summaryrefslogtreecommitdiff
path: root/tests/Thread_Mutex_Test.cpp
blob: 79ec0f26399c21f7858788ad707ecc0fb5794015 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
// $Id$

// ============================================================================
//
// = LIBRARY
//    tests
//
// = FILENAME
//    Thread_Mutex_Test.cpp
//
// = DESCRIPTION
//     This test illustrates the functionality of the
//     ACE_Thread_Mutex. The test acquires and releases mutexes. No
//     command line arguments are needed to run the test.
//
// = AUTHOR
//    Prashant Jain <pjain@cs.wustl.edu> and Doug Schmidt <schmidt@cs.wustl.edu>
//
// ============================================================================

#include "test_config.h"
#include "ace/Thread_Manager.h"
#include "ace/Process_Mutex.h"

ACE_RCSID(tests, Thread_Mutex_Test, "$Id$")

#if defined (ACE_HAS_THREADS)

// For all platforms except for Windows use the ACE_Thread_Mutex.
// Since Windows only supports timed process mutexes and not
// timed thread mutexes, use ACE_Process_Mutex.
#if defined (ACE_HAS_WTHREADS)
#define ACE_TEST_MUTEX  ACE_Process_Mutex
#else
#define ACE_TEST_MUTEX  ACE_Thread_Mutex
#endif

#if !defined (ACE_HAS_MUTEX_TIMEOUTS)
static int reported_notsup = 0;
#endif /* ACE_HAS_MUTEX_TIMEOUTS */

static void *
test (void *args)
{
  ACE_TEST_MUTEX *mutex = (ACE_TEST_MUTEX *) args;
  ACE_UNUSED_ARG (mutex); // Suppress ghs warning about unused local "mutex".
  ACE_OS::srand (ACE_OS::time (0));

  for (size_t i = 0; i < ACE_MAX_ITERATIONS / 2; i++)
    {
      int result = 0;

      // First attempt to acquire the mutex with a timeout to verify
      // that mutex timeouts are working.

      ACE_DEBUG ((LM_DEBUG,
                  ACE_TEXT ("(%P|%t) = trying timed acquire on ")
                  ACE_TEXT ("iteration %d\n"),
                  i));

      ACE_Time_Value delta (1, 0);  // One second timeout
      ACE_Time_Value timeout = ACE_OS::gettimeofday ();
      timeout += delta;  // Must pass absolute time to acquire().

      if (mutex->acquire (timeout) != 0)
        {
          if (errno == ETIME)
            ACE_DEBUG ((LM_DEBUG,
                        ACE_TEXT ("(%P|%t) = mutex acquisition ")
                        ACE_TEXT ("timed out\n")));
          else if (errno == ENOTSUP)
            {
#if !defined (ACE_HAS_MUTEX_TIMEOUTS)
              if (!reported_notsup)
                {
                  ACE_DEBUG ((LM_INFO,
                              ACE_TEXT ("(%P|%t) %p, but ACE_HAS_MUTEX_TIMEOUTS is not defined - Ok\n"),
                              ACE_TEXT ("mutex timed acquire")));
                  reported_notsup = 1;
                }
#else
              ACE_DEBUG ((LM_ERROR,
                          ACE_TEXT ("(%P|%t) %p - maybe ACE_HAS_MUTEX_TIMEOUTS should not be defined?\n"),
                          ACE_TEXT ("mutex timed acquire")));
#endif  /* ACE_HAS_MUTEX_TIMEOUTS */
            }
          else
            {
              ACE_ERROR ((LM_ERROR,
                          ACE_TEXT ("(%P|%t) %p\n%a"),
                          ACE_TEXT ("mutex timeout failed\n")));
              return 0;
            }
        }
      else
        {
          result = mutex->release ();
          ACE_ASSERT (result == 0);
        }

      // Now try the standard mutex.

      ACE_DEBUG ((LM_DEBUG,
                  ACE_TEXT ("(%P|%t) = trying to acquire on iteration %d\n"),
                  i));
      result = mutex->acquire ();
      ACE_ASSERT (result == 0);
      ACE_DEBUG ((LM_DEBUG,
                  ACE_TEXT ("(%P|%t) = acquired on iteration %d\n"),
                  i));

      // Sleep for a random amount of time between 0 and 2 seconds.
      // Note that it's ok to use rand() here because we are running
      // within the critical section defined by the Thread_Mutex.
      ACE_OS::sleep (ACE_OS::rand () % 2);

      result = mutex->release ();
      ACE_ASSERT (result == 0);
      ACE_DEBUG ((LM_DEBUG,
                  ACE_TEXT ("(%P|%t) = released on iteration %d\n"),
                  i));

      // Basic ACE_Guard usage - automatically acquire the mutex on
      // guard construction and automatically release it on
      // destruction.
      {
        // Construct an ACE_Guard to implicitly acquire the mutex.
        ACE_Guard<ACE_TEST_MUTEX> guard (*mutex);
        ACE_ASSERT (guard.locked () != 0);

        // Perform some operation which might exit the current scope
        // prematurely, e.g. by returning or throwing an exception.
        // ...

