store the result into the
  // Future.
  return this->future_result_.set (this->scheduler_->work_i
                                   (this->param_,
                                    this->count_));
}

class Method_Request_name : public ACE_Method_Request
{
  // = TITLE
  //     Reification of the <name> method.
public:
  Method_Request_name (Prime_Scheduler *,
                       ACE_Future<const ACE_TCHAR*> &);
  virtual ~Method_Request_name (void);

  virtual int call (void);
  // This is the entry point into the Active Object method.

private:
  Prime_Scheduler *scheduler_;
  ACE_Future<const ACE_TCHAR*> future_result_;
};

Method_Request_name::Method_Request_name (Prime_Scheduler *new_scheduler,
                                          ACE_Future<const ACE_TCHAR*> &new_result)
  : scheduler_ (new_scheduler),
    future_result_ (new_result)
{
  ACE_DEBUG ((LM_DEBUG,
              ACE_TEXT ("(%t) Method_Request_name created\n")));
}

Method_Request_name::~Method_Request_name (void)
{
  ACE_DEBUG ((LM_DEBUG,
              ACE_TEXT ("(%t) Method_Request_name will be deleted.\n")));
}

int
Method_Request_name::call (void)
{
  // Dispatch the Servant's operation and store the result into the
  // Future.
  return future_result_.set (scheduler_->name_i ());
}

class Method_Request_end : public ACE_Method_Request
{
  // = TITLE
  //     Reification of the <end> method.
public:
  Method_Request_end (Prime_Scheduler *new_Prime_Scheduler);
  virtual ~Method_Request_end (void);
  virtual int call (void);

private:
  Prime_Scheduler *scheduler_;
};

Method_Request_end::Method_Request_end (Prime_Scheduler *scheduler)
  : scheduler_ (scheduler)
{
}

Method_Request_end::~Method_Request_end (void)
{
}

int
Method_Request_end::call (void)
{
  // Shut down the scheduler.
  this->scheduler_->close ();
  return -1;
}

// Constructor
Prime_Scheduler::Prime_Scheduler (const ACE_TCHAR *newname,
                                  Prime_Scheduler *new_scheduler)
  : scheduler_ (new_scheduler)
{
  ACE_NEW (this->name_,
           ACE_TCHAR[ACE_OS::strlen (newname) + 1]);
  ACE_OS::strcpy ((ACE_TCHAR *) this->name_,
                  newname);
  ACE_DEBUG ((LM_DEBUG,
              ACE_TEXT ("(%t) Prime_Scheduler %s created\n"),
              this->name_));
}

// Destructor

Prime_Scheduler::~Prime_Scheduler (void)
{
  ACE_DEBUG ((LM_DEBUG,
              ACE_TEXT ("(%t) Prime_Scheduler %s will be destroyed\n"),
              this->name_));
  delete [] this->name_;
}

// open

int
Prime_Scheduler::open (void *)
{
  task_count++;
  ACE_DEBUG ((LM_DEBUG,
              ACE_TEXT ("(%t) Prime_Scheduler %s open\n"),
              this->name_));
  // Become an Active Object.
  return this->activate (THR_BOUND | THR_DETACHED);
}

// close

int
Prime_Scheduler::close (u_long)
{
  ACE_DEBUG ((LM_DEBUG,
              ACE_TEXT ("(%t) Prime_Scheduler %s close\n"),
              this->name_));
  task_count--;
  return 0;
}

// Service..

int
Prime_Scheduler::svc (void)
{
  for (;;)
    {
      // Dequeue the next method request (we use an auto pointer in
      // case an exception is thrown in the <call>).
      auto_ptr<ACE_Method_Request> mo (this->activation_queue_.dequeue ());

      ACE_DEBUG ((LM_DEBUG,
                  ACE_TEXT ("(%t) calling method request\n")));
      // Call it.
      if (mo->call () == -1)
        break;
      // Destructor automatically deletes it.
    }

  /* NOTREACHED */
  return 0;
}

void
Prime_Scheduler::end (void)
{
  this->activation_queue_.enqueue (new Method_Request_end (this));
}

// Here's where the Work takes place.  We compute if the parameter is
// a prime number.

u_long
Prime_Scheduler::work_i (u_long param,
                         int count)
{
  ACE_UNUSED_ARG (count);

  return ACE::is_prime (param, 2, param / 2);
}

const ACE_TCHAR *
Prime_Scheduler::name_i (void)
{
  return this->name_;
}

ACE_Future<const ACE_TCHAR *>
Prime_Scheduler::name (void)
{
  if (this->scheduler_)
    // Delegate to the Prime_Scheduler.
    return this->scheduler_->name ();
  else
    {
      ACE_Future<const ACE_TCHAR*> new_future;

      // @@ What happens if new fails here?
      this->activation_queue_.enqueue
        (new Method_Request_name (this,
                                  new_future));
      return new_future;
    }
}

ACE_Future<u_long>
Prime_Scheduler::work (u_long newparam,
                       int newcount)
{
  if (this->scheduler_) {
    return this->scheduler_->work (newparam, newcount);
  }
  else {
    ACE_Future<u_long> new_future;

    this->activation_queue_.enqueue
      (new Method_Request_work (this,
                                newparam,
                                newcount,
                                new_future));
    return new_future;
  }
}

// @@ These values should be set by the command line options!

// Total number of loops.
static int n_loops = 100;

typedef ACE_Future_Rep<u_long> *u_long_key;
typedef ACE_Future_Holder<u_long> *u_long_value;

typedef ACE_Future_Rep<const ACE_TCHAR *> *char_star_key;
typedef ACE_Future_Holder<const ACE_TCHAR *> *char_star_value;

#if defined (ACE_HAS_EXPLICIT_TEMPLATE_INSTANTIATION)

template class ACE_Atomic_Op<ACE_Thread_Mutex, int>;
template class ACE_Future_Holder<const ACE_TCHAR *>;
template class ACE_Future_Holder<u_long>;
template class ACE_Future_Observer<const ACE_TCHAR *>;
template class ACE_Future_Observer<u_long>;
template class ACE_Future<const ACE_TCHAR *>;
template class ACE_Future<u_long>;
template class ACE_Future_Rep<const ACE_TCHAR *>;
template class ACE_Future_Rep<u_long>;
template class ACE_Future_Set<const ACE_TCHAR *>;
template class ACE_Future_Set<u_long>;
template class auto_ptr<ACE_Method_Request>;
template class ACE_Auto_Basic_Ptr<ACE_Method_Request>;
template class ACE_Node<ACE_Future_Observer<const ACE_TCHAR *> *>;
template class ACE_Node<ACE_Future_Observer<u_long> *>;
template class ACE_Unbounded_Set<ACE_Future_Observer<const ACE_TCHAR *> *>;
template class ACE_Unbounded_Set<ACE_Future_Observer<u_long> *>;
template class ACE_Unbounded_Set_Iterator<ACE_Future_Observer<const ACE_TCHAR *> *>;
template class ACE_Unbounded_Set_Iterator<ACE_Future_Observer<u_long> *>;
template class ACE_Pointer_Hash<u_long_key>;
template class ACE_Equal_To<u_long_key>;
template class ACE_Hash_Map_Entry<u_long_key, u_long_value>;
template class ACE_Hash_Map_Manager_Ex<u_long_key, u_long_value, ACE_Pointer_Hash<u_long_key>, ACE_Equal_To<u_long_key>, ACE_Null_Mutex>;
template class ACE_Hash_Map_Iterator_Base_Ex<u_long_key, u_long_value, ACE_Pointer_Hash<u_long_key>, ACE_Equal_To<u_long_key>, ACE_Null_Mutex>;
template class ACE_Hash_Map_Iterator_Ex<u_long_key, u_long_value, ACE_Pointer_Hash<u_long_key>, ACE_Equal_To<u_long_key>, ACE_Null_Mutex>;
template class ACE_Hash_Map_Reverse_Iterator_Ex<u_long_key, u_long_value, ACE_Pointer_Hash<u_long_key>, ACE_Equal_To<u_long_key>, ACE_Null_Mutex>;
template class ACE_Pointer_Hash<char_star_key>;
template class ACE_Equal_To<char_star_key>;
template class ACE_Hash_Map_Entry<char_star_key, char_star_value>;
template class ACE_Hash_Map_Manager_Ex<char_star_key, char_star_value, ACE_Pointer_Hash<char_star_key>, ACE_Equal_To<char_star_key>, ACE_Null_Mutex>;
template class ACE_Hash_Map_Iterator_Base_Ex<char_star_key, char_star_value, ACE_Pointer_Hash<char_star_key>, ACE_Equal_To<char_star_key>, ACE_Null_Mutex>;
template class ACE_Hash_Map_Iterator_Ex<char_star_key, char_star_value, ACE_Pointer_Hash<char_star_key>, ACE_Equal_To<char_star_key>, ACE_Null_Mutex>;
template class ACE_Hash_Map_Reverse_Iterator_Ex<char_star_key, char_star_value, ACE_Pointer_Hash<char_star_key>, ACE_Equal_To<char_star_key>, ACE_Null_Mutex>;