        // ACE_Guard object is destroyed when exiting scope and guard
        // destructor automatically releases mutex.
      }

      // Use an ACE_Guard to automatically acquire a mutex, but release
      // the mutex early.
      {
        // Construct an ACE_Guard to implicitly acquire the mutex.
        ACE_Guard<ACE_TEST_MUTEX> guard (*mutex);
        ACE_ASSERT (guard.locked () != 0);

        // Perform some operation which might exit the current scope
        // prematurely, e.g. by returning or throwing an exception.
        // ...

        // Release the mutex since we no longer need it.
        guard.release ();
        ACE_ASSERT (guard.locked () == 0);

        // Do something else which does not require the mutex to be locked.
        // ...

        // ACE_Guard object's destructor will not release the mutex.
      }

      // Use an ACE_Guard to automatically acquire a mutex, but
      // relinquish ownership of the lock so that the mutex is not
      // automatically released on guard destruction. This is useful
      // when an operation might not release the mutex in some
      // conditions, in which case responsibility for releasing it is
      // passed to someone else.
      {
        // Construct an ACE_Guard to implicitly acquire the mutex.
        ACE_Guard<ACE_TEST_MUTEX> guard (*mutex);
        ACE_ASSERT (guard.locked () != 0);

        // Perform some operation which might exit the current scope
        // prematurely, e.g. by returning or throwing an exception.
        // ...

        // Relinquish ownership of the mutex lock. Someone else must
        // now release it.
        guard.disown ();
        ACE_ASSERT (guard.locked () == 0);

        // ACE_Guard object's destructor will not release the mutex.
      }
      // We are now responsible for releasing the mutex.
      result = mutex->release ();
      ACE_ASSERT (result == 0);

      // Construct an ACE_Guard without automatically acquiring the lock.
      {
        // Construct an ACE_Guard object without automatically
        // acquiring the mutex or taking ownership of an existing
        // lock. The third parameter tells the guard that the mutex
        // has not been locked.
        ACE_Guard<ACE_TEST_MUTEX> guard (*mutex, 0, 0);
        ACE_ASSERT (guard.locked () == 0);

        // Conditionally acquire the mutex.
        if (i % 2 == 0)
          {
            guard.acquire ();
            ACE_ASSERT (guard.locked () != 0);
          }

        // Perform some operation that might exit the current scope
        // prematurely, e.g. by returning or throwing an exception.
        // ...

        // ACE_Guard object is destroyed when exiting scope and guard
        // destructor automatically releases if it was acquired above.
      }

      // Use an ACE_Guard to take ownership of a previously acquired
      // mutex.
      timeout = ACE_OS::gettimeofday ();
      timeout += delta;  // Must pass absolute time to acquire().
      if (mutex->acquire (timeout) == 0)
        {
          // Construct an ACE_Guard object without automatically
          // acquiring the mutex, but instead take ownership of the
          // existing lock.  The third parameter tells the guard that
          // the mutex has already been locked.
          ACE_Guard<ACE_TEST_MUTEX> guard (*mutex, 0, 1);
          ACE_ASSERT (guard.locked () != 0);

          // Perform some operation which might exit the current scope
          // prematurely, e.g. by returning or throwing an exception.
          // ...

          // ACE_Guard object is destroyed when exiting scope and guard
          // destructor automatically releases mutex.
        }
    }

  return 0;
}
#endif /* ACE_HAS_THREADS */

static void
spawn (void)
{
#if defined (ACE_HAS_THREADS)
  ACE_TEST_MUTEX mutex;

  const u_int n_threads =
#if defined (__Lynx__)
    3;  /* It just doesn't work with 4 threads. */
#else  /* ! __Lynx__ */
    ACE_MAX_THREADS;
#endif /* ! __Lynx_- */

  if (ACE_Thread_Manager::instance ()->spawn_n (n_threads,
                                                ACE_THR_FUNC (test),
                                                (void *) &mutex,
                                                THR_NEW_LWP | THR_DETACHED) == -1)
    ACE_ERROR ((LM_ERROR,
                ACE_TEXT ("%p\n%a"),
                ACE_TEXT ("thread create failed")));

  // Wait for the threads to exit.
  ACE_Thread_Manager::instance ()->wait ();

#else
  ACE_ERROR ((LM_INFO,
              ACE_TEXT ("threads not supported on this platform\n")));
#endif /* ACE_HAS_THREADS */
}

int
run_main (int, ACE_TCHAR *[])
{
  ACE_START_TEST (ACE_TEXT ("Thread_Mutex_Test"));

  spawn ();

  ACE_END_TEST;
  return 0;
}