#elif defined (ACE_HAS_TEMPLATE_INSTANTIATION_PRAGMA)

#pragma instantiate ACE_Atomic_Op<ACE_Thread_Mutex, int>
#pragma instantiate ACE_Future_Holder<const ACE_TCHAR *>
#pragma instantiate ACE_Future_Holder<u_long>
#pragma instantiate ACE_Future_Observer<const ACE_TCHAR *>
#pragma instantiate ACE_Future_Observer<u_long>
#pragma instantiate ACE_Future<const ACE_TCHAR *>
#pragma instantiate ACE_Future<u_long>
#pragma instantiate ACE_Future_Rep<const ACE_TCHAR *>
#pragma instantiate ACE_Future_Rep<u_long>
#pragma instantiate ACE_Future_Set<const ACE_TCHAR *>
#pragma instantiate ACE_Future_Set<u_long>
#pragma instantiate auto_ptr<ACE_Method_Request>
#pragma instantiate ACE_Auto_Basic_Ptr<ACE_Method_Request>
#pragma instantiate ACE_Node<ACE_Future_Observer<const ACE_TCHAR *> *>
#pragma instantiate ACE_Node<ACE_Future_Observer<u_long> *>
#pragma instantiate ACE_Unbounded_Set<ACE_Future_Observer<const ACE_TCHAR *> *>
#pragma instantiate ACE_Unbounded_Set<ACE_Future_Observer<u_long> *>
#pragma instantiate ACE_Unbounded_Set_Iterator<ACE_Future_Observer<const ACE_TCHAR *> *>
#pragma instantiate ACE_Unbounded_Set_Iterator<ACE_Future_Observer<u_long> *>
#pragma instantiate ACE_Pointer_Hash<u_long_key>
#pragma instantiate ACE_Equal_To<u_long_key>
#pragma instantiate ACE_Hash_Map_Entry<u_long_key, u_long_value>
#pragma instantiate ACE_Hash_Map_Manager_Ex<u_long_key, u_long_value, ACE_Pointer_Hash<u_long_key>, ACE_Equal_To<u_long_key>, ACE_Null_Mutex>
#pragma instantiate ACE_Hash_Map_Iterator_Base_Ex<u_long_key, u_long_value, ACE_Pointer_Hash<u_long_key>, ACE_Equal_To<u_long_key>, ACE_Null_Mutex>
#pragma instantiate ACE_Hash_Map_Iterator_Ex<u_long_key, u_long_value, ACE_Pointer_Hash<u_long_key>, ACE_Equal_To<u_long_key>, ACE_Null_Mutex>
#pragma instantiate ACE_Hash_Map_Reverse_Iterator_Ex<u_long_key, u_long_value, ACE_Pointer_Hash<u_long_key>, ACE_Equal_To<u_long_key>, ACE_Null_Mutex>
#pragma instantiate ACE_Pointer_Hash<char_star_key>
#pragma instantiate ACE_Equal_To<char_star_key>
#pragma instantiate ACE_Hash_Map_Entry<char_star_key, char_star_value>
#pragma instantiate ACE_Hash_Map_Manager_Ex<char_star_key, char_star_value, ACE_Pointer_Hash<char_star_key>, ACE_Equal_To<char_star_key>, ACE_Null_Mutex>
#pragma instantiate ACE_Hash_Map_Iterator_Base_Ex<char_star_key, char_star_value, ACE_Pointer_Hash<char_star_key>, ACE_Equal_To<char_star_key>, ACE_Null_Mutex>
#pragma instantiate ACE_Hash_Map_Iterator_Ex<char_star_key, char_star_value, ACE_Pointer_Hash<char_star_key>, ACE_Equal_To<char_star_key>, ACE_Null_Mutex>
#pragma instantiate ACE_Hash_Map_Reverse_Iterator_Ex<char_star_key, char_star_value, ACE_Pointer_Hash<char_star_key>, ACE_Equal_To<char_star_key>, ACE_Null_Mutex>

#endif /* ACE_HAS_EXPLICIT_TEMPLATE_INSTANTIATION */

#endif /* ACE_HAS_THREADS */

int
main (int, ACE_TCHAR *[])
{
  ACE_START_TEST (ACE_TEXT ("Future_Set_Test"));

#if defined (ACE_HAS_THREADS)
  // @@ Should make these be <auto_ptr>s...
  Prime_Scheduler *andres, *peter, *helmut, *matias;

  // Create active objects..
  ACE_NEW_RETURN (andres,
                  Prime_Scheduler (ACE_TEXT ("andres")),
                  -1);
  ACE_ASSERT (andres->open () != -1);
  ACE_NEW_RETURN (peter,
                  Prime_Scheduler (ACE_TEXT ("peter")),
                  -1);
  ACE_ASSERT (peter->open () != -1);
  ACE_NEW_RETURN (helmut,
                  Prime_Scheduler (ACE_TEXT ("helmut")),
                  -1);
  ACE_ASSERT (helmut->open () != -1);

  // Matias passes all asynchronous method calls on to Andres...
  ACE_NEW_RETURN (matias,
                  Prime_Scheduler (ACE_TEXT ("matias"),
                                   andres),
                  -1);
  ACE_ASSERT (matias->open () != -1);

  ACE_Future<u_long> fresulta;
  ACE_Future<u_long> fresultb;
  ACE_Future<u_long> fresultc;
  ACE_Future<u_long> fresultd;
  ACE_Future<const ACE_TCHAR *> fname;

  ACE_Future_Set<u_long> fseta;
  ACE_Future_Set<u_long> fsetb;
  ACE_Future_Set<u_long> fsetc;
  ACE_Future_Set<u_long> fsetd;
  ACE_Future_Set<const ACE_TCHAR *> fsetname;

  ACE_DEBUG ((LM_DEBUG,
              ACE_TEXT ("(%t) initializing future sets with non-blocking call\n")));

  for (int i = 0; i < n_loops; i++)
    {
      // Spawn off the methods, which run in a separate thread as
      // active object invocations.
      fresulta = andres->work (9013);
      fresultb = peter->work (9013);
      fresultc = helmut->work (9013);
      fresultd = matias->work (9013);
      fname = andres->name ();

      fseta.insert (fresulta);
      fsetb.insert (fresultb);
      fsetc.insert (fresultc);
      fsetd.insert (fresultd);
      fsetname.insert (fname);
    }


  // See if the result is available...

  if (!fseta.is_empty ())
    ACE_DEBUG ((LM_DEBUG,
                ACE_TEXT ("(%t) wow.. set a is not empty.....\n")));

  if (!fsetb.is_empty ())
    ACE_DEBUG ((LM_DEBUG,
                ACE_TEXT ("(%t) wow.. set b is not empty.....\n")));

  if (!fsetc.is_empty ())
    ACE_DEBUG ((LM_DEBUG,
                ACE_TEXT ("(%t) wow.. set c is not empty.....\n")));

  if (!fsetd.is_empty ())
    ACE_DEBUG ((LM_DEBUG,
                ACE_TEXT ("(%t) wow.. set d is not empty.....\n")));

  if (!fsetname.is_empty ())
    ACE_DEBUG ((LM_DEBUG,
                ACE_TEXT ("(%t) wow.. set name is not empty.....\n")));

  ACE_DEBUG ((LM_DEBUG,
              ACE_TEXT ("(%t) non-blocking calls done... now blocking...\n")));

  // Save the result of fresulta.

  u_long resulta = 0;
  u_long resultb = 0;
  u_long resultc = 0;
  u_long resultd = 0;

  u_int count = 0;
  while (fseta.next_readable (fresulta))
    {
      fresulta.get (resulta);

      ACE_DEBUG ((LM_DEBUG,
                  ACE_TEXT ("(%t) result(%u) a %u\n"),
                  count,
                  (u_int) resulta));
    }

  count = 0;
  while (fsetb.next_readable (fresultb))
    {
      fresultb.get (resultb);

      ACE_DEBUG ((LM_DEBUG,
                  ACE_TEXT ("(%t) result(%u) b %u\n"),
                  count,
                  (u_int) resultb));
    }

  count = 0;
  while (fsetc.next_readable (fresultc))
    {
      fresultc.get (resultc);

      ACE_DEBUG ((LM_DEBUG,
                  ACE_TEXT ("(%t) result(%u) c %u\n"),
                  count,
                  (u_int) resultc));
    }

  count = 0;
  while (fsetd.next_readable (fresultd))
    {
      fresultd.get (resultd);

      ACE_DEBUG ((LM_DEBUG,
                  ACE_TEXT ("(%t) result(%u) d %u\n"),
                  count,
                  (u_int) resultd));
    }

  const ACE_TCHAR *name;
  count = 0;
  while (fsetname.next_readable (fname))
    {
      fname.get (name);

      ACE_DEBUG ((LM_DEBUG,
                  ACE_TEXT ("(%t) result(%u) name %s\n"),
                  count,
                  name));
    }

  if (fseta.is_empty ())
    ACE_DEBUG ((LM_DEBUG,
                ACE_TEXT ("(%t) wow.. set a is empty.....\n")));

  if (fsetb.is_empty ())
    ACE_DEBUG ((LM_DEBUG,
                ACE_TEXT ("(%t) wow.. set b is empty.....\n")));

  if (fsetc.is_empty ())
    ACE_DEBUG ((LM_DEBUG,
                ACE_TEXT ("(%t) wow.. set c is empty.....\n")));

  if (fsetd.is_empty ())
    ACE_DEBUG ((LM_DEBUG,
                ACE_TEXT ("(%t) wow.. set d is empty.....\n")));

  if (fsetname.is_empty ())
    ACE_DEBUG ((LM_DEBUG,
                ACE_TEXT ("(%t) wow.. set name is empty.....\n")));

  ACE_DEBUG ((LM_DEBUG,
              ACE_TEXT ("(%t) task_count %d\n"),
              task_count.value () ));

  // Close things down.
  andres->end ();
  peter->end ();
  helmut->end ();
  matias->end ();

  ACE_OS::sleep (2);

  ACE_DEBUG ((LM_DEBUG,
              ACE_TEXT ("(%t) task_count %d\n"),
              task_count.value () ));

  ACE_OS::sleep (5);

  delete andres;
  delete peter;
  delete helmut;
  delete matias;

#else
  ACE_ERROR ((LM_INFO,
              ACE_TEXT ("threads not supported on this platform\n")));
#endif /* ACE_HAS_THREADS */
  ACE_END_TEST;
  return 0;
}